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Abstract

In the context of variational image segmentation, we pro-
pose a new finite-dimensional implicit surface representa-
tion. The key idea is to span a subset of implicit func-
tions with linear combinations of spatially-localized kernels
that follow image features. This is achieved by replacing
the Euclidean distance in conventional Radial Basis Func-
tions with non-Euclidean, image-dependent distances. For
the minimization of an objective region-based criterion, this
representation yields more accurate results with fewer con-
trol points than its Euclidean counterpart. If the user po-
sitions these control points, the non-Euclidean distance en-
ables to further specify our localized kernels for a target ob-
ject in the image. Moreover, an intuitive control of the result
of the segmentation is obtained by casting inside/outside la-
bels as linear inequality constraints. Finally, we discuss
several algorithmic aspects needed for a responsive inter-
active workflow. We have applied this framework to 3D
medical imaging and built a real-time prototype with which
the segmentation of whole organs is only a few clicks away.

1. Introduction

In the hope of reproducing human skills to localize

and identify specific objects in images, many research ef-

forts have been focused on the development of fully auto-

matic segmentation algorithms. This goal can sometimes be

reached, for instance when the shape of the object is known

and modeled, by exploiting far more information than the

image alone provides. Unfortunately, in many cases, such

prior information is not available and the user has to be in-

volved in the segmentation process. In medical imaging for

instance, the knowledge of an expert practitioner is often

irreplaceable. To be accepted in daily medical practice, in

particular with volumetric data, general-purpose segmenta-

tion tools should not only be interactive but also provide

intuitive, robust and responsive control.

In the past few years, very efficient interactive segmen-

tation algorithms have been proposed [1, 6, 17]. User in-

teractions are typically handled in 2D by drawing so-called

”scribbles”, associating inside/outside labels to parts of the

image. In this work, we present an interactive segmentation

framework based on the selection of only a few points, in-

side or outside the object of interest. Our technique relies on

the minimization of an objective criterion over a sensible,

low-dimensional subset of possible implicit functions. This

subset is spanned by a novel class of non-Euclidean Radial
Basis Functions, built from image-dependent metrics using

local image features, such as intensity distributions or edge

information. To the best of our knowledge, this is the first

introduction of image-dependent non-Euclidean distances

into Radial Basis Functions. For segmentation with im-

plicit surfaces, spatially-localized image-adaptive kernels

achieve better accuracy with far fewer basis elements, as

soon as they are properly positioned. Consequently, we

propose an interactive scenario in which the dimension of

the basis, hence the complexity of the optimization prob-

lem, increases progressively as the user introduces control

points, depending on the difficulty of the segmentation task.

Moreover, the association of inside/outside labels to con-

trol points is formulated through additional linear inequal-

ity constraints. Finally, as the objective criterion may have

local minima, we introduce an auxiliary quadratic program-

ming problem that, solved in linear time, allows the user

to guide the process toward a local minimum of his or her

choice. Minimizing over a restricted low-dimensional space

bears some similarities with the recent GeoS algorithm [6],

in which optimization is performed over a two-dimensional

space built from two geodesic morphological operators.
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In section 2, we recall the implicit representation frame-

work and the variational principles involved in the optimiza-

tion of a region-based criterion. Recent formulations using

Radial Basis Functions are also discussed. In section 3, we

introduce an extension with non-Euclidean distances in or-

der to build an image-adaptive basis of implicit functions.

In section 4, we cast user interactions as linear inequality

constraints. Finally, we describe in section 5 the complete

sequential workflow of a real-time 3D interactive tool.

2. Segmentation with Radial Basis Functions
A variational formulation for partitioning a d-

dimensional image I : Ω ⊂ R
d �→ R into two disjoint

homogeneous regions A ⊂ Ω and Ω\A typically involves

the choice of two application-specific components: a

pixel-wise qualitative measure of the inhomogeneity for

each region (r1, r2), and a space of admissible partitions

P , with an associated regularity constraint R : P �→ R.

Formally, the minimization problem reads:

min
A∈P

E(A) = R(A) +
∫

x∈A
r1(I(x)) +

∫
x∈Ω\A

r2(I(x)) (1)

Our main focus is the design of a partition space (P)

adapted to interactive segmentation, even though meaning-

ful homogeneity models are also crucial. Consequently, we

will not emphasize the choice of ri and consider, as an ex-

ample, a maximum-likelihood criterion [22]:

ri(I(x)) = − log pi(I(x)) (2)

where p1 and p2 are non-parametric intensity distributions

[10, 14] in A and Ω\A, either known in advance or esti-

mated during the minimization process.

Numerous spaces of admissible partitions P have been

studied in the literature, including discrete graphs [3] as

well as explicit [11] or implicit [4] boundary representa-

tions. In the latter case, P is the set of every partition

A defined as the zero super-level set of a real function Φ,

A = {x ∈ Ω,Φ(x) ≥ 0}. (1) can be formulated as a mini-

mization over a functional set F :

min
Φ∈F

E(Φ) = R(Φ) +
∫

x∈Ω
H(Φ)r1 +

∫
x∈Ω
(1−H(Φ))r2 (3)

where H is the Heaviside step function. In this continuous

setting, F is generally defined as an infinite-dimensional

space such as Lipschitz functions. But relatively early in

the history of implicit models, the idea of building F as a

space spanned by a finite basis was proposed [19], using

for instance hyperquadrics [9]. Recently, this approach has

regained interest and authors have proposed to generate F
with B-Splines [2] or Radial Basis Functions [8, 18].

Widely used for scattered data interpolation and surface

reconstruction [21], Radial Basis Functions offer built-in

smoothness and do not require a regular sampling of the

image domain Ω. The implicit function Φ is built up as

a linear combination of translated and scaled versions of a

radially-symmetric non-negative kernel ϕ centered around

N points xi (see Fig.1):

Φρ(x) =
N∑

i=1

λiϕ

(‖x− xi‖
σi

)
=

N∑
i=1

λiϕi(x) (4)

where the scalar weights λi, positions xi and scales σi con-

stitute the discrete set of parameters ρ = {λi,xi, σi}. The

functional E in (3) becomes a function of ρ:

E(ρ) =
∫
Ω

H(Φρ)r1(I) +
∫
Ω

(1−H(Φρ))r2(I) (5)

where the regularization termR is usually omitted since the

basis functions are intrinsically smooth. Obviating regular-

ization and minimizing E over a finite set are the key advan-

tages of this parametric formulation. Compared to infinite-

dimensional level-set techniques, this low-dimensional rep-

resentation yields more efficient optimization algorithms

while keeping topological flexibility in 2D and 3D.

Figure 1. An implicit contour with Euclidean RBFs. On the left,

few basis functions with positive (red) and negative (blue) weights.

On the right, an implicit function obtained by linear blending.

Along these lines, Gelas et.al [8] have successfully used

compactly-supported radial functions for segmentation, op-

timizing the weights λi for given positions xi and scales

σi. However, as pointed out in the context of surface recon-

struction [7], radially-symmetric kernels fail to model the

asymmetric nature of sharp features such as straight edges.

For image segmentation applications, this tends to com-

promise the low-dimensionality advantage, as the number

of basis functions rapidly grows to accurately recover high

curvature objects. To overcome this limitation, Slabaugh

et.al [18] have proposed to use anisotropic Gaussian kernels

and optimize their orientation as well as their weight, posi-

tion and scales. Their 2D experiments show a better capture

of image details at the price of increasing the dimensionality

of the optimization space (6N parameters).
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3. Switching to non-Euclidean Kernels
In order to obtain more accurate segmentation results

without increasing the number of parameters, we believe

that the basis functions should be designed according to

the actual image content. This is a major difference with

previous works in which the kernels were purely geometric

(spherical or elliptical). The basic idea is to span the space

of implicit functions Φ by a richer basis in which each el-

ement ϕi is localized in space and also incorporates mean-

ingful image information for segmentation. This can be ob-

tained in the RBF framework by a modification inspired by

front propagation theory [12]. By construction, Radial Ba-

sis Functions only depend on the distance to their center.

Their spherical shape is only a consequence of the choice of

the Euclidean distance. Instead, we propose to switch to an

image-dependent non-Euclidean distance to build the ker-

nels. This extension opens up the design of basis functions

with iso-levels that are no longer spherical and naturally fol-

low the image features (see Fig.2). Each ϕi becomes:

ϕi(x) = ϕ

(‖x− xi‖gi

σi

)
. (6)

To each control point xi can correspond a different metric

function gi : Ω �→ R, required to be strictly positive and

smooth. A physically meaningful definition of the associ-

ated non-Euclidean distance is:

‖x− xi‖gi
= inf
C∈Γ(xi,x)

∫ 1

0

gi (C(s)) ‖C′(s)‖ds (7)

where the infimum extends over the set Γ of all differen-

tiable curves C beginning at xi and ending at x. This defi-

nition allows a rather intuitive design of gi so that the level-

sets of ‖x− xi‖gi
tend to fit the image features. Indeed, as

shown in [5], they have a physical interpretation of fronts

propagating from xi with the image-dependent speed func-

tion 1/gi, the Euclidean case being re-obtained by setting

gi = 1. A popular choice [5] that would snap level-sets to

salient contours of the image is gi(x) = 1 + ‖∇I‖2, but

an essential property arises from the fact that each metric

gi can also be adapted to the local image content around

each control point xi. Prior assumptions on the targeted

class of images should drive the choice of adapted metrics,

such as gi(x) = 1 + (I(x)− I(xi))2 in the simple case of

piecewise-constant images. In more general situations, we

use the local image intensity distribution Pxi
estimated in

the neighborhood of xi to define

gi(x) = 1− β logPxi
(I(x)) (8)

where β > 0 controls the non-Euclidean part of the met-

ric: the smaller β is the more spherical the basis function

will be. This is illustrated in Fig.2 where we show various

basis functions obtained with increasing values of β. The

numerical computation of geodesic distances is very effi-

cient, using fast marching [16] or sweeping methods [20].

Figure 2. Switching to non-Euclidean distances: From left to right,

increasing the image adaptation of the non-Euclidean metric gi

turns each basis element ϕi from a spherical-shaped RBF (β = 0,

left) into feature-aligned kernels (β > 0, middle/right).

By construction, such non-Euclidean distances are

meaningful only in a local neighborhood of the control point

xi. As a consequence, the function ϕ must not only be non-

negative as in the Euclidean case but also monotonically-
decreasing, to discard meaningless high distance values.

The localization of each basis function ϕi in (6) can then

be controlled by its scale parameter σi. A Gaussian kernel

would be a valid choice, but we use for complexity reasons

the C2 compactly-supported Wendland function [21, 8]:

∀a ∈ R, ϕ(a) =
{
(a− 1)4(4a+ 1) if a ≤ 1

0 otherwise
(9)

Non-Euclidean distances have already been applied to

image segmentation [13], in particular for interactivity

[1, 6], but not for the purpose of generalizing radial ba-

sis functions to build implicit surfaces. A major advantage

is that the segmentation is not directly obtained from the

propagation. Instead, multiple propagations serve to span

a restricted set of admissible solutions for an independent,

region-based, variational formulation. Any function Φλ of

this finite-dimensional set is obtained by blending multiple

localized fronts propagated at possibly different speeds:

Φλ(x) = λ0 +
N∑

i=1

λiϕ

(‖x− xi‖gi

σi

)
(10)
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Figure 3. Implicit contour based on non-Euclidean RBFs. Top:

Two different basis functions on the zebra image, localized fronts

propagated using local intensity distributions (8) estimated in the

small circles. Bottom: on the left, several basis functions with pos-

itive (red) or negative (blue) weights λi; on the right, the implicit

function Φλ obtained by a linear blending of the basis functions.

where xi, σi are given control points and scales (see Fig.3).

The weights λi are the only unknown parameters, with an

additional negative scalar λ0 < 0 introduced as boundary

condition. Indeed, we can assume that away from all con-

trol points, every pixel should eventually be included in the

background region {Φλ < 0}. Since, as already mentioned,

the function ϕ is required to vanish, then Φλ(x) → λ0 as

‖x− xi‖gi
→ +∞, which imposes the sign of λ0. With

the above definition of the implicit functionΦλ, we can now

formulate the segmentation criterion (5) as

E(λ) =
∫
Ω

H

(
λ0 +

N∑
i=1

λiϕ

(‖x−xi‖gi

σi

))
r(x)dx

(11)

where r = r1 − r2 and we have omitted the constant term∫
r2, irrelevant for the minimization with respect to λ. Us-

ing (2), the function r(x) is a pixel-wise likelihood test but

the framework can be applied with any suitable homogene-

ity model [14, 4]. Finally, since multiplication by a posi-

tive scalar does not change the sign of the implicit function,

∀α > 0, E(αλ) = E(λ), minimizing E is an ill-posed

problem. However, this can be fixed as in [8] by an arbi-

trary normalization of the vector λ, such as ‖λ‖ = 1.

Fig.4 illustrates that switching to non-Euclidean kernels

significantly increases segmentation accuracy, with the ex-

act same control points.

4. User Interactions = Inequality Constraints
As in the case of Euclidean RBFs, a good positioning of

the scattered points is essential to reach a correct segmenta-

tion with a minimal number of basis functions. Deriving an

automatic scheme to optimally position the control points

Figure 4. Non-Euclidean kernels increase segmentation accuracy.

Control points xi are shown as black dots. From top to bot-

tom: Maximum-likelihood segmentation of the zebra image with

N = 30 control points, using Euclidean RBFs (left) and non-

Euclidean RBFs (right) built as in Fig.3; Corresponding optimal

implicit functions, with Euclidean (left) and non-Euclidean (right)

RBFs; segmentation of the baby bear image with N = 12 control

points, with Euclidean (left) and non-Euclidean (right) RBFs; seg-

mentation of a lesion in 3D Ultrasound with only N = 3 control

points, with Euclidean (left) and non-Euclidean (right) RBFs.

is certainly a challenging research topic. However, in many

cases, in particular in medical applications, the subjectivity

of the segmentation task is such that this challenge is un-

reachable without additional prior knowledge. Within the

framework introduced in the previous section, giving the

user the possibility to position each control point, a dedi-

cated shape space can be built that is not only adapted to the

current image but also to the specific target object. More-

over, additional control and robustness can be offered if the

user indicates whether control points lie inside or outside

the object of interest. The low-dimensionality of our repre-

sentation with few basis functions is a key feature to keep

this interactive selection and labeling process easy and sim-

ple, in particular in 3D. With an implicit representation, the

inside/outside labeling can be formalized as constraints on

the sign of Φλ at the precise location of the control points:
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∀k ∈ 1..N Ck(λ)
Δ= γkΦλ(xk) ≥ 0 (12)

with γk = 1 (resp. −1) for inside (resp. outside) points.

Note that in contrast to scattered data interpolation methods,

only the sign of Φλ at control points is important, not its

value. DevelopingΦλ yields N linear inequality constraints

for the vector λ = {λi}[i=0···N ]

∀k ∈ 1..N γk

(
λ0 +

N∑
i=1

λiϕ

(‖xk − xi‖gi

σi

))
≥ 0

(13)

Adding the background constraint at infinity λ0 ≤ −ε,

where ε is an arbitrary small positive constant, the N + 1
constraints can be rewritten in matrix form:

Aλ+ b ≥ 0 (14)

with A =

2
6664
−1

γ1 (0)

(0)
. . .

γN

3
7775
⎡⎢⎢⎣
1 0 · · · 0
... M

1

⎤⎥⎥⎦

and M =

[
ϕ

(‖xi − xj‖gj

σj

)]
1≤i,j≤N

, b =

⎡⎢⎢⎢⎣
−ε
0
...

0

⎤⎥⎥⎥⎦
Putting together the objective criterion (11) and the con-

straints (14) yields the minimization problem:

min
λ∈RN+1

E(λ) =
∫
Ω

H

(
N∑

i=0

λiϕi(x)

)
r(x)dx

subject to Aλ+ b ≥ 0
(15)

where the function ϕ0 is constant with value 1. It is a non-

linear optimization problem with N + 1 variables and the

same number of linear inequality constraints. In numerical

textbooks, this corresponds to a particular case of linearly
constrained programming [15] . Its feasible set, the set of λ
satisfying the constraints, is a cone (as many constraints as

variables) with hyperplane boundaries. As soon as the ma-

trix M is invertible, this cone is non-empty and contains the

summit −A−1b. From a user perspective, this ensures that

a segmentation can be found that satisfies the labeling con-

straints. To solve (15) numerically, we use a variant of the

Active Set method (see Algorithm 1), which generalizes un-

constrained non-linear gradient-descent to handle inequal-

ity constraints.

Algorithm 1 relies on the computation of the gradient

∇E. Since the Heaviside function is not differentiable

in the usual sense, the most popular technique consists

in introducing a smooth approximation Hε [4] satisfying

Algorithm 1: Principles of the Active Set Algorithm

A constraint Ck ≥ 0 (12) is active at λ if Ck(λ) = 0.

Let nk = [ϕk(xi)]i be the normal to the hyperplane

{Ck(λ) = 0}.
The Active Set AS(λ) is the set of indices of all the

active constraints at λ: {k|Ck(λ) = 0}.
Given a starting feasible λ0 and its AS(λ0),
repeat

Compute the function gradient −∇E(λn)
Compute its orthogonal projection on the space

spanned by [nk]k∈AS(λn):

P⊥(−∇E(λn)) =
∑

k∈AS(λn)

eknk

Compute a feasible direction by subtracting

blocking components of the active set (ek < 0)

dn = −∇E(λn)−
∑

{k∈AS(λn)|ek<0}
eknk

Find optimal step α∗ ≥ 0 by a bounded line search

λn+1 = λn + α∗dn

Update the Active Set at λn+1: AS(λn+1)
until

∥∥λn+1 − λn
∥∥ < ε

lim
ε→0

Hε = H . Noting δε the derivative of Hε, an approx-

imated gradient∇εE would be:

∇εE(λ) =
[

∂E

∂λi

]
i

=
[∫

x∈Ω
δε (Φλ)ϕirdx

]
i

(16)

In classical level-set implementations, Φ is usually a

signed distance function and δε(Φ) defines around the zero

level set a narrow band of constant width controlled by

ε. In contrast, parametric implicit functions built over

RBFs are not distance functions and ‖∇Φλ‖ may undergo

strong variations around the zero level-set, making the band

δε(Φλ) no longer of uniform width (see Fig.5). The numer-

ical precision of the integral computation (16) is strongly

affected by the choice of ε and might lead to unexpected

results such as unwanted topology changes. To find a bet-

ter approximation and avoid this arbitrary choice, one can

study the limit of ∇εE as ε goes to 0. Each component of

this limit gradient consists of a domain integral of the form
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Figure 5. Approximation δε(Φλ) for ε = 0.01, 0.05 and 0.15

lim
ε→0

∫
Ω

δε(Φ(x))f(x)dx. This limit (see Appendix A) re-

veals the generalized scaling property of the δ function:

lim
ε→0

∫
Ω

δε(Φ(x))f(x)dx =
∫
{Φ=0}

f(s)
‖∇Φ(s)‖ds (17)

This yields the exact expression of the gradient:

∇E(λ) =

[∫
{Φλ=0}

ϕi(s)r(s)
‖∇Φλ(s)‖ds

]
i

(18)

where the domain integral (16) reduced to a boundary in-

tegral. This suggests a fast computation that does not in-

volve any approximation of δ nor choice of ε: extract the

zero-level ofΦλ by any standard algorithm and numerically

integrate (18) over this boundary using interpolated values

of ϕi, r and ‖∇Φλ‖. Note that omitting the denominator in

(18) would be justified for a distance function (‖∇Φλ‖ = 1)

but leads to a wrong approximation in the general case.

5. Interactive Application Workflow
Our goal is to provide as much control of the 3D seg-

mentation process as possible with minimal and intuitive

interactions in real-time. A direct application of the frame-

work described previously would consist in first collect-

ing user given labeled (inside/outside) points, then launch-

ing the constrained optimization algorithm. However, this

workflow would not be optimal. In this section, we describe

a more responsive sequential workflow in which dimension-

ality increases progressively as the user introduces correc-

tions. At each step, a non-convex multidimensional mini-

mization problem (15) should be solved, potentially facing

many local minima. Unlike fully automatic segmentation

algorithms for which the non-convexity is generally consid-

ered problematic, our interactive method can turn local min-

ima into an advantage. The rationale behind the proposed

workflow is to let the user drive seamlessly the optimiza-

tion algorithm toward a minimum of his or her choice by

deducing sound initial conditions from previous stages.

This iterative workflow is described in Algorithm 2. The

user has to give the first control point required to be set

inside the object of interest. The first step will propose

an initial segmentation on which the user will interact to

introduce corrections. It corresponds to solving problem

(15) for two unknowns λ = [λ0, λ1] under constraints

Algorithm 2: Sequential WorkFlow

From single inside point x1 compute g1 and ϕ1 (N=1)

Perform 1D optimization (19) −→ λ̃
(1)

= [λ̃(1)0 , λ̃
(1)
1 ]

repeat
New control point xN+1 and constraint CN+1

Compute gN+1 and ϕN+1

Solve Constrained Quadratic Programming (20)

[λ̃
N

, 0] −→ λN+1

Run non-linear Active Set, Algorithm 1

λN+1 −→ λ̃
N+1

N −→ N + 1
until User is satisfied

λ0 + λ1ϕ1(x1) > 0 and λ0 < 0. Since ϕ1 ∈ [0, 1] (9),

a non-empty segmentation requires λ1 > 0. Thus, as al-

ready mentioned, E(λ) = E(λ/λ1) and (15) is equivalent

to the following one-dimensional thresholding problem

min
θ∈R+

F (θ) =
∫
Ω

H

(
ϕ

(‖x− x1‖g1

σ1

)
− θ

)
r(x)dx

(19)

ϕ being monotonous, selecting a threshold θ corresponds

to a choice of the front propagated from the seed point x1
at the image-dependent speed 1/g1. This is related to the

method proposed in [12], with a fundamental difference:

the chosen front minimizes an objective region-based crite-

rion E(A) over the one-dimensional embedding defined by

the positions of the propagation. This ”one click” step can

already provide very decent results if the metric g1 is able

to capture most of the image features (Fig.6).

Figure 6. ”One-Click” initialization, segmentation of a brain vol-

ume in CT to extract the region enclosed by the skull. Optimizing

over a one-dimensional embedding of shapes (19) can be enough

if the metric g1 captures most of the image features.

Subsequently, until the user is satisfied with the result,

corrections can be made by introducing a new labeled point

xN+1 and hence a new constraint. Typically, the user can

drop a new outside point where a leakage occurred, or an in-
side point where under-segmentation is observed (see Fig.7

and Fig.8). In both cases, the new constraint is violated by

the current segmentation. Since Algorithm 1 has to be ini-

tialized from a feasible position, the difficulty now lays on
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finding a suitable initialization λN+1 that satisfies not only

the new constraint but also the previous ones. This choice

is critical, because Algorithm 1 will find the closest local

minimum of the non-convex function E (15). To go further,

we assume that an intuitive and stable correction should not

only satisfy the constraints but also stay close to the cur-

rent segmentation. Therefore, a sensible strategy is to find a

feasible λN+1 so that ΦλN+1 is as close as possible to the

previous optimal implicit function Φ
eλ

N , in the L2 sense.

Formally, this corresponds to solving after each interaction:

λN+1 = argmin
AλN+1+b≥0

∥∥∥ΦλN+1 − Φ
eλ

N

∥∥∥
2

(20)

Expanding functions over the basis (ϕi) we have:

∥∥∥ΦλN+1−Φ
eλ

N

∥∥∥
2
=
∫
Ω

(
N+1∑
i=0

(
λ̃N

i −λN+1
i

)
ϕi

)2

= (λ̃
N−λN+1)T G (λ̃

N−λN+1)

with G =
[∫

Ω

ϕi(x)ϕj(x)
]
(i,j)∈[0,··· ,N+1]

(21)

(20) is a low-dimensional constrained quadratic program-

ming problem, if G is not singular its unique solution can

be found in linear time [15]. Solving this problem is ex-

tremely fast, since it only depends on the scalar products

between the basis functions, not on the image. The next

optimal segmentation of the image that satisfies all the con-

straints is presented to the user after applying the non-linear

Active Set method from this sound initial condition.

6. Conclusion
In this paper, we described a flexible framework for

interactive image segmentation based on the selection of

a few points inside and outside the object of interest.

Our variational formulation is based on the minimization

of a broad class of two-phase segmentation functionals,

which includes the well-known maximum-likelihood cri-

terion, taken here as an example. The crux of the tech-

nique stems from performing the minimization over a low-

dimensional, image-adaptive subset of implicit functions.

This subset is spanned by localized kernels, constructed

with a novel extension of Radial Basis Functions with

image-dependent non-Euclidean distances, using local im-

age information around each control point. This extension

opens up the design of non-spherical, feature-aligned basis

functions with the immediate consequence that far fewer

control points are needed to accurately recover sharp de-

tails such as straight edges or corners. Fully automatic seg-

mentation algorithms can already benefit from this repre-

sentation, but if a user provides the control points, the basis

Figure 7. 2D interactive segmentation of the Left Ventricle in a

Cardiac CT slice. Top-left: original image. Top-right: one single

click inside (blue) the ventricle captures most of its shape but also

the atrium, which has a very similar intensity distribution. Bottom-

left: one single outside (red) click on the mitral valve removes

the atrium. Bottom-right: Two final control points allow as fine

corrections to include the papillary muscles of different intensity.

functions can be made even more specific to the targeted

object. In such an interactive scenario, the inside/outside

labeling can be expressed through simple linear inequality

constraints in the parameter space. We applied this con-

strained formulation to build a general-purpose 3D segmen-

tation tool based on a sequential workflow in which the

dimension of the optimization problem increases progres-

sively as the user interacts.

A. Generalized Scaling Property of δ

Consider a Liptschitz-continuous function Φ such that
a.e. level-set is a smooth hypersurface. Let δε be an approx-
imation of the Dirac distribution, having compact support
in [−c, c]. Suppose ‖∇Φ‖ �= 0 in any measurable subset
of Φ−1([−c, c]). Using the coarea formula

R
Ω

F‖∇Φ‖ =R +∞
−∞

“R
{Φ=a} F (s)ds

”
da with F = δε(Φ) f

‖∇Φ‖ , we have

Z
Ω

δε(Φ)f =

Z c

−c

 Z
{Φ=a}

δε(Φ(s))
f(s)

‖∇Φ(s)‖ds

!
da

=

Z c

−c

δε(a)

 Z
{Φ=a}

f(s)

‖∇Φ(s)‖ds

!
da

Finally, since by definition lim
ε→0

∫ c

−c
δε(a)G(a) = G(0),

lim
ε→0

Z
Ω

δε(Φ(x))f(x)dx =

Z
{Φ=0}

f(s)

‖∇Φ(s)‖ds.
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Figure 8. General-purpose 3D interactive segmentation tool, tested

on a 2 GHz processor on images of typical size 2563. Response

time after each user interaction is about one second. Left column:

Segmentation of the left ventricle in a cardiac CT volume. As in

Fig.7, a single click in the ventricle extracts most of the 3D shape

but also the atrium. The atrium is first removed with an outside
click on the valve. 4 subsequent clicks increase the accuracy and

include the papillary muscles in the ventricle (N = 6). Right col-

umn: Segmentation of the kidneys in a CT volume with N = 10
control points. Note that the second kidney, with similar intensity

distribution, can easily be obtained after the first one, thanks to the

topological flexibility of the implicit representation.
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