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Abstract 

This paper presents a strategy for the estimation and 
control of certain semiconductor manufacturing pro- 
cesses, employing models developed to describe the dy- 
namics of material interfaces in phase transition prob- 
lems. Previous work has successfully applied similar 
models to predict surface evolution in etching and de- 
position. Here, we propose to adapt these techniques to 
real-time process monitoring and control. The testbed 
for algorithm development is a highly simplified model 
of a plasma etch. Key elements of the scheme are in- 
vestigated, and found to be feasible. 

1 Introduction 

Given a material that may exist in either of two phases, 
how will the boundaries between the phases evolve? 
This is a fundamental question of phase transition 
physics. One way of mathematically representing phase 
transition, and investigating these issues, is through an 
order  parame ter ,  @. The value of @ at any point indi- 
cates the state of the material, with (for example) zero 
corresponding to one of the phases, unity to  the other. 
Analysis of the transition dynamics proceeds by allow- 
ing @ to vary continuously, without concern for the 
physical meaning of intermediate values. Then the fol- 
lowing parabolic phase field equation is an expression 
of energy minimization for many important physical 
processes: 

where W is a double-well potential (in some cases, W 
may depend on E ) ,  with a local minimum at one and 
another at zero-that is, the local minima correspond 
to the two phases. As t goes to zero, the domain will 
typically split into distinct subdomains, with 6, tending 
to values of zero or one in each-except in boundary 
regions, where one phase smoothly transitions to the 

@ t  = EA@ + (l/c)W’(@) (1) 
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other. The width of these boundary regions goes to 
zero with E .  Thus a sharp interface is obtained, in the 
limit. The motion of the sharp interface may be stud- 
ied through the limiting behavior of Eq. (1). Its nor- 
mal velocity, that  is, its velocity projected along the 
normal to the interface, turns out to be given by the 
sum of two terms. One term, expressing surface en- 
ergy effects, is related to the curvature of the interface. 
The other, driving the system from a high energy phase 
to a low energy phase, is a constant in f la t ionary  term, 
which vanishes if the values of W at the local minima 
are equal. In most physical situations, the curvature 
term tends to reduce the interface area, while the in- 
flationary contribution may take either sign. Limiting 
models of this type include the Allen-Cahn antiphase 
boundary model, the Stefan problem, the Hele-Shaw 
model, dendritic solidification, and thermal grooving. 
Kichenassamy, et al., present a detailed discussion of 
phase field equations, together with a large set of ref- 
erences to which we refer the interested reader [7].  

Although Eq. (1) gives insight into the behavior of the 
phase transition problem, it is not necessary to work 
with it directly. Rather, one can write down the equa- 
tions of motion of the evolving interface. In two di- 
mensions, these are the equations of curve evolution. 
Here, a sharp interface is described by a family of pa- 
rameterized curves, C : [0, l] x [O, t f )  + R2. The curve 
describing the interface evolves according to, 

E = a(p ,  t ) I  + P ( P ,  t )N 
at 

where p parametrizes the curve, N is the normal, I is 
the tangent, arid (I, p are velocity functions. Changing 
01 changes only the curve’s parametrization, and not its 
shape. Since we are interested in shape only we may 
take 01 = 0. Much of the mathematical literature con- 
siders the special case where the motion is determined 
solely by the local geometry of the curve. This leads to 
the following equation: 

(3) 

where ~ ( p , t )  is the curvature, and /Yo denotes the con- 
stant “inflationary” contribution. For a rigorous formal 
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treatment, as well as a look at some velocity functions 
of special interest, see [3 ,  4, 5, 8, 15, 16, 171. 

Numerical solution of curve evolution problems can be 
difficult, for several reasons. One is that, if curva- 
ture terms are absent or small, the solution will typ- 
ically develop corners, or “shocks,” even if the initial 
data is smooth. Solving for the curve motion after a 
shock develops-in fact, just giving meaning to such a 
notion-requires that some form of weak solution be 
defined, along with associated entropy conditions or 
viscosity solutions to ensure uniqueness. Another diffi- 
culty arises in treating topological transitions of the 
evolving curve, such as arise when curves merge or 
split. A series of algorithms that successfully address 
both these problems have been developed by Osher and 
Sethian, and their coworkers, based on techniques for 
hyperbolic conservation laws [la,  13, 161. These algo- 
rithms, based on a level set representation of the inter- 
face, form the basis for our approach. 

A number of studies have shown that incorporating 
feedback control into the the plasma etching process 
can improve the result [a, 11, 141. Here we are inter- 
ested in using in sztu measurements for real-time con- 
trol of process parameters. The central problem we 
address is estimating the evolving shape of the sur- 
face features from available measurements. This is a 
challenging task, but the potential benefits are large. 
Ultimately, the performance of the finished device will 
be heavily determined by the surface morphology. This 
goal is completely complementary to  other process con- 
trol tasks, such as the control of plasma variables. 

The idea of applying the theory of curve evolution 
for modeling etching interfaces in reactive-etching pro- 
cesses has been considered by a number of authors, in 
particular Shaqfeh and Jurgensen [18], and Singh, e t  al. 
[19]. Adalsteinsson and Sethian build on this method- 
ology, and apply level set evolution methods to etching, 
deposition, and lithography [l]. (See also Katardjiev et 
al. for a discussion of curvature dependent flows and 
level sets in plasma etching [6].) The present work, 
which emphasizes the use of such models as the basis 
for real-time estimation, owes a great deal to the ef- 
forts of these researchers. Finally, work that attacks a 
similar real-time interface estimation and control prob- 
lem (for crystal growth) through an entirely different 
method has been presented by Srinivasan, et al. [22]. 

The authors would like to  thank Pramod Khargonekar 
for his very helpful information on the control litera- 
ture in the area of semiconductor manufacturing. Also 
we would like to thank Jack and Ted Higman for very 
enlightening conversations on thin-film processing. 

2 Curvature Flows and Interface Evolution 

Let us discuss some properties of Eq. ( 3 ) ,  in partic- 
ular those that give rise to difficulties in analyzing 
the motion. In what follows, for the curve C(t )  := 
( z ( p ,  t ) ,  y(p, t ) ) ,  p(p, t )  will denote the metric, [xz + 
y,]1/2, and s ( p ,  t )  the Euclidean arc-length parameter, 
1; p(( , t )d( .  Note that the total length of the curve is 
just L ( t )  = s(1,t). The tangent, curvature, and nor- 
mal, are defined in the standard way [9]. Finally, we 
let 

1 

I<(t) := 1 4 P 7  t )p(p ,  t )& 

.(t) := Jill I+, t ) l P ( P ,  t ) d P  

(4) 

denote the total curvature, and 

( 5 )  
- 

denote the total absolute curvature. 

2.1 Hyperbolic Conservation Laws 
In principle, corners can form only when curvature 
terms are absent. In practice, the curvature can be- 
come extremely large, and cause numerical problems, 
even when these terms are nonzero. However, the 
causes and handling of shocks is best understood by 
studying the special case where p ( ~ )  = 0. Here in the 
classical manner we will derive a hyperbolic conserva- 
tion law [16]. 

Without loss of generality, let = 1. Then, 

From Eqns. (6) we can derive a hyperbolic conserva- 
tion law. As long as C stays smooth and non-self- 
intersecting, by virtue of the implicit function theorem, 
we can express the front in the form y = U ( t ,  x). Then 
U satisfies the Hamilton-Jacobi equation 

(7) 

Set U := d U / d x .  Differentiating (7) with respect to x, 
we see that 

U t  - (1 $- U 2 ) 1 / 2 )  = 0 ( X 

which has the form of a hyperbolic conservation law. 
It is of interest to note that the conserved quantity is 
the slope, ay/&. There is a huge classical and modern 
literature devoted to equations of this type; see [20] and 
the references therein. 

Geometrically, it is very easy to see how discontinuities 
develop for the system (6). Indeed, it is easy to com- 
pute that the curvature satisfies the evolution equation, 
.q = -K’ ,  which we explicitly solve, to find that 
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Notice that if the initial curve is anywhere concave, 
i.e., has curvature negative at  any point, K will blow 
up in finite time, and the resulting curve will develop 
a singularity, referred to as a shock [15]. 

Once a shock occurs, one must be careful in defining 
precisely what one means by a “solution” to (8). The 
answer will depend on the underlying physics of the 
problem. In geometric optics, nonconvex wavefronts 
can be handled by the Huygens principle, which defines 
the propagating front as the envelope of a continuum of 
circles, centered on the initial front. This construction 
selects a unzque solution from the many that satisfy 
the weak form of the eikonal equation. A similar issue 
arises in solving the Euler equations of compressible 
flow. Here the notion of viscosity solution naturally 
arises. Viscosity solutions may be defined for curvature 
flows as well, with curvature playing the role of viscos- 
ity. For curve evolution with constant 0, the viscosity 
solution coincides with the entropy condition imposed 
in [16], interpreting the hyperbolic evolution law in the 
prairie-fire sense that “once a particle is burnt, it stays 
burnt. ” 

2.2 Level Set Representations 
We now briefly discuss some of the numerical algo- 
rithms developed for curve evolution. This work is 
based on writing the approximations in conservation 
form and applying the Godunov method [lo]. For more 
details, see the fundamental work of Osher and Sethian 
in [12, 13, 161. 

Let C ( p ,  t )  satisfy the following evolution equation: 

= p ( K ) n / .  
dt 

In numerical implementations, the evolving curve is 
embedded in a two dimensional surface, and then the 
equations of motion are solved using a combination 
of straightforward discretization, and numerical tech- 
niques derived from hyperbolic conservation laws and 
Hamilton-Jacobi theory [16, 211. 

The embedding step is done in the following manner: 
The curve C(p,  t )  is represented by the zero level set of 
a smooth and Lipschitz continuous function @ : R2 x 
[O,r) + R. Assume that @ is negative in the interior 
and positive in the exterior of the zero level set. We 
consider the zero level set, defined by 

{ X ( t )  E R2 : CP(X,t) = 0 }  . (11) 

We have to find an evolution equation of CP, such that 
the evolving curve C ( t )  is given by the evolving zero 
level X ( t ) ,  i.e., 

By differentiating (11) with respect to t we obtain: 
C ( t )  = X ( t )  . (12) 

oqx, t )  ’ xt + CPt(X, t )  = 0 .  (13) 

Note that for the zero level, the following relation holds: 

V@/ ( 1  VCP I / =  N (14) 

In this equation, the left side uses terms of the surface 
CP, while the right side is related to the curve C. The 
combination of equations (10) to  (14) gives 

@t + P(.) II r7@ II= 0 (15) 

and the curve C ,  evolving according to ( lo) ,  is obtained 
by the zero level set of the function CP, which evolves 
according to (15). 

The second step of the algorithm consists of the dis- 
cretization of the equation (15). If singularities can- 
not develop during the evolution, as in the geometric 
heat equation flow, a straightforward discretization can 
be performed [13]. For the types of velocity functions 
that arise in etching problems, the implementation of 
the evolution of @ is based on a monotone and con- 
servative numerical algorithm [ lo ,  13, 211. For a large 
class of functions p, such numerical schemes automat- 
ically obey the entropy condition corresponding to the 
Huygens principle [16, 211. 

3 Estimation and Control of Etching 

Semiconductor manufacturing processes are well-suited 
for the level set techniques described above. The en- 
tropy condition has a clear physical interpretation: ma- 
terial that zs removed 2s never restored. Some other fea- 
tures of level sets are the ease with which they can be 
extended from two space dimensions to three, and the 
potential for capturing effects like surface diffusion in a 
curvature term. These issues, and others, are discussed 
extensively in the work [6, 17, 18, 191. 

Equation (15) is a completely general description of 
curve or surface evolution. The physics of the underly- 
ing process is entirely contained in the function p. So 
far, P has been given as a function of curvature only. 
A realistic description of manufacturing processes for 
thin-film devices may require that p have a more com- 
plicated functional dependence. One possibility is that  
it will depend on other quantities intrinsic to the in- 
terface, such as the direction of the unit normal, or 
derivatives of the curvature. These flows can be treated 
by similar methods. I t  also may occur that the inter- 
face normal velocity is determined in part by inher- 
ently non-local effects. Some non-local contributions 
that play a role in low pressure deposition and etch- 
ing processes are treated by Adalsteinsson and Sethian 
11, 171. 

3.1 Isotropic Etching of a Long Trench 
This section describes a highly simplified model of a 
plasma etching process. Figure 1 depicts the feature 
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Figure 1: Simplified 2-D Etching Geometry 
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geometry. A uniform layer of silicon sits on an inert 
substrate. The silicon is masked with a thin layer of 
resist, except for a narrow gap. The silicon surface is 
initially planar, with a uniform height of H .  At t = 
0, a reactive substance, chlorine gas for example, is 
introduced at the surface. This substance etchs silicon, 
but not the resist or the substrate. The simplifying 
assumptions are as follows: 

1. The feature to be etched is a trench, very long 
compared to  its width. This allows a 2-D planar 
approximation. 

2.  A large number of identical, evenly-spaced, 
trenches are to  be etched. Then only one such 
may be considered, with periodic boundary con- 
ditions. 

3. The etch is isotropic. Although isotropic plasma 
etching is rare, we begin with the isotropic case 
because an analytical solution is available as a 
truth model. 

4. The etch rate is constant and homogeneous 
within the material to  be etched. For simulation 
this etch rate is set to  one. 

5 .  The mask and substrate are perfectly inert, with 
an etch rate of zero. 

It remains to define an appropriate measurement. Here 
we consider a measurement of the total etch rate, that 
is, the total quantity of material removed, per unit 
time. A complete model of the system is then given 
by Eqns. (11) and (15), and the measurement, 

y ( t )  := S,,,, Xepdi (16) 

The expression (16) is just the normal velocity, inte- 
grated over the surface being etched. The characteristic 
function x e  is needed to distinguish between those parts 
of the surface that are masked or inert, and those that 
are actually being etched. Thus, (16) is the amount of 
material being removed per unit time. It is also the 
amount of material being released into the surround- 
ings per unit time, and so can be related to the rate 
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Figure 2: Exact and Predicted Output 

of change of concentration. Preliminary experimen- 
tal work using a chlorine etch of a crystalline silicon 
wafer suggests that the appropriate concentration can 
be measured, via optical emission spectroscopy. Note 
that it is impossible to relate this to  the surface ve- 
locity without knowledge of the surface shape. Under 
the above assumptions, the predicted measurement is 
PL(t;  p) where L(t;  p) is tlhe length of the etching por- 
tion of the estimated surface, and the dependence of 
the time history of L on 0 is explicitly indicated. An 
exact solution is available, using the Huygens principle. 
The corresponding measurement is, 

where L O ,  H ,  and W are as shown in Fig. 1. Figure 2 
compares this exact measurement to  the values pre- 
dicted by a level set simulation with p = 1. The differ- 
ences are due to the crude methods used in this prelim- 
inary study to  extract the length of the level set from 
the level set function. Tlhe “numerical noise” in the 
predicted values is due to  discretization effects. There 
is room for considerable improvement, using more so- 
phisticated interpolation techniques. 

The remainder of this paper concerns the construction 
of an estimator that will track the evolving feature 
morphology, based on the total etch rate measurement. 
The overall strategy is shown in Fig. 3. The level set 
simulation plays the role of the plant model, and the 
etch rate p is used as an adjustable parameter. We 
assume that the initial geometry is known exactly, but 
that the etch rate, though constant or slowly varying, is 
not known. The box labeled “G-N” in Fig. 3 represents 
an algorithm, one possible choice of which is discussed 
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Isotropic Etch 
Process: 

Feature X(t) 

................................................ 

y(t) = p( t )~ ( t )  

! . 
Estimator Figure 4: Feature Evolution: Estimated vs True 

Figure 3: Estimator Structure is exact, when the exposed silicon surface meets the 
mask or substrate a t  a right angle. So, 

below, that solves the inverse problem of “best” match- 
ing an etch rate estimate to the measured data. The 
estimated etch rate is then used to  propagate the esti- 
mated feature. For our present purpose, “best” will be 
in a least squares sense. 

We express the inverse problem as a minimization, 

1 
P 2  

= min -R(P)‘R(P) 

where [R(P)]i = pL(t i ;  P )  - y ( t i ) .  A Newton or Gauss- 
Newton method would be a standard choice to solve 
this problem. Here that is not straightforward, because 
it is not clear how to take derivatives through the set 
operation in (11). We now show how the necessary 
derivatives can be obtained. 

Following the Gauss approximation to  the Hessian of- 
ten used in least-squares problems, 

J ( P ) P  = R(P)lVR(P) (20) 
J ( P ) P P  = VR(P)tVR(P) + R(PItV2R(P) (21) 

= V W P R ( P )  ( 2 2 )  

(23) 

The necessary derivative is given by, 

[VR(P)l% = q t , ;  P )  + PL/3 (t ,;  PI. 
At any time t , ,  given some value of p, L ( t i ; p )  can 
be found using a forward solve. It remains to find 
Lp(t , ;P) .  From [9], 

1 

Lt ( t ;  P )  = P J’ KPdP = Plc(t;  p)  (24) 
0 

Then, L o t ( t ; p )  = Ltp(t;/3) N I<( t , p ) .  The total curva- 
ture is independent of p, and the approximation above 

This expression is now applied throughout the etch. 
The total curvature is generated a t  any time, for a given 
value of P, via a forward.solve. The surface at t o  = 0 is 
assumed known. Then a Gauss-Newton algorithm can 
be applied to find the surface at any subsequent time. 
The same technique could be used in a batch mode for 
run-to-run control of process parameters. 

This method was applied t o  the simplified 2-D etch. 
Figure 4 shows the surface evolution a t  10-unit time 
intervals. The estimator tracks the surface extremely 
well through the first part of the etch, before the surface 
reaches the substrate. After that, the performance is 
degraded, due to the intersection of the active surface 
with the substrate at a non-right angle. The correc- 
tion term for the total curvature due to this effect is 
easily calculated. However, there are some challenging 
problems associated with applying the correction term, 
involving accurate numerical computation of the local 
curvature and surface normal. 

3.2 Extensions 
As a final note, we comment on two interesting exten- 
sions of the problem presented above. 

The measurement y ( t )  was assumed to he equal to the 
rate of material removal of the etch. In fact, the mea- 
surement is only proportional to the total etch rate; 
and the constant of proportionality must be deter- 
mined in a separate calibration step. In an industrial 
setting it is desirable to minimize such steps, which 
add downtime and increase operating costs. Denote 
the constant of proportionality by C Y .  Then the esti- 
mated measurement is given by n@L(t;  P)  . To see that 
this constant can be estimated simultaneously with /3, 
consider the exact solution for the first stage of the 
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etch, y ( t )  = LyPL(f;@) = cyp(L0 + Prt), with CY and 
/3 unknown. The measurement will be a straight line, 
y ( t )  = A + Bt.  Then A and B can be found by a 
simple linear regression, and cy and $ will be given by, 
/3 = BLo/Ar and Q = A / Q L ~ .  For the general proh- 
lem, where no exact solution is available, the problem 
is solved by adding Q to the parameter vector in the 
Gauss-Newton routine. 

Next, we note that there is an alternative to Eq. (24) 
for calculating the sensitivity. The length of the etching 
surface may be written as an integral over the entire 
domain R [17, 231, 

L ( t )  = / XeS(@)IIV@lldA (26) 
n 

where 6 is the Dirac delta function. Here the /3 depen- 
dence is entirely contained in the dynamics of @. Unlike 
Eq. (16), differentiating this expression for L does not 
require direct use of the set operation Eq. (11). How- 
ever, the derivative wit,h respect to /3 will involve @p 
and its spatial derivatives. To apply this approach, the 
sensitivity function := @o must be found by solving 
an additional coupled PDE. 
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