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Abstract

We are interested in modeling the variability of different
images of the same scene, or class of objects, obtained by
changing the imaging conditions, for instance the viewpoint
or the illumination. Understanding of such a variability is
key to reconstruction of objects despite changes in their ap-
pearance (e.g. due to non-Lambertian reflection), or to rec-
ognizing classes of objects (e.g. cars), or individual objects
seen from different vantage points. We propose a model that
can account for changes in shape or viewpoint, appearance,
and also occlusions of line of sight. We learn a prior model
of each factor (shape, motion and appearance) from a col-
lection of samples using principal component analysis, akin
a generalization of “active appearance models” to dense
domains affected by occlusions. The ultimate goal of this
work is stereo reconstruction in 3D, but first we have de-
veloped the first stage in this approach by addressing the
simpler case of 2D shape/radiance detection in single im-
ages. We illustrate our model on a collection of images of
different cars and show how the learned prior can be used
to improve segmentation and 3D stereo reconstruction.

1. Introduction

An image can be thought of as a function from a compact
domain (the “image plane”) to the positive reals (the “in-
tensity” range). Changes in the imaging conditions, for in-
stance due to changes in viewpoint and illumination, cause
changes in both the domain and range of such a function.
For instance, a change of view of a Lambertian scene in am-
bient light can be modeled, away from occlusions, by a dif-
feomorphic deformation of the image domain [12], whereas
changes of illumination on a static scene can be modeled as
structured changes in intensity (for instance described by
a low-dimensional linear variety, known as “illumination
cone”). Unfortunately, however, changes in the domain and

range of the image play overlapping roles: One can always
explain classes of images of the same scene or “object” with
changes in its domain (intensity values) or, modulo contrast
functions [1], by deformations of the image domain, as in
a “deformable template” [6] (transitive actions of infinite-
dimensional groups of diffeomorphisms). Therefore, infer-
ring domain deformations and changes in intensity of a se-
quence of images obtained with different viewpoints and/or
illumination is an ill-posed problem, and suitable regular-
izers have to be imposed in order to arrive at a meaningful
model.

A common regularizer for changes in intensity is ob-
tained by assuming that such changes cause the images to
move on or close to a low-dimensional linear variety. The
most common approach is leads to principal component
analysis (PCA), and has been used extensively in model-
ing and recognition of scenes when there are no changes of
viewpoint [11]. Changes of viewpoint at a finite number of
landmarks can also be modeled in a similar fashion, using
procrustes analysis, which can be implemented using sin-
gular value decompositions in a manner similar to PCA [5].
Combined changes in intensity and shape can be modeled
in a conditionally linear fashion, by assuming that intensity
in a normalized frame is linear, and that normalization is
achieved by procrustes analysis, leading to so-called “ac-
tive appearance models” [4]. These have proven effective
in modeling classes of objects, such as faces, with mod-
est changes of appearance and shape, an free of occlusions.
Learning the principal components of shape and appearance
from a collection of images of an object provide a powerful
prior model that can be used to detect a new instance, or to
recognize the belonging of an object to the target class.

The problem becomes significantly more complex in the
presence of occlusions. In this case, domain deformations
are not only not diffeomorphic, but they are not even regu-
lar functions, since occlusions cause portions of the scene to
disappear, and other portions to appear. In [8] the problem
of modeling changes in motion and appearance of occlu-
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sion layers using the variational framework of Deformotion
was addressed by the authors, introduced in [13], exploit-
ing generic regularizers. Using those methods in this paper,
we introduce a learning-based regularization approach that
extends the active appearance model to scenes with occlu-
sions, all in a principled variational framework. Since we
model the shape, motion and appearance of each layer, we
can also fill in missing portions of layers (that are not visi-
ble in all images) realizing a multi-view version of “image
inpainting” [2]. For the case of just one layer, our model
simplifies to standard active appearance models, but repre-
sented in a continuous domain rather than at a finite number
of landmarks.

The shape of a layer that represents an object in the
scene is transformed by a diffeomorphism to model small-
scale changes in the object and is transformed by a finite-
dimensional group that describes coarse global motion. The
intensity function associated with a layer is computed by
minimizing a Mumford-Shah type energy that allows for oc-
clusions and “in-paints” based on other images where there
is no occlusion or if no information is available then the
solution of Laplace’s equation is used. In this work we
take the two most complex pieces, the intensity function for
a layer and the diffeomorphism representing variations in
shape, and reduce these to a smaller, more reasonable space
using principal components analysis.

The model we propose describes changes in motion, ap-
pearance, depth ordering, and shape of a number depth lay-
ers. In addition, we have to learn a number of bases for
the appearance space, motion space, and shape space. This
model is very powerful, but the notation tends to get heavy
when all factors are taken into account, and the computa-
tional cost of inference can be significant. For this reason,
we mostly restrict our attention to the important case of two
layers (foreground and background) and refer the reader to
a forthcoming technical report where the full model is de-
scribed.

The ultimate application here is detecting 3D shape and
radiance from multiple images. The type of joint priors
developed here with would be used with stereoscopic seg-
mentation [9]. This would involve using a suitable 3D
shape/radiance prior whose perspective projections would
bear resemblance to the types of 2D shape/radiance priors
presented in this work. So this work is the first step in devel-
oping joint priors for stereo shape/radiance reconstruction.

2. Layered Deformotion
Here we will give a description of the variational method

of layered deformotion. To describe a scene there are L

layers indexed by k = 1, 2, ..., L that may occlude each
other in the order that layer 3 overlaps layer 2 and layer 2
overlaps layer 1, etc. Each layer has a shape and a radiance
function. The shape of a layer is denoted by Ωk ⊂ R

2 and

the layer’s radiance is ρk : Ωk → R
+. Each layer’s global

motion is represented by some affine or rigid group action
gk. The local deformations of the shape Ωk of the layer k

are given by the diffeomorphism wk : Ωk → R
2. The shape

Ωk of a layer k is transformed to model an image It at time
t by a diffeomorphism wk

t and a finite group action gk
t . The

background layer is denoted by Ω0 = R
2. A model image

Ît is produced by the following:
{

Ît

(

xl
t

)

= ρl(x), x ∈ Ωl

xl
t = gl

t ◦ wl
t(x), l = max{k | x ∈ Ωk}.

(1)

So the energy to be minimized to produce Ît is

E =

N
∑

t=1

∫

Ω0

(

It(xt) − ρl(wl
t

−1
◦ gl

t

−1
(xt))

)2

dxt +

+β

L
∑

k=1

∫

Ωk

‖∇ρk(x)‖2dx + γ

L,N
∑

k,t=1

∫

Ωk

r(wk
t (x))dx (2)

subject to l = max{k | x ∈ Ωk} where β, γ ∈ R
+.

A typical regularizer r(w) would be the typical one used in
optical flow [7]. We can represent w(x) : R

2 → R
2 as a

vector field with w(x) = [x + u(x), y + v(x)]. Then

r(w(x)) =

∫

Ω

〈∇u(x),∇u(x)〉+〈∇v(x),∇v(x)〉 dx (3)

The unknown quantities to be solved for are the radi-
ances ρk, the shapes for each layer Ωk, the global motions
gk

t from a layer k to an image t, and the deformations wk
t

from a layer k to an image t. These are solved for using gra-
dient descent techniques. In the layered deformotion paper,
the authors reduce the complexity of (2) to a moving, de-
forming foreground layer Ω1,a fixed background layer Ω0,
and one image I in order to easily show the descent equa-
tions. We will keep this method for the sake of simplicity
here as well.

Letting g = g1, w = w1, x̂ = g(w(x)) and Ω̂1 =
g(w(Ω1)), the energy is as follows:

E =

∫

Ω̂1

(

I(x̂)−ρ1(x)
)2

dx̂ +

∫

Ω0\Ω̂1

(

I(x̂)−ρ0(x̂)
)2

dx̂

+ β

1
∑

k=0

∫

Ωk

〈

∇ρk,∇ρk
〉

dx (4)

+ γ

∫

Ω1

〈∇u(x),∇u(x)〉 + 〈∇v(x),∇v(x)〉 dx

The gradient descent equation for a parameter λ (such as x
and y translation, scale, or rotation) of g is:

∂E

∂λ
=

∫

∂Ω̂1

〈

∂x̂

∂λ
, N̂

〉

(

(

I(x̂)−ρ1(x)
)2
−
(

I(x̂)−ρ0(x̂)
)2
)

dŝ +

+2

∫

Ω̂1

(

I(x̂)−ρ1(x)
)

〈

∇ρ(x), Dw
∂g(x̂)

∂λ

〉

dx̂ (5)



N̂ is the outward unit normal and dŝ is the arclength ele-
ment of ∂Ω̂1. The solution of w is similar to the solution
for g except there is included the laplacian terms for the
regularizer.

The curve evolution is also similar to the boundary-based
term for the evolution of g:

∂C

∂t
= −

(

(

I(x̂)−ρ1(x)
)2
−
(

I(x̂)−ρ0(x̂)
)2
)

N̂ (6)

The solution of ρk is the solution of the usual Mumford-
Shah problem for the radiance portion with Poisson-type
equations.

∆ρ1(x) =
1

β

(

ρ1(x) − I(x̂)
)

, x ∈ Ω1 (7)

∆ρ0(x) =

{

0, x ∈ Ω̂1

1

β

(

ρ0(x) − I(x)
)

, x ∈ Ω0 \ Ω̂1 (8)

3. Layered Deformotion with Joint Prior

After seeing all the gradient descent equations from the
previous section, it becomes obvious that a solution would
take a while to acquire. By fixing each layer Ωk to an “av-
erage shape”, it becomes possible to look at the radiances
ρk and the diffeomorphisms wk and build a prior on them.
We take a database of images of an object of interest and
run the ”layered deformotion” algorithm on them to ”learn”
the radiances and to ”learn” the diffeomorphisms that object
has in the database. Then we reduce that space of radiances
and diffeomorphisms using principal components analysis.
The modeling of appearance and shape of any new object
of that trained class becomes much more accurate and com-
putationally efficient.

3.1. Derivation of w PCA flow with one constant

If we build w(x) and ρ1(x) jointly out of principal com-
ponents we get

[

ρ1(x)
w(x)

]

=





ρ1(x)
x + u(x)
y + v(x)



 (9)

=







ρ̄1(x) +
∑N

i=1
ciρ

1
i (x)

x + ū(x) +
∑N

i=1
ciui(x)

y + v̄(x) +
∑N

i=1
civi(x)






(10)

where a bar over a variable denotes the mean. Let us recall
the energy E:

E =

∫

Ω̂1

(

I(x̂) − ρ1(x)
)2

−
(

I(x̂) − ρ0(x̂)
)2

dx̂

+ β

1
∑

k=0

∫

Ωk

〈

∇ρk,∇ρk
〉

dx (11)

+ γ

∫

Ω1

〈∇u(x),∇u(x)〉 + 〈∇v(x),∇v(x)〉 dx

and write it with the portion that have principal components:

E =

∫

Ω̂1

(I(x̂) − ρ1(x1, y1))2−(I(x̂)−ρ0(x̂))2dx̂

+ β

∫

Ω1

〈

∇ρ1,∇

(

ρ̄1(x) +
N
∑

i=1

ciρ
1
i (x)

)〉

dx(12)

+ γ

∫

Ω1

〈

∇u(x),∇

(

ū(x) +

N
∑

i=1

ciui(x)

)〉

dx

+ γ

∫

Ω1

〈

∇v(x),∇

(

v̄(x) +

N
∑

i=1

civi(x)

)〉

dx

where

x1 = g−1(x̂)−ū(x)−

N
∑

i=1

ciui(x) (13)

y1 = g−1(ŷ)−v̄(x)−

N
∑

i=1

civi(x) (14)



By differentiating we get:

∂E

∂cj

=

∫

C

〈

RS([uj(x), vj(x)]T ), J(g′w′T )
〉

f(x)ds

+ 2

∫

Ω1

|g′||w′|(I(g(w(x)))−ρ1(x))
〈

∇ρ1(x), wj(x)
〉

dx

− 2

∫

Ω1

|g′||w′|(I(g(w(x))) − ρ1(x))ρ1
j (x)dx

+ 2γ

∫

Ω1

〈∇uj(x),∇ū(x)〉 dx (15)

+ 2γ

N
∑

i=1

ci

∫

Ω1

〈∇uj(x),∇ui(x)〉 dx

+ 2γ

∫

Ω1

〈∇vj(x),∇v̄(x)〉 dx

+ 2γ

N
∑

i=1

ci

∫

Ω1

〈∇vj(x),∇vi(x)〉 dx

+ 2β

∫

Ω1

〈

∇ρ1
j (x),∇ρ̄1(x)

〉

dx

+ 2β

N
∑

i=1

ci

∫

Ω1

〈

∇ρ1
j (x),∇ρ1

i (x)
〉

dx

= 0

where

f(x) = [(I(g(w(x)))−ρ1(x))2−(I(g(w(x)))−ρ0(g(w(x))))2

(16)

4. Experiments
The training set consisted of 300 cars from the dataset

from [10] consisting of segmentations like that of Figure 1.
An average shape was derived from all 300 examples and
each segmentation was registered (with a rigid component
and a non-rigid component) to the average shape. Then the
image data could be mapped onto the average shape. This
gives the training data for the radiances ρ1 and the warps
w1. The modes for the appearance are in Figure 2. The
modes for the diffeomorphisms are in Figure 3. Remeber
for the warps that there is a rigid component that captures
variablility in shape as well. The modes for the appearance
and the diffeomorphism jointly are in Figure 4.

Using 10 principal components for the radiance and the
warp jointly, we obtained the results in Figures 5 and 6.
Figures 5 and 6 shows the initial placement of the contour
along with the segmentation obtained by using pca for the
radiances and the warps. The given example is not in the
training database as we can see with the reconstruction of
the radiance. The last pictures shown in both Figure 5 and
6 are just a segmentation not using principal components
analysis, but using rigid registration of the average shape
with the Chan-Vese Algorithm [3],[14].

5. Conclusion
By incorporating a joint prior on the appearance and

warp for each layer, we are able to significantly improve
the method of layered deformotion by exploiting the flexi-
bility of that technique. By fixing the shape of each layer,
it became possible to perform dimensionality reduction (via
principal components analysis) on the most complex func-
tions to solve for–the appearances and the warps. By us-
ing principal components analysis, we were able to ob-
tain more useful and accurate segmentations. Since our
goal is stereo reconstruction in 3D, we have shown the first
stage in this approach by addressing the simpler case of 2D
shape/radiance detection in single images. The results ob-
tained so far show tremendous promise for 3D.
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Figure 1. Training Example

Figure 2. Appearance Modes:mean−1σ∗1st, mean, mean+1σ∗1st



Figure 3. Warp Modes:varying 4th mode from the mean warp

Figure 4. Warp and Appearance Modes:mean−1σ∗1st, mean, mean+1σ∗1st



Figure 5. Initialization, Using our joint prior, Its pca reconstruction, Segmentation using Chan-Vese rigid registration with no prior

Figure 6. Initialization, Using our joint prior, Its pca reconstruction, Segmentation using Chan-Vese rigid registration with no prior


