
Abstract 

We present a variational method for unfolding of the 
cortex based on a user-chosen point of view as an 
alternative to more traditional global flattening methods, 
which incur more distortion around the region of interest. 
Our approach involves two novel contributions. The first 
is an energy function and its corresponding gradient flow 
to measure the average visibility of a region of interest of 
a surface from a given viewpoint. The second is an 
additional energy function and flow designed to preserve 
the 3D topology of the evolving surface. This latter 
contribution receives significant focus in this paper as it 
is crucial to obtain the desired unfolding effect derived 
from the first energy functional and flow. Without it, the 
resulting topology changes render the unconstrained 
evolution uninteresting for the purpose of cortical 
visualization, exploration, and inspection. 

1. Introduction 
Active surfaces, the 3D version of active contours, 

comprise one of the primary tools for medical image 
segmentation. In most medical imaging applications, the 
topology of the object to be segmented is known in 
advance. As such, a number of researchers have 
endeavored to incorporate various topology preservation 
constraints into their evolution models for the purpose of 
segmentation. Some authors such as Han et al. [1, 2], in 
their work on cortical segmentation, have proposed 
discrete representation dependent constraints that kick in 
at the moment and at the location where a topology 
change is about to occur in order to enforce the original 
topology. Others, such as Unal et al. [3, 4] have directly 
added continuous evolution forces that increase toward 
infinity as the contour or surface configuration 
approaches a change in topology. Sundaramoorthi and 
Yezzi [5] recently introduced a variational method for 

topology preservation in active contours based on knot 
energies [6, 7]. Other variational approaches for topology 
preservation are found in the work by Shi and Karl [8], 
which only favors the repulsion of different connected 
components of the evolving curves, and in the work of 
Alexandrov and Santosa [9] and the recent work of Le 
Guyader and Vese [10], both of which are designed 
specifically for Level Set Methods [11]. 

For many segmentation applications, the manner in 
which the topology constraints are introduced is often 
unimportant since only the final configuration of the 
contour matters. Here, however, we consider an 
application of cortical unfolding in which the evolution 
itself is important to the end user who will typically wish 
to stop the unfolding process at any given time to obtain 
the desired level of unfolding. Therefore, the nature of the 
topology preservation should go hand-in-hand with the 
desired unfolding evolution and not yield undesirable 
transient geometric configurations that are often common 
when using mere topology enforcement. 

The extension of the global knot-energy based topology 
regularizers proposed in [5] to three dimensions is 
conceptually straight-forward but mathematically and 
computationally much more involved than the original 
2D formulation. However, our effort seems to have been 
well justified since these types of topology preserving 
energies are ideally suited to our cortical unfolding 
application. The resulting evolution forces, on their own, 
induce an unfolding effect that tends to drive the initial 
cortical surface towards a final spherical configuration 
that globally minimizes most knot energies (see [7] for 
the case of curves). This renders a very natural and 
visually pleasing global unfolding effect. 

Our goal is a viewpoint dependent unfolding of the 
cortex in which the user is able to select an area of 
interest on the cortical surface for visualization. By 
focusing the unfolding on a region of interest with respect 
to a chosen viewpoint, distortion effects may be 
significantly reduced compared with global flattening 
techniques [12, 13, 14] commonly used in brain mapping. 
To accomplish this, we introduce a novel energy 
functional and gradient flow to measure and improve the 
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average visibility of the selected region. Without topology 
preservation, however, this flow is not useful for the 
purpose of cortical visualization and unfolding. Since 
knot-energy based topology preservation forces already 
produce a more global unfolding effect on their own, they 
combine very naturally with our visibility based flows to 
maintain a constant topology without introducing 
undesirable artifacts into the evolution. 

The remainder of this article is organized as follows. In 
Section 2 we review the two dimensional knot-energy 
based topology preservation method introduced in [5]. In 
Section 3 we outline the extension of this method to three 
dimensions. As the computations in the 3D case are 
significantly more involved compare with their 2D 
counterparts, we do not include all the intermediate 
calculations for reasons of space. In Section 4 we present 
our viewpoint based visibility energy functional and its 
corresponding gradient flow to which this 3D topology 
preservation method will be applied. It is important to 
note, however, that without the topology constraint, the 
visibility based flow often undergoes intermediate 
topology changes during the resulting cortical unfolding 
process. As such, while the visibility energy provides the 
driving force behind our flow, the topology forces are 
indispensable to this application. Finally, in Section 5 we 
show simulations on both synthetically created surfaces as 
well as cortical surfaces extracted from real data. 

2. Background on Topology Preservation 
In many active surfaces applications it is very 

important that the topology of the object does not change 
during the evolution. For instance, when the cortex of the 
brain is being segmented it is necessary to keep its 
topology during the evolution because the cortex is 
homeomorphic to a two dimensional sphere [1, 2]. 

A number of topology preservation methods have been 
proposed in the past. Hans et al. [1, 2] presented a 
technique to prevent topology changes when the active 
contour evolution is implemented via Level Sets Methods. 
In this work, changes in topology at grid points are 
detected by deriving a condition based on the 
configuration of the level set function in a small 
neighborhood of the grid points. This method has the 
disadvantage of being highly dependent on the grid 
spacing used in the level set function. In addition, when 
this method is used the resulting motion may be abrupt 
and look unnatural. 

Unal et al. [3] proposed a novel approach for topology 
preservation for active polygons. In this work, it is 
assumed that the polygon consists of a uniform charge 
distributed along its perimeter. Each vertex is then moved 
in the direction of the electrostatic force, which is 

computed numerically. Even though this method may 
prevent some topology changes, it does not prevent two 
adjacent sides from touching. Moreover, the flow is 
unstable as the number of vertices increases and the 
length of the segments decreases [3]. 

Sundaramoorthi and Yezzi [5] have proposed a robust 
topology preservation technique in which a special 
geometric flow is added to the original image based curve 
evolution to avoid intersections. This geometric flow, 
which is derived from the minimization of an energy 
based on electrostatic principles, affects significantly the 
original evolution only when the contour is close to a 
change in topology. Unlike a curvature regularizer, when 
the regularizer proposed in [5] is applied to a point the 
resulting force depends globally on all other points of the 
curve. This technique, which is based on the work in [6, 
7], has the advantage over the one proposed in [1, 2] of 
changing the original evolution in a gradual manner. 
Moreover, it is not restricted to level sets and can be used 
on any active contour implementation. 

Since the 3D topology preservation method we are 
proposing in this paper is an extension of the work in [5], 
in the rest of this section we present a quick review of this 
work. 

2.1. Differentiable Contour Case 

Let 2C �  be a twice-differentiable contour of length 
L and let E2D,R be the energy of an uniform charge 
distributed along C defined by  
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where ˆ( , )Cd s s , the geodesic distance along the curve C

from point ( )sC  to point ˆ( )sC , is used to eliminate the 

infinite component of the first term, thereby making the 
energy finite. However the gradient of this energy has the 
property of still becoming infinitely large whenever the 
curve becomes close to self-intersection. 

Using the Calculus of Variations, it is shown in [5] that 
the gradient of (1) is given by 
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where { }ˆ ˆ( , ) ( ) : ( , )C CB s s d s s= >C  represents the set of 

all points in C except for those within a small 
neighborhood of C(s), and ( )s  and N(s) represent the 

curvature and the inward normal of C at the point C(s), 
respectively. The first term in (2) can be regarded as the 



projection of the electric vector field of the charge 
distribution at the point C(s) onto the inward normal N.
On the other hand, the second term can be regarded as the 
electrostatic potential of the charge distribution at the 
point C(s). 

Now, let us suppose that C is evolved according to the 
image based flow Ct,original(s) that is uniformly bounded. 
Sundaramoorthi and Yezzi [5] show that if the flow 
R2D(s) in (2) is added to Ct,original(s), then the topology of 
C will be preserved during the evolution. That is, the 
resulting flow 
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Dt new t original R ss s= +C C R              (3) 

where t is the artificial time variable and R  is a positive 

constant, preserves the topology of C. Moreover, since (3) 
is a geometric flow, this method of topology preservation 
is suitable for both parametric particle-based and level set 
implementations. 

2.2. Polygon Case 

Let P be a polygon with N edges Ci for {1, , }i N… ,

each one of length | |iC  and going from vertex vi to 

vertex vi+1, both in 2
� . In addition, consider the 

electrostatic energy 

( )2 , ( ) 2 | | ln | | | |

ˆ1
                ,

2 ˆ( ) ( )
i j

D R i i i
i

i j C C i j

E P C C C

ds ds

s s×

=

+

∑

∑ ∫∫ C C

         (4) 

where the first term results from taking just the finite part 

of the integral 
ˆ

( ) ( )i i
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 and discarding the 

infinite component. Like the energy for the differentiable 
contour case (1), this energy only becomes infinitely large 
when the polygon approaches a topology change. 

Let R2D,k(t) be the gradient descend flow of (4) for 
vertex vk at time t that is computed by the procedure 
outlined in [5] and let ( )/vk original

d dt  be the original 

image based vertex flow. Sundaramoorthi and Yezzi [5] 
show that the new vertex flow  
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has the property of preserving the topology of P during 
the evolution. 

3. Topology Preservation in 3D 
In many applications, such as 3D segmentation, a 

surface is evolved in order to solve a specific problem. 
Sometimes these applications require that the topology of 
the surface be preserved during the evolution. In such 

cases it is necessary to use a topology preservation 
method. We now present the extension of the work in [5] 
to both active surfaces and active polyhedrons, making 
more emphasis on the latter since we will apply this in the 
next section. 

3.1. Differentiable Surface Case 

Let 3: [0,1] [0,1]S × �  be a parameterization of a 

differentiable, closed, compact and orientable surface, 
then the natural 3D extension of (1) is 
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where ˆ ˆ(( , ), ( , ))Sd u v u v  is the geodesic distance along the 

surface S from point ( , )u vS  to point ˆ ˆ( , )u vS . However, 
unlike the case of curves, the second term is not 
straightforward to compute numerically nor is the 
variation easy to compute. Therefore, we consider the cut-
off energy 
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where { }2ˆ ˆ ˆ ˆ( , ) [0,1] :| | | |=B u v u u v v  represents 

the set of all the points of S except for a small 
neighborhood around the point S(u,v).  

A formal computation using the Calculus of Variations 
shows that the limit of the gradient of (7) converges and 
that it is equal to 
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where H(u,v) and N(u,v) represent the mean curvature 
and the inward normal of S at S(u,v). We believe that R3D

becomes infinite as the surface approaches self-
intersection and points in a direction opposite to self-
intersection, as in the case of curves. Analytical details 
will be found in an upcoming paper. We offer 
experimental evidence in Section 5. 

3.2. Triangulated Surface Case 

Topology preservation methods can also be applied to 
active polyhedron, that is, a polyhedral surface whose 
vertices evolve to minimize some energy functional. In 
this sense, Slabaugh and Unal [4] have proposed a 3D 
extension of the work in [3] by adding an electric force to 
each vertex flow. This force is computed by creating an 
electric field that goes to infinity as a vertex moves 



towards the surface. Unfortunately, this method does not 
guarantee topology preservation between non-adjacent 
triangular faces and becomes unstable as the triangular 
mesh becomes finer. This is especially true for our novel 
cortical unfolding application that we present in the next 
section, which needs topology preservation to work 
properly. Therefore, we decided to choose a direct energy-
based approach based on [5], which although slower, 
provides a more powerful topology preservation factor. 

Let S be a triangulated surface with N faces Si for 
{1, , }i N… . Let also va, vb, and vc be the vertices of Si,

ordered counterclockwise, as shown in Fig. 1. Now 
consider the new energy 
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where 
,3 , i jD RE  represents the electrostatic energy between 

the faces Si and Sj. More specifically, 
,3 , i jD RE  is defined by 
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Accordingly, the gradient proposed energy in (9) becomes 
infinitely large when any two faces become infinitely 
close. 

Taking the derivative of 3 ,D RE  with respect to the 

vertex va of Si gives us  
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Furthermore, if we use the parameterization 

( ) ( )( , ) ,= + +S v v v v vi a b a c au v u v         (12) 

for [0,1]u  and [0,1 ]v u , then it can be shown that 

the derivative of 
,3 , i jD RE  with respect to va in (11) when Si

and Sj are non-adjacent becomes 
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where  
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is the area of Si and the force vector Fi,j is given by 
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If Si and Sj are adjacent, then the derivative of 
,3 , i jD RE

with respect to va is different from (13). Without loss of 
generality, let us assume that Si and Sj share at least the 
vertex va in Fig. 1. It can be verified that  
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for Fi,j defined as in (15). 
Although the computation of (13) implies the 

numerical solution of quadruple integrals, we can reduce 
the number of computations by solving it explicitly just 
when the two faces Si and Sj are close enough, that is, 
when they are within a certain thresholded distance from 
each other, which is when it matters the most. On the 
other hand, when the faces are not considered to be close 
enough we can then use their centroids, which we called 

�
S  and 

�
S , in (10). The result is the much simpler 

estimate 
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Again, if we add the vertex motion as defined in (11), 
to a surface based evolution then the topology of the 
surface will be preserved during the evolution. 

4. Application to Cortical Unfolding 
In this section we present a novel viewpoint-based 

visibility energy as the basis for a class of flows with 
appropriate geometric constraints that can be used to 
maximize the visibility of a surface with respect to a fixed 
external viewpoint. Accordingly, a surface would evolve 
in such a way that would allow one to see parts that are 
not visible due to self-occlusion. This result can have 
several applications in the area of medical imaging. For 
instance, it can be used in human brain mapping to 
unfold a specific part of the cerebral cortex while 
introducing little distortion and to validate a cortex 
segmentation. 

The proposed energy, although novel, cannot work by 
itself, as it requires topology preservation. For 

Figure 1: Sample triangle Si for a triangular mesh. 



completeness, we quickly present this energy and its 
gradient descent. More details about this energy are the 
subject of a different paper [15]. 

4.1. New Visibility Energy Functional for 
Viewpoint-Based Unfolding 

Let S be a differentiable surface and let Sv be a selected 
region of interest on S that the user would like to unfold 
for visualization. The problem of maximizing the 
visibility of this portion Sv of the surface with respect to a 
fixed viewpoint P can be thought as the problem of 
maximizing the flux of light irradiated from P that is 
being absorbed by Sv. We define the flux at any point in 
Sv. as the Euclidean dot product between the unit ray that 
is coming from P and the unit inward normal N of Sv at 
the given point. Accordingly, the value of the flux at any 
point will always be between 1 and 1. This approach 
provides a physical interpretation of how illuminated any 
point in Sv is. If a point is illuminated, that is, if it is 
visible from P, a positive flux indicates the degree of 
perpendicularity of the incoming ray. On the other hand, 
if a point is not receiving any light because Sv is blocking 
the ray, a positive flux indicates how perpendicular the 
ray is going to come in if the part of Sv that is blocking 
the ray moves away. When a point has a negative flux 
then it means that the point is not receiving any light. 
The more negative the flux is, the more the point will 
have to move to receive light. 

Consider the energy  
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where 
vSA  is the area of Sv,

3S �  is a point in the 

surface, and 3N � is the unit inward normal at S. This 
energy represents the average visibility Sv with respect to 
P. From now on, we will use the terms “average flux” and 
“average visibility” interchangeably. 

If we evolve Sv according to the gradient ascent along 
(18), then the points where the flux is negative would be 
forced to move in such a way that the flux they receive 
increases. By doing so, these points would make visible 
other points that already have a positive flux, but are not 
visible from P. This would generate the unfolding motion 
that we are looking for.  

Since the flux at any point can be at most equal to 1, 
then E3D(Sv) also has a maximum of 1. This would occur 
when the viewing surface coincides with a circular arc 
with the viewpoint P as its center. In this case, the rays 
coming from the viewpoint would have the same direction 
as the unit inward normal at each point and, 
consequently, the flux at every point in Sv would be equal 
to 1.  

Using the Calculus of Variations, it can be shown that 
a maximizing gradient flow for (18) is given by  
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where H represents the mean curvature of Sv at the point 
S. This result gives us the main formulation in case we 
want to implement the proposed method for differentiable 
contours. In addition, it provides us with a mathematical 
criterion that tells us which part of the surface we can 
flatten. Specifically, this stability condition is that we 
must choose the portion Sv of the surface to have a 
positive initial average visibility (otherwise a backwards 
heat flow results). This may be done by enlarging or 
reducing the initial region Sv until this condition is 
satisfied. As the surface unfolds, the average visibility of 
Sv increases thereby allowing a user to select a smaller 
subset of Sv at later stages. 

4.2. Triangulated Surface Case 

Let S be now a triangulated mesh and let Sv be a section 
of S with N triangles and a positive average visibility with 
respect to the viewpoint P. By applying (18) to Sv we get 
that the average visibility of Sv, E3D,P, is 
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where 
1

= + +…
v NS S SA A A  is the total area of Sv and E3D,i

represents the total flux being received by the triangular 
face Si of area Ai. Accordingly, E3D,i is 
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where the inward normal N (Fig. 1) is given by 
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If we use the parameterization in (12) it can be show that 
(21) becomes 
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Taking the derivative of E3D,i with respect to the vertex va

we get  
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where the partial derivatives of , , and  with 

respect to va can be obtained from (24), (25), and (27), 
respectively. On the other hand, if we take the derivative 
of (20) with respect to va we get 
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Using these results together with those of the previous 
section we have that the vertex motion that maximizes the 
average visibility of Sv (20), while preserving its topology, 
is given by 
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where 3D  and R  are positive constants and the second 

term is the topology preserving term computed by using 
(11). 

4.3. Area Preservation 

In order to have an average visibility equal to 1, the 
region of interest Sv in the triangulated mesh S has to 
have a visibility equal to 1 at every point of every one of 
its faces. It is easy to see that this only occurs when all the 
faces collapse to a single point. Of course, this result is 
undesirable. To overcome this issue we need to maximize 
the average visibility and, at the same time, maintain the 
area of each one of the triangular faces of Sv constant. 
This can be done by applying a similar technique such as 
the one employed in [16, 17, 18] in which only the 
component of the gradient that does not change the area 
is used to evolve the vertices. This procedure is described 
below. 

Let { }1 , ,= v v… M  be the ordered set of the M 3D 

vertices comprising Sv. In order to maintain a constant 
area for each of the triangular faces Si in Sv during the 
evolution we need to satisfy the following N constraints 
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where { }1, ,i N…  and the vectors vi,a, vi,b, and vi,c

represent the corresponding vertices of Si (see Fig. 1) in 
. Using Lagrange multipliers one can obtain 

, , ,= lT

t c t uV V J                          (32) 

where Vt,u is the vector of unconstrained gradient flow 

obtained by applying (30) to each vertex of Sv, J is the 

Jacobian matrix of (31), , 1 ...⎡ ⎤= ⎣ ⎦v v
TT T

t c M

d
V

dt
 is the vector 

of constrained gradient flow, and the vector l is the 
minimum norm solution to the system 

, .=lT

t uJJ J V                           (33) 

Since the matrix TJJ  is symmetric positive definite, then 
l can be quickly computed using the conjugate gradient 
method. Moreover, since J is sparse, the matrix 
multiplication TJJ  can be computed and stored 
efficiently. 

5. Simulation Results 
In order to better illustrate how the proposed topology 

preservation method works together with the proposed 
visibility energy functional of Section 4, we first present a 
2D example. Figure 2 depicts the evolution of a very 
convoluted 34-edge polygon in which the region of 
interest is the section of the contour located between the 
two  lines  of sight.  Initially the region of  interest had an 

Figure 2: Visibility maximization evolution for a highly 
convoluted polygon. 

Figure 3: Visibility maximization without topology 
preservation. (a) Initial polygon. (b) Polygon after 10 
iterations. (c) Polygon after 100 iterations. 



average visibility of just 0.17. As the 2D version of the 
visibility maximization algorithm is applied, the polygon 
unfolded to make visible sections that were previously not 
visible. Indeed, by the end of the simulation the average 
visibility of the region of interest was almost equal to 1. 

Figure 3 shows the importance of having topology 
preservation. In this simulation we applied the proposed 
algorithm without the topology preserving forces to the 
highly convoluted polygon of Fig. 2. As can be seen, the 
edges started to intersect each other after a few iterations. 

Figure 4 depicts the evolution of a 3D synthetic surface 
when the visibility is maximized and, at the same time, 
the topology is preserved. The initial visibility of this 
surface was 0.2, whereas by the end of the simulation it 
was very close to 1. 

Topology preservation plays a very important role 
when the surface for which the visibility is going to be 
maximized is very convoluted. This is the case of the 
evolutions shown in Fig. 5, where two regions of a cortex 
are evolved so that the visibility with respect to a 
viewpoint located just in front of the regions is 
maximized. Figure 6 shows an additional evolution in 
which one can clearly see how the selected region unfolds 
to become more visible from the external viewpoint. 

6. Conclusion 
We have presented a novel method for cortical surface 

unfolding based on a viewpoint based visibility energy 
and a three dimensional generalization of knot energy 
type forces for topology preservation. Simulation results 
show that the gradient flow of these combined energy 
terms yields a useful localized unfolding of the cortical 
surface specially tailored to the user's current viewpoint. 
We believe this method, compared with more traditional 
global flattening techniques, may be very useful for more 
customized inspection of cortical surface segmentations. 
Methods to reduce the computational cost will be the 
primary focus of future research in order to make the 
approach more user interactive in real time. 
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