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Abstract 
In this paper, we analyze the geometric active con- 

tour models discussed in [6, 181 from a curve evo- 
lution point of view and propose some modifications 
based on gradient flows relative to  certain new feature- 
based Riemannian metrics. This leads to a novel snake 
paradigm in which the feature of interest may be con- 
sidered to  lie at the bottom of a potential well. Thus 
the snake is attracted very naturally and eficiently to  
the desired feature. Moreover, we consider some 3-0  
active surface models based on these ideas. 

1 Introduction 
In the past few years, a number of approaches have 

been proposed for the problem of snakes or active con- 
tours. The underlying principle in these works is based 
upon the utilization of deformable contours which con- 
form to various object shapes and motions. Snakes 
have been used for edge and curve detection, segmen- 
tation, shape modelling, and visual tracking. The re- 
cent book by Blake and Yuille [5] contains an excel- 
lent collection of papers on the theory and practice of 
deformable contours together with a large list of ref- 
erences to which which we refer the interested reader. 

In most of the classical frameworks, one considers 
energy minimization methods where controlled conti- 
nuity splines are allowed to move under the influence 
of external image dependent forces, internal forces, 
and certain contraints set by the user. See [14, 29, 51. 
As is well-known there may be a number of problems 
associated with this approach such as initializations, 
existence of multiple minima, and the selection of the 
elasticity parameters. 

In the present paper, we consider a method which 
was strongly influenced by the elegant approaches of 
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Caselles et al. [6] and Malladi et al. [MI. In these 
works, a level set curve evolution method is presented 
to solve the problem. Our idea is simply to note that 
both these approaches are based on Euclidean curve 
shortening evolution which in turn defines the gradient 
direction in which the Euclidean perimeter is shrink- 
ing as fast as possible. (See Section 2.) Pushing this 
concept to the next logical step, we can derive new 
active contour models by multiplying the Euclidean 
arc-length by a function tailored to the features of 
interest to which we want to flow, and then writ- 
ing down the resulting gradient evolution equations. 
Mathematically, this amounts to  defining a new Rie- 
mannian metric in the plane tailored to  the given im- 
age, and then computing the corresponding gradient 
flow. This leads to some new snake models which effi- 
ciently attract the given active contour to the features 
of interest (which basically lie a t  the bottom of a po- 
tential well). The method also allows us to naturally 
write down 3-D active surface models as well. One can 
completely justify this method using viscosity theory 
which is done in [15]. Full details of these results can 
be found in [15]. After this paper was written and 
submitted for publication, we were informed that a 
similar method has been reported in [7]. 

This work was supported in part by grants from the 
National Science Foundation DMS-9204192 and ECS- 
9122106, by the Air Force Office of Scientific Research 
F49620-94-1-0058DEF, by the Army Research Office 
DAAH04-94-G-0054 and DAAH04-93-G-0332, and by 
Image Evolutions Limited. 

2 Curve Shortening Flows 
The motivation for the equations underlying active 

geometric contours comes from Euclidean curve short- 
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ening. Therefore, in this section we will review the 
relevant curve evolution theory in the plane R2. 

Accordingly, for K the curvature, and fl the inward 
unit normal, one considers families of plane curves 
evolving according to the geometric heat equation 

aC 
at 
- = K J q  

This equation has a number of properties which make 
it very useful in image processing, and in particular, 
the basis of a nonlinear scale-space for shape represen- 
tation [l, 3, 16, 191. 

Indeed, (1) is the Euclidean curve shortening flow, 
in the sense that the Euclidean perimeter shrinks as 
quickly as possible when the curve evolves according 
to  (1) [ll ,  131. Since, we will need a similar argument 
for the snake model we discuss in the next section, let 
us work out the details. 

Let C = C(p, t )  be a smooth family of closed curves 
where t parametrizes the family and p the given curve, 
say 0 5 p 5 1.  (Note we assume that C(0, t )  = C(1,t)  
and similarly for the first derivatives.) Consider the 
length functional 

Then differentiating (taking the “first variation”), and 
using integration by parts, we see that 

But observing now that 

is (Euclidean) arc-length, and using the definition of 
curvature, we see that 

(- , K f l ) d S .  LL(t) : L’(t) = - 

Thus the direction in which L ( t )  is decreasing most 
rapidly is when 

dC -. 
at - = K N .  

Thus (1) is precisely a gradient flow. 
A much deeper fact is that simple closed curves 

converge to “round” points when evolving according 
to (1) without developing singularities; see [ l l ,  131. 
This fact is one of the keys for the geometric active 
contour models considered below. 

3 2D Active Contour Models 
In two elegant papers, Caselles et al. [SI and Mal- 

ladi e2 al. [18] propose a snake model based on the 
level set formulation of the Euclidean curve shorten- 
ing equation. More precisely, their model is 

Here the function 4(z, y) depends on the given image 
and is used as a “stopping term.” For example, the 
term 4(z ,y)  may chosen to be small near an edge, 
and so acts to stop the evolution when the contour 
gets close to an edge. In [6, 181, the term 

(3) 

is chosen, where I is the (grey-scale) image and G, 
is a Gaussian (smoothing) filter. (In [SI, n = 1, and 
in [18], n = 2.) The function Qf(z,y,t)  evolves in (2) 
according to  the associated level set flow for planar 
curve evolution in the normal direction with speed a 
function of curvature which was introduced in the fun- 
damental work of Osher-Sethian [21, 22, 25, 26, 271. 
It is important to note that as we have seen above, 
the Euclidean curve shortening part of this evolution, 
namely = IlVQflldiv (a) is derived as a gra- 
dient flow for shrinking the perimeter as quickly as 
possible. As is explained in [SI, the constant inflation 
term v is added in (2) in order to keep the evolution 
moving in the proper direction. Note that we are tak- 
ing to be negative in the interior and positive in the 
exterior of the zero level set contour. 

In [18], the inflationary constant is considered both 
with a positive sign (inward evolution of the evolution 
of the contour in the direction of decreasing \E) and 
with a negative sign (outward or expanding evolution). 
(Note the sign convention we have taken for 9 above.) 
In the latter case, this can be referred to as expand- 
ing “balloons” or “bubbles” as in [28]. For simplicity, 
unless stated otherwise explicitly, we will take v 2 0 
(inward evolutions) in what follows below. Instead 
of using a Gaussian to smooth the image one may of 
course use the a nonlinear smoothing filter based on 
the curvature. There are of course many possibilities 
for a stopping term besides intensity: texture, optical 
flow, stereo disparity, etc. 

We would like to  modify the model (2) in a manner 
suggested by the computation in Section 2. Namely, 
we will change the ordinary Euclidean arc-length func- 
tion along a curve C = ( ~ ( p ) ,  ~ ( p ) ) ~  with parameter 
p given by 

ds  = IlC,lldp = (z i  + y i ) ’ / 2 d p  
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to 
ds+ = 4ds = (2; + ~ ; ) l / ~ 4 d p ,  

where Q(z ,  y) is a positive differentiable function. We 
now essentially repeat the computation made in Sec- 
tion 2, i.e., we want to compute the corresponding 
gradient flow for shortening length relative to the new 
metric ds4. 

Accordingly set 

Let 

denote the unit tangent. Then taking the first vari- 
ation of the modified length function L4, and using 
integration by parts just as above, we get that 

which means that the direction in which the L,  
perimeter is shrinking as fast as possible is given by 

(4) 

This is precisely the gradient flow corresponding to the 
miminization of the length functional L4. Since the 
tangential component of equation (4) may be dropped, 
this may be simplified to  

(5) 

The level set version of this is 

One expects that this evolution should attract the con- 
tour very quickly to the feature which lies at the bot- 
tom of the potential well described by the gradient flow 
(6). As in [6, 181, we we may also add a constant in- 
flation term (which may be interpreted as a Lagrange 
multiplier for a constrained version of the given opti- 
mization problem), and so derive a modified model of 
(2) given by 

a* VQ 
- = 4 l l ~ * l l ~ ~ ~ ~  (-) + U) + V# . vq. (7) 
at IIVQII 

Notice that for 4 as in (3), V4 will look like a dou- 
blet near an edge. Of course, one may choose other 
candidates for # in order to pick out other features. 

We have implemented this snake model based on 
the algorithms of Osher-Sethian [21, 22, 25, 26, 271 
and Malladi et al. [18]. Some preliminary numerical 
results with our code will be presented in below. 

Note that the metric ds4 has the property that it 
becomes small where 4 is small and vice versa. Thus at 
such points lengths decrease and so one needs less “en- 
ergy” in order to move. Consequently, it seems that 
such a metric is natural for attracting the deformable 
contour to an edge when 4 has the form (3). 

4 3-D Active Contour Models 
In this section, we will discuss some possible geo- 

metric 3-D contour models based on surface evolution 
ideas, by modifying the Euclidean area in this case by 
a function which depends on the salient features which 
we wish to capture. In order to do this, we will need 
to set up some notation. 

Let S : [O, 11 x [0,1] + R3 denote a compact em- 
bedded surface with (local) coordinates (U, .). Let H 
denote the mean curvature and $ the inward unit 
normal. We set 

a s  s, := -. dS s, := - 
dzs ’ a V  

Then the infinitesimal area on S is given by 

dS = (I~S,,l~z[~Sv112 - (S,,S,)2)’/2dudv 

Let 4 : R --+ R be a positive differentiable function 
defined on some open subset of R3. The function 
4(z ,  y, z )  will play the role of the “stopping” function 
4 given above in our snake model (6, 7). 

It is a beautiful classical fact that the gradient flow 
associated to the area functional for surfaces (i.e., the 
direction in which area is shrinking most rapidly) is 
given by 

dS - = H d .  
at  

What we propose to do is to replace the Euclidean 
area by a modified area depending on 4 namely, 

dS4 := 4dS. 

For a family of surfaces (with parameter t ) ,  consider 
the #-area functional 

Once again, an integration by parts argument shows 
that 

at = 4 H S -  V#, (9) 
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gives the direction in which A+( t )  is shrinking most 
rapidly. The level set version of (9) is given in terms 
of @(XI Yl 2, t >  by 

As before one may add a constant inflation term to 
the mean curvature to derive the model 

In the context of image processing, the term q5 de- 
pends on the given 3-D image and is exactly analogous 
to the stopping term in ( 6 ,  7). It is important to note 
that there is a very big difference between the 2-D and 
3-D models discussed here. Indeed, the geometric heat 
equation will shrink a simple closed curve to a round 
point without developing singularities, even if the ini- 
tial curve is nonconvez. The geometric model (2) is 
based on this flow. For surfaces, it is well-known that 
singularities may develop in the mean curvature flow 
(8) non-convex smooth surfaces [12]. (The classical ex- 
ample is the dumbbell.) We should note however that 
the mean curvature flow does indeed shrink smooth 
compact convex surfaces to  round “spherical” points. 

We should add that because of these problems, sev- 
eral researchers have proposed replacing mean curva- 
ture flow by flows which depend on the Gaussian cur- 
vature K .  Indeed. define 

tc+ := max{K, 0). 

Then Caselles and Sbert [8] have shown that the affine 
invariant pow 

- as =sign(H)tc+ 1/4 N - 
at 

will (smoothly) shrink rotationally symmetric com- 
pact surfaces to ellipsoidal shaped points. (This has 
been proven in [4] in the convex case. See also [2].) 
Thus one could replace the mean curvature part by 
s ign (H)~ : /~  in (11). Another possibility would be to 
use tci” as has been proposed in [20]. See also [as]. 
(Note that Chow [9] has shown that convex surfaces 
flowing under K ’ / ’  shrink to spherical points.) All 
these possible evolutions for 3-D contours are now be- 
ing explored. See also Section 5 below for a possible 
aternative related approach to 3D segmentation. 

5 Geodesic Paths 
Given that we are now looking a t  a Riemannian 

metric, it becomes natural to investigate its geodesics. 

It turns out that the geodesics appear to have a very 
concrete interpretation in this problem. For back- 
ground on the problem of finding closed geodesics 
on manifolds in connection with curve-shortening, see 
[lo, 11,  131. 

It is therefore natural to investigate the geodesics 
of the conformally Euclidian metric considered in this 
paper; this will lead to  an ordinary differential equa- 
tion which can be used both for the segmentation and 
edge detection problem. 

We work in the plane once again with the stopping 
function 4 as discussed in Section 3. As before we 
modify the Euclidean metric by taking ds+ = 4ds. 
Indeed, setting U = d2, we find that the equation of 
geodesics takes the form [lo] 

1 1 
2 c,, + -$C,,Vu)C, - -IlCpll2Vu] = 0. (13) 

Note that the tangential term (C,,Vu)C, can be re- 
moved by change of parametrization. 

Define the “potential function” 

42 V(C) = E - n, 
L 

where E is a certain constant which we describe below. 
Given this we claim that solutions of the oscillator- 
type equation 

c,, + VV(C) = 0 (14) 

can be reparametrized to  give geodesics of the line 
element Hs+. This may be seen from the following 
calculation. Start with the equation (13). S‘ ince we 
have the first integral 

equation (14) can be written as 

which is precisely (13) up to  tangential term. 
In terms of the image, what we want is to lo- 

cate a potential valley. Therefore, an algorithm us- 
ing geodesics might be as follows: run a geodesic with 
zero initial speed, and stop when its velocity starts to 
decrease. This should approximately give a point on 
the desired contour. Of course, one may want to add a 
stopping term too. Also, such a geodesic, if launched 
in the correct direction, should tend to go around the 
desired object-this might be useful to get an initial 
guess, and for segmentation. 
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We should note that the above computation re- 
mains valid in any number of space dimensions. For 
surfaces, these curves would swirl about the desired 
object. Since the equations are conservative, we are 
guaranteed that the curves will not wander too far 
away. Numerical calculations using this idea will be 
reported elsewhere. 

6 Numerical Experiments 
The implementations we have used in this paper are 

based on the level set evolution methods developed by 
Osher-Sethian [21, 22, 25, 26, 273, and the techniques 
in 1181. 

We have been applying our methods to a number 
of medical images. For purposes of illustration, we 
will present two such images here. The first is an 
MRI noisy myocardial image. We have captured the 
chambers using an outward evolution (the “balloon” 
or “bubble” technique). The second image is an ul- 
trasound image of a breast cyst whose contour we also 
find using our curve evolution methods. 

7 Conclusions 
In this paper, we presented a new snake methodol- 

ogy derived by considering the curve shortening evolu- 
tion relative to  a conformally Euclidean metric. Thus 
the evolution is based on a “natural” energy function 
which is intimately related to the geometry of the im- 
age. We are now in the process of extending these re- 
sults in order to develop 3D segmentation algorithms. 
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