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Abstract

Recently proposed Sobolev active contours introduced a
new paradigm for minimizing energies defined on curves
by changing the traditional cost of perturbing a curve and
thereby redefining their gradients. Sobolev active contours
evolve more globally and are less attracted to certain inter-
mediate local minima than traditional active contours. In
this paper we analyze Sobolev active contours in the Fourier
domain in order to understand their evolution across dif-
ferent scales. This analysis shows an important and use-
ful behavior of Sobolev contours, namely, that they move
successively from coarse to increasingly finer scale motions
in a continuous manner. Along with other properties, the
previous observation reveals that Sobolev active contours
are ideally suited for tracking problems that use active con-
tours. Our purpose in this work is to show how a variety of
active contour based tracking methods can be significantly
improved merely by evolving the active contours according
to the Sobolev method.

1. Introduction
Tracking objects in video sequences with active contours

has been an active research area ever since the introduction

of snakes in [8] (see [2] for a survey). This is often a two
step procedure. The first step is detection. Here an initial

estimate of the object boundary being tracked in a particular

image (video frame) is given, and the goal is to evolve this

initial contour toward the object of interest in that particular

frame. A wide variety of different energy-based schemes

have been proposed to do this, including both edge-based

[3, 9] and region-based [12, 4, 14] active contours. The sec-

ond step is to predict the object’s boundary in the upcom-

ing image based on the presently detected contour as well

as contours detected in previous images. Measured (or as-

sumed) dynamics are then extrapolated forward to estimate

the upcoming contour. A trivial approach, which we call

the naive tracker, assumes no change and therefore uses the
contour detected in the current frame as the prediction (ini-

tial contour) for the next frame. More sophisticated predic-

tion steps may be found in [1, 18, 6] for parametric snakes

and more recently [13, 7, 15] for geometric active contours.

The prediction step in many contour tracking algorithm

is needed because the detection step is too sensitive to initial

contour placement, thereby rendering the naive tracker in-
adequate. Indeed, if we had a robust detection scheme that

could operate in real-time, then the prediction step could be

eliminated and the naive tracker would suffice. This sensi-
tivity of active contour models comes in part due to a lack

inherent smoothness in the way they evolve or deform.

Typically an object being tracked deforms rather

smoothly from frame to frame, otherwise a prediction

would make no sense. Note that we are referring to smooth-

ness of the contour deformation, not the contour itself. Ac-
tive contour energies, through the use of regularizers, may

easily be adapted to favor smoothness in the final detected

contour. However, in tracking it makes sense to ensure

smoothness of the deformation of the contour from one

frame to the next, regardless of how smooth we want the

contour to be. Most current and previous active contour al-

gorithms allow an initial contour to deform in very complex

ways, as it flows toward an energy minimum. Even if the

final contour has the exact same shape as the initial contour

up to translation, the intermediate contours attained during

the evolution may vary immensely from the initial and final

shapes. This non-preferential freedom of the contour to un-
dergo arbitrarily complicated deformations as it flows can

attract the contour to undesirable, intermediate local min-

ima before it reaches the desired object boundary.

It would thus be beneficial, when tracking with active

contours, to evolve the initial contour, whether or not it was

obtained by the naive tracker or by a prediction step, toward

its final configuration in a manner that mimics the evolu-

tion behavior of objects we wish to track. In particular, it

would be ideal if the evolution first favored rigid motions

that did not change the actual shape of the evolving con-

tour and then gave preferential treatment to coarser or more

global deformations, resorting only at the end to finer or

more local deformations when necessary.
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Recently, Sobolev Active Contours [17] introduced a new
paradigm for minimizing energies defined on curves (see

also [5]). This yields is a completely new way to evolve

active contours by exploiting the fact that the gradient flow

used to evolve a contour is not only influenced by the en-

ergy it minimizes but also by how we measure the cost of

perturbing the curve. The works [11, 19] revealed many

undesirable properties associated with the usual cost (H0)

inherent in all previous geometric active contour models.

Accordingly, [17] and [5] considered using other norms

for perturbing active contours based on Sobolev spaces.

Sobolev active contours evolve more globally and are less

attracted to certain intermediate local minima than tradi-

tional active contours. In contrast to the usual strategy

of substituting simple energies with more complex (and

costly) energies exhibiting fewer local minima, Sobolev ac-

tive contours minimize the same energy, but follow an en-

tirely different deformation to reach their steady state con-

figuration, thereby avoiding many local minima that would

otherwise have been encountered along the way.

In this paper, we examine Sobolev active contours us-

ing a scale-space type analysis which shows, along with

other properties to be discussed, that these active contours

are quite naturally suited for tracking problems, performing

(given the exact same energy functional) significantly bet-

ter than the corresponding traditional active contour. This

makes the generic tracking algorithm less dependent on its

prediction step as the initial contour does not need to be

placed within as narrow an attraction basin in order to reach

the desired minimum. In fact, we will see Sobolev active

contours often allows even the naive tracker to perform well
with simple energies that are otherwise plagued by undesir-

able local minima problems.

Finally, the scale space analysis we carry out shows an

additional pragmatic benefit, again ideal for tracking, which

may be exploited not only for performance gains but also for

speed considerations. Namely, as we show that Sobolev ac-

tive contours first undergo coarse scale deformations before

yielding to finer scale changes, it therefore becomes more

justified when using Sobolev active contours to truncate the

number of evolution steps when updating the contour be-

tween video frames than with traditional active contours.

Such truncation is often required in practical algorithms for

the sake of speed. It is nice to know that given a limited

number of iterations, that the coarser scale changes of the

object will be captured first as such changes are typically

more important and useful when tracking.

2. Review of Sobolev Active Contours
Sobolev active contours were introduced in [17] (see re-

lated work in [5]). We give a brief review of the theory. Let

M denote the set of immersed curves in R2, which is a dif-

ferentiable manifold [10]. For a curve c ∈ M , we denote by

TcM the tangent space ofM at c, which is isomorphic to the
set of smooth perturbations of the form h : S1 → R2 where

S1 denotes the circle. We also denote by E : M → R an

energy functional onM , which is known.

Definition 1 Let E : M → R.
If c ∈ M and h ∈ TcM , then the variation of E is

dE(c) · h= d
dtE(c + th)

∣∣
t=0
, where (c + th)(θ) := c(θ) +

th(θ) and θ ∈ S1.
Assume 〈·, ·〉c is an inner product on TcM . The gradient

of E is a vector field ∇E(c) ∈ TcM that satisfies dE(c) ·
h = 〈h,∇E(c)〉c for all h ∈ TcM .

We formalize a comment briefly alluded to in [17] with

a proposition, which interprets the gradient as the most

efficient perturbation; that is, the gradient maximizes the

change in energy per cost of perturbing the curve.

Proposition 1 Let ‖ · ‖c be the norm induced from the in-
ner product 〈·, ·〉c on TcM . Suppose dE(c) �= 0; then the
problem

sup
{h∈TcM,‖h‖c=1}

dE(c) · h = sup
{k∈TcM,k �=0}

dE(c) · k
‖k‖c

has a unique solution, k = ∇E(c) ∈ TcM, h = k/‖k‖.
In [17, 5], it was noted that all previous geometric active

contour models that have been formulated as gradient flows

of various energies use the same L2-type inner product (aka

H0) to define the notion of gradient. We review the new

inner products on TcM proposed in [17], based on inner

products in Sobolev spaces.

Definition 2 Let c ∈ M , L be the length of c, and h, k ∈
TcM . Let λ > 0. We assume h and k are parameterized by
the arclength parameter of c.

1. 〈h, k〉H0 := 1
L

∫ L

0
h(s) · k(s) ds

2. 〈h, k〉Hn := 〈h, k〉H0 + λL2n
〈
h(n), k(n)

〉
H0

3. 〈h, k〉H̃n := avg(h) · avg(k) + λL2n
〈
h(n), k(n)

〉
H0

where avg(h) := 1
L

∫ L

0
h(s) ds, and the derivatives are

with respect to arclength.

Note that the length dependent scale factors give the above

inner products and corresponding norms invariance under

rescaling of the curve.

It was shown in [17] that Sobolev gradients can be ex-

pressed as a convolution on S1 of the traditional H0 gradi-

ent and appropriate kernels. It was noted that gradient

flows from Hn and H̃n have the same qualitative proper-

ties, and that they have similar geometric properties. The

advantage of using the H̃n gradient is that the convolution

formula need not be used; ∇H̃nE at all points of the curve
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can be solved from ∇H0E by computing a single integral
around the contour. This means that the computational costs

of computing theH0 and H̃n gradients are nearly the same;

indeed, computing both gradients have the same computa-

tional complexity.

Whereas the focus in active contour literature for the past

two decades has been on changing the energy in dealing

with the problem of local minima, the idea of changing the

inner product to define the notion of gradient in [17, 5] al-

lows one to use the same energy with less susceptibility to

local minima. The usefulness of Sobolev active contours

was demonstrated in [17]. It was shown that Sobolev flows

are smooth in the space of curves, are not as dependent on

local image information asH0 flows, are more global flows

thanH0, and reduce the order of the evolution PDE in com-

parison toH0.

3. Fourier Analysis of Sobolev Active Contours
In this section we study Sobolev inner-products and the

corresponding gradient flows in the Fourier domain, allow-

ing us to analyze the evolution of a Sobolev active contour

across different scales. In particular, we will see that coarse

scale evolution components are weighted more heavily.

3.1. Sobolev Norms in Frequency Domain
Notice that since any h ∈ TcM is smooth on S1, it fol-

lows, h ∈ L2(S1). Thus, we may write h as a Fourier
series, i.e.,

h(s) =
∑
l∈Z

ĥ(l) exp

(
2πi

L
ls

)
(1)

with convergence in L2(S1) (and in fact point wise since h

is smooth) where ĥ ∈ �2(Z) is defined by

ĥ(l) =
1

L

∫ L

0

h(s) exp

(
−2πi

L
ls

)
ds. (2)

It should be noted that (1) decomposes the perturbation into

the orthonormal basis of exponentials. This allows us to

write Definition 2 in the frequency domain. By Parseval’s

theorem, ∫ L

0

h(s) · k(s) ds = L
∑
l∈Z

ĥ(l) · k̂(l).

where · denotes complex conjugation. We also have that∫ L

0

h(n)(s) · k(n)(s) ds = L
∑
l∈Z

(
2π

L
l

)2n

ĥ(l) · k̂(l);

therefore,

Proposition 2 If h, k ∈ TcM , L is the length of c, and
ĥ, k̂ : Z → C are defined by (2). Then,

〈h, k〉Hn =
∑
l∈Z

(1 + λ(2πl)2n)ĥ(l) · k̂(l) (3)

〈h, k〉H̃n = ĥ(0) · k̂(0) +
∑
l∈Z

λ(2πl)2nĥ(l) · k̂(l). (4)

and the corresponding norms are

‖h‖2
Hn =

∑
l∈Z

(1 + λ(2πl)2n)|ĥ(l)|2 (5)

‖h‖2
H̃n = |ĥ(0)|2 +

∑
l∈Z

λ(2πl)2n|ĥ(l)|2. (6)

Notice that Proposition 2 allows us to define theHn and H̃n

inner products for n that is any real number greater than 0.
These inner products are defined the same way as in (3) and

(4). It is easy to verify in this case too, the definitions are

indeed inner products.

The norms shown in (5) and (6) measure the perturbation

magnitude in terms of its Fourier coefficients, which are the

weights of its corresponding frequency components. We

see that for both Hn and H̃n norms, high frequency com-

ponents of the perturbation contribute increasingly to the

norm of the perturbation. Indeed, the norm of a frequency

component increases with frequency, and the growth rate of

the weights of the frequency coefficients for both Hn and

H̃n are the same.

3.2. Sobolev Gradients in Frequency Domain
We now calculate Sobolev gradients of an arbitrary en-

ergy in the frequency domain. By Definition 1, if the H0

and Hn gradients of an energy E : M → R exist, then it

follows that

dE(c) · h = 〈∇H0E(c), h〉H0 = 〈∇HnE(c), h〉Hn

for all h ∈ TcM . Using Parseval’s Theorem, the last ex-
pression becomes∑
l∈Z

(1 + λ(2πl)2n)∇̂HnE(l) · ĥ(l) =
∑
l∈Z

∇̂H0E(l) · ĥ(l).

Since the last expression holds for all h ∈ TcM , we have

∇̂HnE(l) = (1 + λ(2πl)2n)−1∇̂H0E(l) for l ∈ Z (7)

Using a similar argument, we see that

∇̂H̃nE(l) =

{
∇̂H0E(0) l = 0

(λ(2πl)2n)−1∇̂H0E(l) l ∈ Z\{0}.
It is clear from the previous expressions that high frequency

components of ∇H0E are less pronounced in the various
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forms of theHn gradients, with higher order Sobolev gradi-

ents damping high frequency components with faster decay

rates. We should also remark that these expressions give

a decomposition of the gradients onto an orthogonal basis

of simple motions starting from translations to higher or-

der trigonometric motions. We see that with the Sobolev

gradients, these high order motions do not contribute to the

motion of the curve as much as the H0 gradient. In fact,

these high order motions decay at a much quicker rate than

in H0. It should be noted that in ∇̂H0E(l) decays to zero
as |l| → +∞, but can there can be an arbitrary large fre-
quency component of ∇̂H0E. The Sobolev gradients’ fre-
quency components decay rate at a much faster rate than

H0: the larger the frequency, the more it will be killed.

3.3. Coarse-to-Fine Motion of Sobolev Contours
We now discuss the implications of the analysis of

Sobolev active contours in the Fourier domain. We note

that the Fourier basis of the perturbations of a curve decom-

poses TcM from global perturbations (low frequency per-

turbations) to increasingly more local perturbations (high

frequency perturbations). Indeed the zero frequency pertur-

bation is a simple translation of the curve, which is com-

pletely global. See Figure 1. Therefore, by (7), and com-

ments in the previous section, it is apparent that Sobolev

gradients yield perturbations with more pronounced global

components than the standard H0 gradient. While H0 gra-

dients give equal weighting across all scales, Sobolev gra-

dients give less weight to finer scales. However, this does

not mean that very local (fine scale) deformations of the

curve are restricted from Sobolev gradient flows. It just

means that if there exists a low order perturbation (a more

global motion) that increases the given energy just as would

a higher order perturbation (a more local motion), then the

low order perturbation will be preferred in the Sobolev gra-

dient, as shown by Proposition 1. Also, if no perturbations

in Gm, given by

Gm =

⎧⎨⎩ ∑
|l|≤m

al exp

(
2πi

L
l·
)

: al ∈ C, a−l = al

⎫⎬⎭ ,

can increase the energy, E; that is dE(c) ·h ≤ 0 for all h ∈
Gm, then by Definition 1, we must have that ∇̂H0E(l) = 0
for l ≤ m, and therefore, we can write

∇̂H̃nE(l) =

1

λ(m + 1)2n

{
0, |l| ≤ m

1
(2π(l/(m+1))2n ∇̂H0E(l), |l| > m

.

We see that since the gradient flow does not geometrically

depend on a scale factor, the Sobolev gradient automatically

has the weights on high order perturbations of the gradient

Figure 1. Increasingly higher frequency perturbations applied to a

circle (left to right, l = 0, 2, 5, 10).

Figure 2. Standard H0 active contour (2nd row) alters fine struc-

ture of the curve immediately; Sobolev (H1) active contour (bot-

tom) moves from coarse to finer scale motions. Both use same

energy. Top row: initialization, finalH0 andH1 segmentations.

readjusted (so that perturbations near |l| = m + 1 become
more pronounced). This means the Sobolev gradient flow at

this particular instant of the evolution changes the fine scale

structure of the curve. Thus, with Sobolev active contours,

we see a progression from coarse scale motion to finer scale

motion, much more so than the standardH0 active contour.

Figure 2 shows the tracking of a noisy square image using

bothH0 andH1 active contours, which illustrates the ideas

of the previous comments. Notice that with the H0 active

contour, the fine structure of the curve is changed immedi-

ately, while the H1 active contour gradually changes finer

scale features of the curve after changing coarse-scale fea-

tures.

We comment that the effect of using higher order (n
large) Sobolev gradients is higher favorability to lower or-

der perturbations in the flow.

4. Benefits of Sobolev Contours for Tracking
In this section, we outline the benefits of switching from

the standardH0 active contour evolution to a Sobolev active

contour in tracking algorithms that use active contours.

We note that typically an object that is being tracked,

during a small period of time, is moving globally according

to a translation and locally according to a small deforma-

tion. This is assumed in many tracking algorithms that use

active contours (for example [16]). Sobolev active contours

are ideally suited for this typical tracking assumption. For

λ large, by expression (7), we see that most of the motion
of the Sobolev active contour is given by a translation, but

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 6, 2008 at 20:5 from IEEE Xplore.  Restrictions apply.



there is still a small deformation of the curve. This may

lead to the question of how large to choose λ. For the par-
ticular case of H̃n, as noted in [17], we can implement the

curve evolution without a choice of λ and have the same
behavior as λ large. This is done by iteratively evolving by
the translation component of the gradient until this term be-

comes zero followed by the deformation component of the

H̃n gradient, from which we may clearly omit the factor λ.

The Fourier analysis of Sobolev active contours per-

formed in Section 3 that shows a coarse to fine evolution

of the contour also shows why Sobolev active contours are

ideal for tracking. The fact that H0 gradient flows change

fine structure of the curve immediately when energetically

favorable, and hence are easily attracted by undesirable lo-

cal minima, is one reason for predicting motion and dy-

namics of the object being tracked. By predicting motion

and dynamics of the moving object, a better estimate of

the object’s upcoming position can be attained thereby plac-

ing the initial guess hopefully closer to its desired final po-

sition. Many prediction schemes apply low dimensional

global motions to the contour. Thus, the initial global mo-

tion followed by an H0 flow is less likely than the naive

tracker to get caught in an intermediate, undesirable local

minimum of the energy. Notice that since Sobolev gradi-

ent flows naturally move from coarse to successively finer

motions, the contour is less likely to be trapped by interme-

diate local minima, and is therefore likely to be less depen-

dent on the prediction of motion and dynamics of the object.

We also wish to emphasize that the transition from coarse

to increasingly finer motions is automatic and continuous in

comparison to other works (e.g., [16]) where the global mo-
tions must be deliberately specified, and the transition from

the global motion to more local deformation is not continu-

ous. Indeed, even discrete attempts to deliberately graduate

from more global to more local motions are not trivial as

one typically starts from translations, then rotations, then

scale, but beyond this it becomes less clear and natural how

to progress to finer scale deformations.

Another advantage of using Sobolev active contours for

tracking is speed of convergence compared to standard

H0 active contours. While computing the H̃n gradient is

slightly more computationally costly than computing the

H0 gradient, though both have the same complexity, we

point out that without accurate prediction, the number of

iterations in typical contour tracking applications required

to update the active contour from frame to frame is usu-

ally much smaller with Sobolev active contours. Therefore

the total computational time for processing between frames

is significantly lower with Sobolev active contours. The

reason is that the frame-to-frame motion of the object to

be tracked is, as mentioned previously, usually dominated

by more global motions: translations, scaling, and coarse

scale deformations. Accordingly, a Sobolev active contour

Figure 3. Simple tracking using geodesic active contours: Stan-

dard (H0) active contour (left column) deforms the initialized con-

tour greatly and is stuck in local minima, and Sobolev active con-

tour (right column) moves in a global manner only slightly chang-

ing shape. In each frame, the initial curve (given by the contour

detected in the previous frame) is blue, the intermediate curve is

green, and the final detected curve is red.

needs only a few iterations to lock onto the object in the

next frame because the Sobolev gradient moves globally at

first, preferring coarse scale motions in the first few itera-

tions before proceeding to fine scale motions in later iter-

ations. In contrast, standard H0 active contours requires

many more iterations since they immediately deform by lo-

cal motions, significantly changing their initial shape (of-

ten to meaningless intermediate shapes), before deforming

back to only slightly deformed, translated and scaled ver-

sions of their initial shape, and that is assuming they don’t

first get trapped into intermediate local minima!

We now illustrate the advantages discussed in the pre-

vious paragraphs with a simple synthetic image sequence

(Figure 3) in which we employ the naive tracker using

the energy functional for geodesic active contours [3, 9].

Figure 3 shows the tracking for both the H0 gradient flow

and the H̃1 gradient flow. The flows are run until conver-

gence in each frame. Note that the H0 active contour de-

forms its initial shape greatly to react to local information.

Hence the contour changes shape and must re-deform back

to its initial shape. However, the contour gets trapped in

an undesirable local minimum. The Sobolev active contour,

on the other hand, only changes shape slightly while mov-

ing in an overall translation. This means that the number

of iterations until convergence for the H0 active contour is

much greater than the Sobolev active contour, and therefore

the computational time is also much greater. See Figure 4

for a simple quantitative analysis of the number of itera-

tions and computational times. In this simulation, we seg-

ment the object shown in Figure 3 when the initial contour

is a translated and a slightly deformed version of the object.

We quantify the difference by using the set symmetric dif-

ference between the desired object and the initial contour.

From the graph in Figure 4, we see that the number of iter-

ations and the computational time is significantly lower for
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Figure 4. Graph showing number of iterations to converge versus
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the H̃1 active contour.

5. Experiments
We now demonstrated improved performance by replac-

ing standardH0 active contours with their Sobolev counter-

parts in a variety of tracking scenarios on real images, both

in naive tracking as well as in tracking with prediction.
Figure 5 shows the results for a sequence that contains a

man walking. The sequence is heavily corrupted by noise.

The tracking is done using the naive tracker (no prediction)

with the Chan-Vese energy functional [4]. The left column

shows the standard H0 active contour, and the right shows

the Sobolev H̃1 active contour. The contours are evolved

until convergence between frames. After a few frames, the

H0 active contour gets stuck in noise and loses track of the

person. The Sobolev active contour, because of its more

global initial motions, skips over the intermediate noise and

keeps tracking the person. Due to the high noise level, how-

ever, the precise shape of the person is not captured in either

of the cases.

Figure 6 shows the tracking of a car that passes through

an occlusion using the naive tracker (no prediction). The en-

ergy functional used for the active contours is the Mumford-

Shah functional [12]. A fixed number of iterations are used

evolve the curve at each frame. The top row shows the H0

active contour, which is thrown off as soon as the contour

hits the lamp post. This is because each point of the H0

active contour moves in a direction independent from the

other points. Hence, the points close to the lamp post do

not want to move past the post. On the other hand, the H̃1

flow moves globally first, and hence does not get stuck on

the lamp post and continues to track the car, although at the

end, the contour misses the outer parts of the car.

Figure 7 tries to address the problem with the previous

experiment with a predictor and estimator. In this experi-

ment we compare the behavior of using an estimator with

H0 active contours and using it with Sobolev active con-

Figure 5. Tracking of a person in a noisy image sequence using a

region-based energy withH0 (left) and H̃1 (right) active contours.

tours. Using an estimator in the H0 case was done in [7].

The measurements that the estimator uses to estimate the

contour and its registrations are just the output of a simul-

taneous flow that finds a segmentation and registration be-

tween frames. A gain is used to determine if more weight

is put on the measured contour versus the model. The prob-

lem with using theH0 flow for the measured contour is that

if one uses more iterations to get the results of the registra-

tion/segmentation (i.e the measurements), then as it passes

by an occlusion it has more opportunity to get distracted by

it. On the other hand, the for, H̃1, the estimator greatly im-

proves the result, as the shape is more accurately captured.

In both cases (with and without the predictor/estimator), it

is clear that simply replacing the standard H0 active con-

tour with the Sobolev active contour greatly improves the

tracking performance.

6. Conclusion
We have shown that Sobolev active contours move suc-

cessively from coarse to fine scale motions through Fourier

analysis. Therefore, Sobolev active contours are robust to

local minima when compared to H0 active contours de-

rived from the same energy functional. We have shown that
this property, along with others, makes Sobolev active con-

tours natural for tracking. The property of this coarse to

fine motion, as we saw, implies that Sobolev active con-

tours take fewer iterations (and also less time) to converge

to the desired local minimum thanH0 active contours. This

is important for real-time tracking systems where a more

efficient detection scheme with better accuracy is benefi-

cial. Note that existing tracking algorithms, which use ac-
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Figure 6. Tracking of a car under an occlusion using the Mumford-Shah energy withH 0 (top) and H̃1 active contours.

Figure 7. Tracking a car under an occlusion using estimation with Mumford-Shah energy functional for the detection. H 0 (top) and H̃1

(bottom) active contours.

tive contours, need not be modified; nor does the energy

functional for the active contour, just a simple addition of

a procedure to compute the Sobolev active contours is nec-

essary, which is straight forward to obtain from the original

active contour.
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