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Abstract

In this paper, we propose an innovative approach to the
segmentation of tubular or vessel-like structures which com-
bines all the benefits of minimal path techniques (global
minimizers, fast computation, powerful incorporation of
user input) with some of the benefits of active surface tech-
niques (representation of a full 3D tubular surface rather
than a just curve). The key is to represent the trajectory of
the vessel not as a 3D curve but to go up a dimension and
represent the entire vessel as a 4D curve, where each 4D
point represents a 3D sphere (three coordinates for the cen-
ter point and one for the radius). The 3D vessel structure
is then obtained as the envelope of the family of spheres
traversed along this 4D curve. Because the 3D surface is
simply a curve in 4D, we are able to fully exploit minimal
path techniques to obtain global minimizing trajectories be-
tween two user supplied end-points in order to reconstruct
vessels from noisy or low contrast 3D data without the sen-
sitivity to local minima inherent in most active surface tech-
niques. In contrast to standard purely spatial 3D minimal
path techniques, however, we are able to represent the full
vessel surface rather than just a curve which runs through
its interior. Our representation also yields a natural notion
of a vessel’s “central curve”, which is obtained by tracing
the center points of the family of 3D spheres rather than its
envelope. We demonstrate the utility of this approach on 2D
images of roads as well as both 2D and 3D MR angiography
and CT images.

1. Introduction

Medical image segmentation is an essential and impor-
tant step for clinical tasks such as 3D organ visualization,
diseases diagnosis, surgery planning, and so on. Numer-
ous segmentation methods were proposed depending on
the organ structures, imaging modalities, application do-
mains, user-interaction requirements, and other specific fac-
tors [6, 18, 10, 21].

During the past twenty years, the extraction of vascu-
lar objects such as the blood vessel, coronary artery, human
pulmonary tree, abdominal aorta, vascular structure in legs
and livers, and colon has attracted the attention of more and
more researchers. Various methods such as filtering meth-
ods [13, 28, 26, 23], model-based methods [5, 12], math-
ematical morphology methods [32, 33], region-growing
methods [29], vessel tracking methods [30, 20], level set
evolution methods [16, 3, 27, 17, 19] were proposed. More
details can be found in the surveys [10, 21, 15].

Some of these previous methods extract the vessel sur-
faces directly, and then use thinning algorithms to generate
a centerline. Other methods were proposed to extract only
a centerline (or skeleton), thereby requiring further process-
ing to obtain the 3D shape. Deschamps and Cohen [9] re-
duced the problem of generating a centerline to the problem
of finding the minimal paths in 3D images. The minimal
path technique proposed by Cohen et al. [8, 7] captures the
global minimum curve of an active contour model’s energy
between two user supplied end-points. By defining the im-
age as an oriented graph characterized by its cost function
(or potential), the boundary segmentation problem becomes
an optimal path search problem between these two points in
the graph. This leads to the global minimum of the energy
function and thereby avoids the local minima problem in
edge-based active contour models [31, 4]. Fast Marching
schemes [25] were used by the authors to improve the com-
putational time. In [9], the authors were able to center the
minimal path inside the object by adding the term of the
Euclidean distance function to the boundary into the cost
function.

The minimal path approach [8] has several advantages
such as finding global minima, fast computation, ease of
implementation, and more powerful incorporation of user
input 1. Such advantages are lacking in most surface evolu-

1 Surface evolution approaches generally make use of user input only
for obtaining seed points from which to start evolving the initial surface.
This is fundamentally different from minimal path techniques which are
specifically designed to fully trust and exploit the initial user input, guar-
anteeing its incorporation into the final answer as well.
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Figure 1. Two disadvantages in the classic minimal path tech-
nique. Panel (a) shows the negative gradient information (255 −
∇I) and the two initial points (the red crosses). Panel (b) shows
the original image with the extracted boundary (the white line).
Since the searching principle of the minimal path technique is just
along the fastest gradient descent, the path may drop down to the
wrong boundary nearby. Panel (c) shows another original image
and the two initial points (the red crosses). Panel (d) shows the ex-
tracted inaccurate central path (the white line). When the potential
inside the object is constant or does not vary much, the minimal
path will be the shortest Euclidean path and is often tangential to
the edges. The potential is P (p) = 10 + |∇I(p)|2 for the up row,
P (p) = 10 + |I(p) − I(p0)| for the bottom row. I(p), I(p0) are
the intensities of point p and the starting point p0 (the left cross).
∇I is the image gradient information.

tion techniques (whether they be level set or finite element
approaches) with the problem of local minima being partic-
ularly troublesome in most cases. Surface evolution tech-
niques do have one nice advantage, though: When they are
successful, they capture and represent the vessel surfaces
directly, not just some path running through their interior as
in the minimal path approach. This is particularly important
in cases where one wishes to measure changes in vascular
thickness at different places along the vessel.

Unfortunately, despite their numerous advantages, tradi-
tional minimal path techniques exhibit some disadvantages
both in general and in the particular application of vessel
segmentation. First, vessel boundary extraction can be ex-
ceedingly difficult, even in 2D where the longitudinal cross-
sectional boundary of a vessel may be completely described
by two curves (see Fig. 1). Even if the two user supplied
end-points are located exactly on the same desired bound-
ary, the minimal path may jump temporarily to a different
nearby boundary and return at some later point as a sort of
“short cut” to reduce the total cost of the path. This is illus-
trated in Fig. 1 (a)-(b).

Second, vessel interior extraction does not always yield
a trajectory that remains central to the vessel. Since inten-

sity based potentials don’t vary greatly between different
points within the vessel interior, the minimal path tends to
favor trajectories of shortest Euclidean distance within the
tubular structure, often yielding paths that run tangential to
vessel boundaries rather than central to their interior. This
undesirable property is shown here in Fig. 1 (c)-(d), and
again later in Fig. 3 (d) and (h). This affects applications
such as virtual endoscopy, where subsequent path center-
ing methods [9] are required to readjust a traditionally ex-
tracted, purely spatial minimal path in order to obtain a cen-
tral trajectory for virtual fly-through.

Finally, in 3D (just as in 2D), traditional purely spatial
minimal path techniques can be used only for curve ex-
traction, whereas vessels and other tubular structures, de-
spite sharing some characteristics with curves, are surfaces.
In [2], the authors proposed a 3D surface extraction method.
It models the desired surface as an infinite set of 3D minimal
paths that join individual points between two user supplied
curves. This approach, which was not designed for vessels,
would struggle in capturing long winding vessel boundaries
for the reasons illustrated in Fig. 1 (a)-(b), not to mention
its rather complex implementation.

We will instead propose a new variant of the the tradi-
tional, purely spatial minimal path technique by incorpo-
rating an additional non-spatial dimension into the search
space. The resulting algorithm, in contrast to [2], will re-
quire us to search for a single, global minimal path between
user supplied endpoints in this higher dimension. The de-
tected path will capture directly and simultaneously the cen-
tral curve of the extracted vessel as well as the 3D vessel
surface. As such, we will keep all of the benefits of purely
spatial minimal path techniques as well as one of the pri-
mary benefits of active contour and surface evolution tech-
niques.

The key is to model a vessel, or any other tubular sur-
face, as a 4D curve rather than a purely spatial 3D curve.
Each point on the 4D curve will consist of three spatial co-
ordinates plus a fourth coordinate which describes the thick-
ness (radius) of the vessel at that corresponding 3D point in
space. Thus, each 4D point represents a sphere in 3D space,
and the vessel is obtained by taking the envelope of these
spheres as we move along the 4D curve. We may instead
take the center points of this family of spheres if we wish
to reconstruct the central path rather than the surface of the
detected tubular structure. Like traditional spatial minimal
path algorithms, we may exploit techniques such as Fast
Marching to keep the computational time down. The im-
plementation is a straight-forward 4D version of the the 3D
implementation, and is therefore extremely simple. We will
demonstrate the utility of this approach on 2D images of
roads as well as both 2D and 3D MR angiography and CT
images.
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2. Tubular Surface Extraction

2.1. Background—Global Minimal Paths

In this subsection, we present the basic idea of the min-
imal path technique introduced by Cohen, Kimmel and
coauthors [8, 7]. Their method is a boundary extraction
approach which detects the global minimum of an active
contour model’s energy between two user supplied end-
points, and avoids the local minima problem arising from
the sensitivity to the initializations in geodesic active con-
tours [31, 4]. The energy functional in the snake model [14]
combines the smoothing terms and the image feature attrac-
tion term (potential P ),

E(C) = α

∫ 1

0

||C ′(s)||2ds + β

∫ 1

0

||C ′′(s)||2ds

+λ

∫ 1

0

P (C(s))ds, (1)

where the parameters α, β, and λ are real positive weighting
constants, the curve C(s) ∈ R

n is a parameterized curve,
and the potential P (C) is an image feature attraction term.
In the minimal path technique, contrary to Eq. 1 in the snake
model [14], a simplified energy minimization model,

E(C) =
∫

Ω

{ω + P (C(s))}ds =
∫

Ω

P̃ (C)ds, (2)

was proposed without the second derivative term, where
s represents the arc-length parameter on a defined domain
Ω = [0, 1], C(s) ∈ R

n represents a curve, and ||C ′(s)|| =
1, E(C) represents the energy along the curve C, P is the
potential associated to the image, ω is a real positive con-
stant, and P̃ = P + ω. Energy E(C) includes the internal
regularization energy (the smoothing terms) in the poten-
tial P , and controls the smoothness of the result using the
potential and the constant ω > 0.

Given a potential P > 0 that takes lower values near
the desired boundary, the objective of the minimal path
technique is to look for a path along which the integral of
P̃ = P +ω is minimal. This integral is the global minimum
of E(C) between two user supplied end-points.

In [8], a minimal action map U0(p) is defined as the
minimal energy integrated along a path between the start-
ing point p0 and any point p,

U0(p) = inf
Ap0,p

{
∫

Ω

P̃ (C(s))ds} = inf
Ap0,p

{E(C)}, (3)

where Ap0,p is defined as the set of all paths between the
point p0 and p. The value of each point p in this minimal
action map U0(p) corresponds to the minimal energy inte-
grated along a path starting from the point p0 to the point p.
So, the minimal path between the point p0 and the point p
can be easily deduced by calculating this action map U0(p)

and then sliding back from the point p to the point p0 on the
action map U0 according to the gradient descent.

In order to compute the minimal action map U0(p), they
also formulated a PDE equation,

∂L(v, t)
∂t

=
1

P̃
�n(v, t), (4)

to describe the set of equal energy contours L in “time”
t, where t represents the height of the level sets L of U0,
and �n(v, t) is the normal to the closed curve L(v, t). These
curves L(v, t) correspond to the set of points p, and the val-
ues of U0(p) on these points are equal to t. Eq. 4 evolves
a front starting from an infinitesimal circle around p0 until
each point inside the image domain is assigned a value for
U0 [8]. The family of curves L(v, t) constructs the level sets
of the surface U0(p). Because the action map U0 has only
one minimum value at the starting point p0 and increases
from the starting point outwards, it can be determined by
solving the Eikonal equation

||∇U0|| = P̃ with U0(p0) = 0. (5)

In [8], they described three methods to compute this
map U0, which are all consistent with the continuous
propagation rule while implemented on a rectangular gird.
These three methods are the level set front propagation ap-
proach [1], the shape from shading approach [22, 11], and
the fast marching approach [24]. They used the fast march-
ing method to calculate U0 because of its lower complexity
than that of the other two methods.

2.2. Generalization: Tubular Surface Extraction

As already discussed in Section 1, the traditional spatial
minimal path technique does not apply for the detection of
surfaces or regions. However, for the special case of ves-
sels and other tubular surfaces, we may generalize these ap-
proaches by representing a 3D vessel surface as a 4D curve
and using a corresponding minimal path algorithm in 4D.
As such, we keep all of the benefits of minimal path tech-
niques (global minima, fast implementations, full incorpo-
ration of user input) while adding the ability to represent
and detect the vessel surface directly, which so far has been
a feature restricted to active contour and surface techniques.

We will represent the surface of the vessel or tubular
structure as the envelope of a one-parameter family (curve)
of spheres with different centers (three coordinates) and dif-
ferent radii (fourth coordinate). This representation is illus-
trated in Fig. 2. In this way, the 3D surface extraction prob-
lem is translated into the problem of finding a 4D curve
which encodes this family of 3D spheres.

We now modify Eq. 2 to a new energy minimization

Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’06) 
0-7695-2646-2/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 6, 2008 at 20:7 from IEEE Xplore.  Restrictions apply.



Ĉ(c(s), r(s))

Figure 2. We present a tubular surface as the envelope of a family
of spheres with continuously changing center points and radii.

model which relates to 3D spheres rather than 3D points,

E(Ĉ) =
∫

Ω

{ω + P (Ĉ(c(s), r(s)))}ds

=
∫

Ω

P̃ (Ĉ)ds, (6)

where s still represents the arc-length parameter over an in-
terval Ω, c(s) represents the location of a point in the origi-
nal image domain ΩI either in R

2
[
c(s) = (x(s), y(s))

]
or

in R
3

[
c(s) = (x(s), y(s), z(s))

]
, r(s) ∈ [0, rmax] repre-

sents the radius of the circle/sphere centered at c(s) (rmax

is the largest allowed thickness of the vessel to be captured),
Ĉ(c(s), r(s)) ∈ ΩI represents a “path” composed by a fam-
ily of circles/spheres in ΩI , in which c(s) are the center
points and r(s) are the radii of the spheres, E(Ĉ) represents
the energy which is the integral of P̃ along Ĉ(c(s), r(s)),
P is the potential related to the image properties, ω is a real
positive constant, and P̃ = P + w. In this manner, E(Ĉ)
also includes the internal regularization energy (smoothing
terms) in the potential P , and the smoothness of the result
can be controlled by the potential and the constant ω > 0.

Traditionally, the potential P is a pointwise image mea-
surement. Here, instead, we design P as a measurement
which incorporates the full set of image values within the
sphere surrounding the corresponding image point. We de-
fine any sphere in the image domain ΩI as sp = (p, r),
where p is the center point and r is the radius. In design-
ing the potential P related to such spheres in the image, we
should keep in mind that the entire sphere should lie inside
the desired object and be as big as possible (so that it is
tangential to the object boundary). Such spheres should ex-
hibit lower values of P compared to smaller spheres which
lie inside the desired object or any sphere which lies outside
(fully or partially) the desired object.

Given a potential P that satisfies the above conditions
(we will give two example potentials later) and two user
supplied spheres sp0 and sp1 which mark the beginning
and ending locations (and radii) of the vessel or tubular
object, our goal is to find a family of spheres Ĉ such that
Ĉ(c(0), r(0)) = sp0 and Ĉ(c(1), r(1)) = sp1 and such
that the integral along Ĉ of P̃ = P + ω is minimal. The

vessel interior then modeled by the union of the interiors of
all the spheres along Ĉ, its surface is modeled by the enve-
lope of the spheres along Ĉ, and its centerline by the centers
of the spheres along Ĉ. In addition, the varying thickness of
the vessel may be read directly using the radii of the spheres
along Ĉ.

The principle of this surface extraction method is similar
to that of the spatial minimal path technique [8]. There are
two problems to solve. The first is how to minimize this
energy functional shown in Eq. 6. In particular, can we still
define the minimal action map and use fast marching meth-
ods to calculate it? The second one is how to formulate
an appropriate potential P satisfying the discussed design
conditions.

A sphere sp = (p, r) in image domain ΩI corresponds
to a point p̂ in a new domain ΩI,r = ΩI × [0, rmax]. Here,
the sphere’s radius r ∈ R

1 is added as the additional fourth
coordinate in ΩI,r. In this way, each point on the 4D curve
consists of three spatial coordinates plus a fourth coordinate
which represents the radius of the 3D sphere. The initial 3D
sphere sp0 is the 4D point p̂0, and the final 3D sphere sp1 is
the 4D point p̂1. The problem of finding a family of spheres
Ĉ in 3D is translated to the problem of finding an optimal
curve in 4D with p̂0 and p̂1 as its end points (optimal mean-
ing that along this 4D path the integral of P̃ = P + ω is
minimal).

At any 4D point p̂, we may define the minimal action
map U0(p̂) as the minimal energy integrated along any pos-
sible path between the starting point p̂0 and the point p̂,

U0(p̂) = inf
Ap̂0,p̂

{
∫

Ω

P̃ (Ĉ(c(s), r(s)))ds}

= inf
Ap̂0,p̂

{E(Ĉ)}, (7)

(Ap̂0,p̂ is defined as the set of all paths between p̂0 and p̂).
The minimal path between the point p̂0 and the point p̂ can
be deduced from this action map U0(p̂) shown in Eq. 7 by
calculating U0(p̂) and then sliding back from the point p̂
on the action map U0 to the point p̂0 according to gradient
descent. Finally, the 3D surface of the tubular structure is
obtained as the envelope of the family of spheres traversed
along this 4D minimal path.

So, we are able to fully exploit the minimal path tech-
nique to obtain minimizing trajectories between two end-
points. Similar to that shown in subsection 2.1, we formu-
late a PDE equation to describe the set of equal energy con-
tours L in “time” t. These contours L(v, t) correspond to
the set of points p̂ for which the minimal action map U0(p̂)
is t. The action map U0(p̂) can be determined by solving
the Eikonal equation,

||∇U0|| = P̃ with U0(p̂0) = 0, (8)

using the fast marching algorithm introduced by Sethian et
al. [25]. Since the 2D (or 3D) sphere is a point in 3D (or
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4D), we should use a 3D (or 4D) fast marching scheme to
solve the Eikonal equation and calculate the action map for
2D (or 3D) spheres.

2.3. Analysis of The Proposed Method

In Section 2.2, we described our tubular surface extrac-
tion method. It was very simple once the observation that a
3D tubular surface can be modeled as a 4D curve was made.
As such, we may use very standard numerical algorithms to
calculate a minimal path in one higher dimension to obtain
a direct representation of the tubular surface itself. In this
section, we offer some choices for the 4D potential P , as
well as address the front propagation scheme, the algorithm
complexity, and its relationship with classical spatial mini-
mal path techniques.

The appropriate potential P is the most important factor
for obtaining accurate surface extraction results. The po-
tential P is an image feature attraction item and should be
decided according to the properties of the spheres in the im-
age. We expect that P yields the smallest values for largest
possible spheres which are fully inside the desired object.
For tubular objects in medical imaging such as vessels and
colons, the intensity inside the object is often fairly constant
(at least within small sections of the “tube”) We may exploit
this property to design two sample potentials and test them
in Section 3.

For an image I , and any image point p with gray value
I(p), we define the mean value μ(sp) and the variance
σ2(sp) of the sphere sp = (p, r) as

μ(sp) =

∫
B(p,r)

I(p̃)dp̃∫
B(p,r)

dp̃
,

σ2(sp) =

∫
B(p,r)

(I(p̃) − μ(sp))2dp̃∫
B(p,r)

dp̃
, (9)

where B(p, r) represents the whole sphere. We then pro-
pose a sample potential

P̃ (p̂) = P̃ (sp) = w + λ1(|μ(sp)/r − μ(sp0)/r0|2)
+λ2(|σ2(sp)/r − σ2(sp0)/r0|2),(10)

where μ(sp0) and σ2(sp0) represent the mean and variance
of the starting sphere sp0, ω is the constant to control the
smoothness of the path, λ1 and λ2 are two constants.

Since the gray value of the point inside the vessel is
constant or does not vary much, we weight the mean and
variance by r to keep the detected sphere as big as possi-
ble. When the radius is bigger than the width of the tubular
structure, the mean and the variance change dramatically.
This potential satisfies the conditions discussed above and
is a region-based potential.

Now we give a second example potential based on
boundary information. We define ∂B(p, r) to represent the

boundary of the sphere sp, use it to replace B(p, r) in Eq. 9,
and calculate the mean and variance only on the bound-
ary of the sphere sp. Then we define the mean difference
δμ(sp) and the variance difference δσ2(sp) of the sphere
sp = (p, r) and the sphere sp′ = (p, r − 1) are

δμ(sp) = |μ(sp) − μ(sp′)|,
δσ2(sp) = |σ2(sp) − σ2(sp′)|. (11)

We propose the second sample potential

P̃ (p̂) = P̃ (sp) = w +
λ1

1 + δ2
μ(sp)

+
λ2

1 + δ2
σ2(sp)

, (12)

which also satisfies the condition discuss above, and con-
siders the boundary information of the vessel structure.

After deciding the potential, we use the fast marching
method to solve Eq. 8 and obtain the minimal action map
U . The fast marching method relies on a one-sided deriva-
tive that looks in the up-wind direction of the moving front,
and thereby avoids the over-shooting associated with finite
differences [25]. For the 4D Eikonal equation, we need to
solve⎡

⎢⎢⎣
(u − min{Ux−1,y,z,r, Ux+1,y,z,r, 0})2 +
(u − min{Ux,y−1,z,r, Ux,y+1,z,r, 0})2 +
(u − min{Ux,y,z−1,r, Ux,y,z+1,r, 0})2 +
(u − min{Ux,y,z,r−1, Ux,y,z,r+1, 0})2

⎤
⎥⎥⎦

= P̃ 2(x, y, z, r) (13)

according to the 4D Fast Marching Evolution Scheme. In
this fast marching scheme, the algorithm’s complexity is
O(N logN ) and N is the number of 4D grid points. Fur-
ther details and the proof of the complexity is shown in [25].
We may keep N small by limiting the range of the radius
coordinate and discretizing it to just a few different values.

So the minimal “path” between the point p̂0 and the point
p̂1 can be deduced by sliding back from the point p̂1 to the
point p̂0 on the action map U0(p̂) according to the gradi-
ent descent. It is the global minimum of the energy model
shown in Eq. 6 between the two initial points.

Since we represent the entire vessel as a 4D curve, where
each 4D point represents a 3D sphere. The 3D vessel struc-
ture is then obtained as the envelope of the family of spheres
traversed along this 4D curve from noisy or low contrast 3D
data without the sensitivity to local minima inherent in most
active surface techniques.

According to the potential discussed above, all the
spheres on the detected minimal “path” are tangential to
the object boundary, so the union of the center points c(s)
should be located on the central path of the tubular structure.
We may easily obtain the centered path by tracing the center
points of the family of 3D spheres rather than its envelope.

The classical minimal path technique can be treated as a
special issue of our proposed method by setting the radius
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of the sphere to a constant 0. However, as demonstrated in
the upcoming experiments, it is much better to perform the
minimal path procedure fully in 4D in order to obtain the
actual vessel surfaces as well as their central paths. Sup-
porting examples are shown in next Section 3.

3. Experimental Results and Analysis

The method explained previously is very useful when
used for tubular structure extraction. In this section, we
demonstrate our approach on various 2D and 3D simulated
and real images. For each test, the user needs to specify the
center positions and radii of the starting and ending points,
the potential, and the largest allowed radius of the tubular
object.

3.1. Experiments on 2D Images

In Fig. 3, we first present the segmentation results on one
2D binary images with two different pairs of initial spheres.
The image size is 350 × 200. The radii of the left and right
spheres rleft = 10 and rright = 7 respectively, and rmax =
15 are for the image in panel (a). rleft = 10, rright = 9,
rmax = 15 are for the image in panel (e). For these two
segmentations, we use the potential defined by Eq. 10 with
ω = 1, λ1 = 10, and λ2 = 10. For comparison, we also
show in panel (d) and (h) the path extraction results (the
red lines) by the standard 2D minimal path technique with
potential P = 10 + |∇I|2, where I is the image intensity,
∇I is the image gradient information.

In Fig. 4, we present the segmentation results on one 2D
noisy projection of an angiogram with two different pairs
initializations (obviously, one should segment the 3D data,
but here we can illustrate the accuracy of the result since the
full 2D curve may be superimposed on the 2D projection
image data). The image sizes are 350 × 200. In panel (a),
rleft = 10, rright = 2, and rmax = 15. In panel (e),
rleft = 5, rright = 5, and rmax = 15. For these two
segmentations, we used the potential defined by Eq. 10 with
ω = 10, λ1 = 0, and λ2 = 70 for panel (a), with ω = 1,
λ1 = 30, and λ2 = 70 for panel (e). For comparison, we
also show in panel (d) and (h) the path extraction results (the
white lines) by the standard purely spatial 2D minimal path
technique with potential P = 10 + |∇I|2, where I means
image intensity, ∇I is the image gradient information.

In Fig. 5, we present the segmentation result on one 2D
real road image, in which the road edge is blur. The image
size is 710 × 750, rleft = 3, rright = 5, rmax = 8 are set
for the initializations in panel (a), here we select rleft and
rright a little smaller for calculating more accurate region
information. For this segmentation, we use the potentials
defined by Eq. 10 with ω = 20, λ1 = 10, and λ2 = 10.

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 3. The surface extraction results on a 2D synthetic image.
Panel (a) and (e) show the binary images with initializations. The
centers of the initial spheres are shown with the red crosses. The
white lines in panel (b) and (f) show the surface extraction results
from our method. The red lines in panel (c) and (g) show the
extracted central paths from our method. The red lines in panel
(d) and (h) show the path extraction results from the standard 2D
minimal path technique.

3.2. Experiments on 3D Images

In this subsection, we demonstrate our method on a 3D
CT dataset of the coronary artery. In Fig. 6, the original im-
age size is 180 × 260 × 200 after is cropped. For this test,
we set five pairs initialization. r0 = 4, r1 = 1, rmax = 7 is
set for segmenting the left anterior descending artery (also
obtaining part of the left main coronary artery) and the left
obtuse marginal artery, r0 = 3, r1 = 1, rmax = 7 are set
for segmenting the left circumflex artery with a subbranch,
r0 = 1, r1 = 1, rmax = 5 is set for segmenting the sub-
branch of the left obtuse marginal artery. The potential is
defined by Eq. 12 with ω = 10, λ1 = 10, and λ2 = 10.
Although the presented results here are the primary ones,
we still can see that this method extract the desired surfaces
successfully.

4. Conclusions and Future Work

In this paper, we present a novel 3D tubular surface ex-
traction method that not only keeps all the benefits of stan-
dard minimal path techniques, but combines some of the
benefits of active surface techniques by representing the full
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 4. The surface extraction results on a real angiogram im-
age. Panel (a) and (e) show the binary images with initializations.
The centers of the initial spheres are shown with the red crosses.
The white lines in panel (b) and (f) show the surface extraction
results from our method. The white lines in panel (c) and (g) show
the extracted central paths from our method. The white lines in
panel (d) and (h) show the path extraction results from the stan-
dard 2D minimal path technique.

(a) (b)

Figure 5. The road extraction result on a real map image. Panel
(a) show the real image with initialization. The centers of the ini-
tial spheres are shown with red crosses. Panel (b) shows the road
extraction result (the red lines).

3D tubular surface rather than a just curve within its inte-
rior. We are able to fully exploit minimal path techniques to
obtain global minimizing trajectories between two user sup-
plied end-points in order to reconstruct vessels from noisy
or low contrast 3D data, and also yield the central path of
the tubular structure simultaneously.

(a) (b)

(c) (d)

(e) (f) (g)

Figure 6. The segmentation results of the left main coronary artery
on one 3D CT image. Panel (a) and (b) show the segmentation
results on two 2D slices from our method. Panel (c) shows the re-
constructed 3D model of the segmented left main coronary artery,
the left anterior descending artery, the left obtuse marginal artery
with one subbranch, and the left circumflex artery with a sub-
branch from our method. Panel (d) shows the 3D model of the
corresponding central path from our method. Panel (e) shows the
projection of the segmented 3D surface and the central path from
our method. For comparison, panel (f) and (g) show the mini-
mal path results form the standard 3D minimal path technique [8].
We use the center points of the initial spheres used for the tests
in panel (d) as the initializations for the tests in panel (f) and (g).
Because the standard 3D minimal path technique only yields a 3D
curve, the extracted trajectories results are less accurate (due to
the short-cutting phenomenon discussed in the introduction). The
potential is P (p) = 10 + |∇I(p)|2 for panel(f). The potential is
P (p) = 10 + |∇I(p) − ∇I(p0)| for panel (g). |∇I(p)| is the
image gradient information.

In the future, we hope to find more appropriate choices
of potentials for objects with non-uniform gray-level con-
trast. We will also work on the general volumetric region
extraction techniques to more tubular structures, such as the
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tubular structure with branches. We will also work on the
medical validation of our proposed method.
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