
A STOCHASTIC FLOW FOR FEATURE EXTRACTION 

Gozde B. Una& Humid Krim * 7  and Anthony Yezzi t 

ECE Dept, NCSU, 
Raleigh, NC 27695-7914, 

t 

t ECE Dept, Georgia Inst. Tech., 
Atlanta, GA 30332-0250, 

gbozkur@eos.ncsu.edu, ahk@eos.ncsu.edu anthony.yezzi@ece.gatech.edu 

ABSTRACT 

In recent years evolution of level sets of two-dimensional 
functions or images in time through a partial differential 
equation has emerged as an important tool in image pro- 
cessing. Curve evolutions, which may be viewed as an evo- 
lution of a single level curve, has been applied to a wide vari- 
ety of problems such as smoothing of shapes, shape analysis 
and shape recovery. We give a stochastic interpretation of 
the basic curve smoothing equation, the so called geomet- 
ric heat equation, and show that this evolution amounts 
to a rotational diffusion movement of the particles along 
the contour. Moreover, assuming that a priori information 
about the orientation of objects to be preserved is known, 
we present new flows which amount to weighting the geo- 
metric heat equation nonlinearly as a function of the angle 
of the normal to the curve at each point. 

1. INTRODUCTION 

In recent years evolution of level sets of two-dimensional 
functions or images in time/scale via a Partial Differential 
Equation (PDE) has emerged as an important tool in image 
processing. Curve evolutions, which may be viewed as an 
evolution of a single level curve, have been applied to a 
wide variety of problems such as smoothing of shapes, shape 
analysis and shape recovery. The connection between the 
evolution of two-dimensional functions and the evolution 
of curve coordinates has been well-established [l, 21. The 
usefulness of these evolutions comes from the fact that they 
provide a scale-space analysis where fine to coarse features 
and properties of a signal can be fully traced and observed. 

The goal of feature and shape extraction in recogni- 
tion and classification problems has long been hampered by 
noise and processing artifacts. The idea of feature-driven 
progressive smoothing and scale tracking is widely viewed 
as a promising new avenue of research and hence has been 
of increasing interest to researchers in the field. To the best 
of our knowledge, previous literature about the nonlinear 
diffusion topic has adopted a deterministic approach (aside 
from [3,4] which address a different problem). Our primary 
interest in this paper is to provide a stochastic solution to 
a specific evolution equation, namely the geometric heat 
equation. We subsequently use this insight to propose a 

class of nonlinear diffusions specifically aimed at extracting 
desired features in a possibly noisy environment. 

In the remainder of the paper, we first briefly review in 
Section 2, some theoretical concepts on scale space analy- 
sis and describe a natural, well-known geometric technique 
based upon the curve shortening flow. In Section 3, we pro- 
vide a stochastic equivalent equation which in turn unveils a 
new shapelfeature-driven flow described in detail in Section 
4, and which we believe offers a variety of possible appli- 
cations outside the recognition and classification problems. 
We finally present some illustrating and substantiating ex- 
amples. 

2. BACKGROUND AND FORMULATION 

The well-known low-pass filtering in signal processing by 
Gaussian smoothing, can be obtained by evolving an image 
uo(z,y) by a diffusion equation 151, 

U(O,Z ,Y)  = UO(Z,Y), 
u t ( t , x , y )  = kAu(t,x,y), t > 0 (1) 

where k is a constant, A is the Laplacian operator, kAu = 
k(uz,+uyy),equivalently expressed as kAu = V.kVu, (here 
“V.” is the divergence operator, and “V” is the gradient 
operator). The solution to this equation is a parameterized 
collection of functions u(t, x, y), t > 0, and is equivalent to 
filtering uo(z,y) with a Gaussian filter of variance 2 t ,  t > 0. 

An image u(z,y) can also be thought of as a collection 
of iso-intensity contours, or level curves. On an iso-intensity 
contour, let 0 be the direction normal to the contour (the 
gradient direction), and let 5 be the direction tangent to 
the contour (level set direction) 

which are depicted in Fig. 1. The 0 direction is usually 

L 

Figure 1: Normal and tangent directions to a level curve. 
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considered as the direction across the image features since 
it points to the gradient direction of a level curve which is 
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given by V u  = (ux ,uy) ,  whereas the 4 direction is along 
the image features [6]. Thus, the idea is to smooth less 
across the image features in order not to damage the bound- 
aries/edges between different regions, and to allow more 
smoothing along the features to eliminate noise. Denoting 
second-order directional derivatives in the directions of 17 
and respectively as uqq and ut€,  

u:uxx + 2uxuyuxy + u;uyy 
U 2  + U ;  

7 ( 2 )  uvl = 

, (3) 
u;uxx - 2uzuyuxy + u:uyy 

U 2  + U ;  
U € €  = 

then the diffusion operator can also be written as Au = 
U E ~  + uqq which diffuses isotropically. 

Perona and Malik introduced anisotropic diffusion equa- 
tion [7], which includes a nonlinear coefficient in the diver- 
gence term and given by ut = V . (g(1 V u  I)Vu), where g ( . )  
is typically a monotonically decreasing function which sup- 
presses diffusion when the gradient is high (encounter of an 
edge). One possible choice is g(1VuJ) = 1 A cor- 

responding selective evolution which unequally weights the 
diffusion terms uqq and U<< was proposed in [SI. The at- 
tempt there is to precisely guide the diffusion along the fea- 
tures (i.e. along the t direction) and away from the bound- 
aries as just discussed above. Such a diffusion amounts 
to smoothing one iso-intensity curve without affecting the 
others. 

For the sake of clarity and conciseness, we will focus in 
this paper on an evolution of a single level set, and use as 
a starting point the level set method first proposed in [l] 
for propagating interfaces. A parameterized curve C ( t , p )  = 
( X ( t , p ) , y ( t , p ) ) ,  is first embedded into a surface called a 
level set function @ ( t , z , y )  : [O,T] x W’ ++ W, and where 
t is an evolutionary step, and p is a parameter (e.g. arc 
length) along the curve. The curve C is the zero-level set of 
@ ( t , x , y ) ,  i.e., C = {(z,y) : @(t ,z ,y )  = 0). The evolution 
equation for +(t,  2, y) is derived from the constraint that at 
any time t ,  we should have @ ( t , C ( t ) )  = +(t,  X ( t ) ,  y( t ) )  = 0, 
and by differentiating this constraint with respect to t (see 
[8] for details). A general evolution of any planar curve 
C ( t , p )  is given by 

d m .  

C,( t ,P)  = P(t,P)j% (4) 

C(0,P)  = C o b ) .  (5) 

where I? is the inward unit normal to the curve, p(., .) is the 
evolution velocity, and C,(p) is the initial curve [2]. Consid- 
ering curve evolutions which only depend on a function of 
the curvature 6, /3(., .) can be written as F ( K ) ,  which leads 
to the following level set equation 

@t + V @ .  F(n)g = @t - F(K)IV+( = 0, (6) 

using the fact that the inward unit normal vector I? = 
-V@/lV@l. A solution to Eq. (4) is then obtained by 
merely evolving Eq. (6 ) .  Various selections of the speed 
function F(n) are presented in [SI, with the simplest form 
F ( K )  = K. resulting in 

@ t  = n Ivq, (7) 

(referred to as geometric heat equation). Its effect on a 
particular ]exeel curve C is given by the curve shortening 
flow, Ct = nN, under which curves embedded in R’ evolve 
regularly toward circles, eventually collapsing into points 
as shown by Grayson [9]. The curvature K. can also be 
expressed in terms of the level set function Cp. as 

Substituting this form of n into Eq. (7), leads to the follow- 
ing form, 

(9) 
*;+xx - 26x*y*xy + *X@,, 

6: + *$ +t = 

3. STOCHASTIC FORMULATION OF A 
GEOMETRIC HEAT EQUATION 

Observe that Eq. (9) is @ t  = @ c c ,  i.e. the contour is 
smoothed maximally along the tangential direction to  the 
contour. It is clear that the convergence to a point of every 
shape/contour subjected to a geometric heat flow [9] will 
not preserve features of a level curve. Our goal is to  then 
investigate this problem and propose a solution as a result 
of the following development. 
Let us call the angle between the outward normal to the 
curve and the x-axis 5 The outward unit normal I? can 
then be expressed as N = (cose,sine), which is rewritten 
in terms of as I? = (+x, a Y ) / J m .  It follows, 
t9(@x,@y) = tan-’($). Using these equations, and defin- 
ing an operator Ah of the form 

Ah+ = sin’ e +xx - 2sin0 case aXy + cos’ e +yy,  (10) 

the geometric heat equation (9) can be re-written as 

@t( t , z , v )  A h @ ( t , z , y ) ,  (11) 
@(O,X,Y) = f ( z , y ) ,  (12) 

where f (z, y )  is the initial level set function. We next show 
that an evolution equation in fact corresponds to an in- 
finitesimal generator of a Stochastic Differential Equation 
(SDE), by using Ito diffusions and the Kolmogorov back- 
ward diffusion theorem [lo]. 

3.1. Ito Diffusion 

A diffusion of a particle is usually well modeled by an SDE 
which, in turn, represents the underlying process of an evo- 
lution. The dynamics of this evolution are captured by a 
PDE henceforth also referred to as a generator (infinitesi- 
mal) of the diffusion. 

Definition 1. Suppose we want t o  describe the mo t ion  of a 
small  particle suspended in a moving  liquid, subject to ran- 
d o m  molecular bombardments. If b ( t ,  x) E W3 is  the  velocity 
of fluid at the point x at t ime  t ,  t hen  a widely used math-  
ematical model f o r  the position X t  of the particle at  tame t 
i s  a n  SDE of the f o r m  

d X t  = b( t ,  X t ) d t  + a(t ,  Xt)dBt,  (13) 
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where Bt is  a 3-dimensional Brownian motion. Generally, 
in such a n  SDE where Xt E W n , b ( t , z )  E Wn,u(t,x) E 

, and Bt is m-dimensional Brownian motion, a ( . , . )  
is called the drift coeficient,  and U ( . , . )  is  called the diffu- 
sion coeficient.  

WnXm 

The first term in this equation corresponds to a non- 
random motion, whereas the second term models random- 
ness or noise in the motion. 

The solution of such an SDE may be thought of as a 
mathematical description of the motion of a small particle 
in a moving fluid, and such stochastic processes are called 
(Ito) diffusions [lo]. For many applications, a second order 
partial differential operator A can be associated to an Ito 
diffusion Xt given by Eq. (13). The basic connection be- 
tween A and Xt is that A is the generator of the process 
Xt. If g E C2(Wn), i.e. continuous functions with continu- 
ous derivatives up to order 2, and g has a compact support, 
( g  E C,"(W")), then A is given in the form 

Theorem 1. (Kolmogorov's backward equation) 
Define u ( t , z , y )  = Ez3v[f(Xt)], where Xt = (Xj1),Xj2)), 
and is  the expectation operator with respect t o  the 
probability law of Xt starting at the point (2, y), then there 
exists an  operator A such that, 

au 
- = Au, t > 0 ,  ( z , y )  E R 2 ,  (15) at 

3.2. Stochastic Formulation 

In light of the foregoing development, a natural question 
which arises is: given a P D E  which governs a curve short- 
ening f low, can we obtain a corresponding S D E  of the un- 
derlying diffusion? 
Towards that end, we have the following, 

Proposit ion 1. The evolution equation given in Eqs. ( l l) ,  
(12) with its operator defined in Eq. (lo), generates a dif- 
fusion of individual pixels whose equation is  given by, 

Proof: The operator Ah in Eq. (10) is first rewritten as, 

) O H ,  
sin2 e 

- sin e cos e 
- sin e cos e 

cos2 e 
where H is a Hessian operator and 0 is a Hadamard prod- 
uct. The factorization Of Ah leads to U = f i  (- sin @ cos e)T 
and by identification, b = 0. Given @(t, x, y) as a solution 
to Eqs. (11),(12), we define drift coefficient and diffusion 
coefficient of an Ito diffusion Xt as follows, 

where 

with the generator in Eq. (10). By Kolmogorov's backward 
theorem then U satisfies = &U. @(t ,  x, y )  also satisfies 
the same set of equations, and by uniqueness of the solu- 
tion of Kolmogorov's equation, we can write the level set 
function @(t, z, y )  as illustrated in Fig. (2) as 

to complete the proof. 
A similar development can be carried out for the normal 
motion (i.e. along 7). Due to space limitations, we de- 
fer the details to [ll], where existence of strong solutions is 
shown as well as other properties [lo]. One can nevertheless 
infer that the nonlinear diffusion dXt = & T' dBt is tan- 
gential on the unit circle as illustrated in Fig. (3). This in 
turn leads us to propose in the next section a more general 
and feature/shape adapted flow that obey the maximum 
principle and for which strong solutions exist. 

1=0 I d '  

Figure 2: Points of the zero-level set, i.e. initial contour 
(X(O),y(O)) ,  at time t = O ,  is shown on the left. Those 
points whose sample realizations result in an average value 
of zero a t  time t = t' (@(t',z,y) = E",v[f(Xtt)] = 0)  form 
the new contour(X(t'), y(t')) (on the right). 

L- 'L 

Figure 3: (a) Tangential direction motion, (b) Normal di- 
rection motion. 

4. A NEW CLASS OF FLOWS 

The geometric heat equation produces a self-similar solution 
which is a circle, so it evolves all shapes into circles. A nat- 
ural generalization of the proposed approach is to construct 
an SDE with an arbitrary but carefully chosen functional 
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C O  U 0  

Figure 4: (a) Original set of shapes (b) Result of evolution 
under @t = cos2(20) @cc.  

b) Result of evolution Figure 5: (a) Original set of shapes 
under @t = sin2(28) @c€. 

h(0) which reflects specific desired g als and also leads to a 
solution (i.e. Lipschitz properties[lO]), 

One such class of functional that we can show the flow of 
to lead to 2 - n-gones [ll] is given by simple trigonometric 
functions’ 

cos’ (ne) h 2 ( 8 )  = 

where n E N. For instance, we can obtain flows where 
we can keep a square shape as the invariant shape among 
all other shapes in a given initial collection by selecting 
h2(8) = cos’ (28). We therefore find a flow 

@ t  = co~2(2e) (22) 

which produces square-like shapes. For example, the ini- 
tial collection of shapes in Fig. 4(a) will be converted to 
squarish shapes as shown in Fig. 4 (b), so this flow keeps 
square shapes invariant. With the same reasoning, the 
PDE @ t  = sin‘(20) @cc does maximal smoothing a t  those 
points with orientations ~ / 4 , 3 ~ / 4 , 5 ~ / 4 , 7 7 ~ / 4 ,  and their 
neighborhoods, and no smoothing at points with orienta- 
tions 0, ~ 1 2 ,  A, 37~12. Therefore, this flow keeps diamond- 
like shapes invariant as shown in Fig. 5. Similarly, one can 
find various flows in the form of at = cos2(nO)@tc, which 
partition 0 space between [0,27r] into n axes, and thus tend 
to produce 2n-sided polygon-like shapes (oriented vertically 
and horizontally). Other example flow results are given in 
Fig. 6(a), and (b), where the initial set of shapes is the 
one given in Fig. 4(a). Heuristically, the flow in Eq. (22) 
consists of stopping the diffusion a t  four diagonal orienta- 
tions, and allow maximal diffusion at four horizontal and 
vertical orientations. The generator in the form A@ = 

‘Note added in proof Recently discovered that Sethian qual- 
itatively mentions a similar idea in his very recent book, with a 
different approach. 

Figure 6: Result of (a)Flow @ t  = cos’(30) which tends 
to produce hexagons, (b)Flow @ t  = sin2(1.5(8 - 7~12)) @€€, 
which tends to produce triangle-like shapes. 

c0s2(2t9) corresponds to a diffusion X t  satisfying the 

SDE (dX,(’) d X , ( 2 ) ) T  = fi cos(20) (-sin(O) cos(8)) d B t .  
These particular flows can be useful in various shape analy- 
sis applications, particularly in recognition of man-made ob- 
jects like jeeps, cars, tanks and many others, where straight 
edges exist. 

5. CONCLUSIONS 

We have presented an alternative view of geometric heat 
equation in terms of stochastic flows. We also proposed a 
new class of flows which produce polygonal-invariant shapes 
that can be useful in various shape recognition tasks. 
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