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Abstract

In this paper, we describe a new region-based ap-

proach to active contours for segmenting images com-

posed of two or three types of regions characterizable by

a given statistic. The essential idea is to derive curve

evolutions which separate two or more values of a pre-

determined set of statistics computed over geometri-

cally determined subsets of the image. Both global

and local image information is used to evolve the ac-

tive contour. Image derivatives, however, are avoided,

thereby giving rise to a further degree of noise robust-

ness compared to most edge-based snake algorithms.

1 Introduction
A number of region-based approaches to snakes

have been proposed in recent years [1, 2, 8, 9, 12,
13] with the tremendous appeal over edge-based ap-
proaches of avoiding computations to explicitly detect
edges. Such computations typically require derivative
information which is extremely sensitive to noise in
the image. These approaches also tend to use both lo-
cal and global image information whereas most edge-
based approaches rely primarily on local information
around the active contours.

This paper presents a new class of region-based ac-
tive contour models that assume an image consists of
a �nite number of regions, characterizable by a pre-
determined set of features (e.g. means, variances, tex-
tures) which may be inferred or estimated from the
image data. Curve evolution equations are derived
by computing the gradient directions of energy func-
tionals which favor a maximal separation of these fea-
tures. Introducing a penalty on the length of the ac-
tive contours gives rise to a class of geometrically con-
strained clustering algorithms in which data elements
are grouped both by value and by mutual proximity.
We should point out that the approach presented here
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shares common aspects with the region competition
approach of Zhu-Yuille [12, 13]. The relationship be-
tween the two approaches is discussed in detail in [11].

In contrast to [12, 13] and most other region based
approaches to segmentation, we operate on a set of
independent curves and use these curves to de�ne a set
of regions as opposed to operating on a set of regions
and using their boundaries to de�ne a set of curves.
The di�erence may sound subtle at �rst, but the key
bene�ts of working directly with curves come at the
implementation level. In particular, we are able to
utilize level set techniques (see Osher and Sethian [7,
10] and the references therein) to implement the ows
presented in this paper.

The remainder of this paper is a shortened version
of [11], to which we refer the interested reader for all
of the details (including the level set implementations)
and a much more complete set of references to other
curve evolution techniques for segmentation.

2 Binary Flows

In this section, we present gradient ows designed
to segment bimodal images via an evolving curve. The
ow presented in the �rst part of this section for sim-
ple binary intensity images is o�ered for the purpose of
illustration (since such images are already segmented)
and to develop an intuition for more general ows de-
signed for less trivial forms of bimodal imagery.

2.1 Flows for binary images

We begin with the assumption that the domain of
an image I(x; y) consists of a foreground region R of
intensity Ir and a complementary background region
Rc of intensity Ic 6= Ir. We wish to determine an evo-
lution that will continuously attract any initial closed
curve ~C toward the boundary @R of R.

Since an arbitrary closed curve over the domain of
I will enclose some portion of R and some portion of
Rc, the average intensities u and v inside and out-
side the curve respectively are bounded above and be-
low by Ir and Ic. Consequently, using the distance
between u and v to measure how well ~C has sepa-
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rated the foreground from the background will ensure
an upper-bound of jIr � Icj that is uniquely attained

when ~C = @R. A related strategy, which also assumes
no previous previous knowledge of Ir or Ic, would be
to descend along the following quadratic energy func-
tional:

E = �
1

2
(u� v)2: (1)

Letting Su =
R
Ru

IdA and Au =
R
Ru

dA, where Ru

denotes the interior of ~C, and expressing their �rst
variations as rSu = I ~N and rAu = ~N (see [11] for

details), where ~N denotes the outward unit normal

of ~C , allows us to compute the �rst variation of u =
Su=Au as follows:

ru =
AurSu � SurAu

A2
u

=
AuI � Su

A2
u

~N =
I � u

Au

~N:

We may use this expression (and a similar expres-
sion for rv) to compute the following gradient descent
curve evolution

d~C

dt
= �rE = (u� v)(

I � u

Au

+
I � v

Av

) ~N; (2)

yielding a ow that pulls apart the mean intensities
inside and outside the curve as fast as possible.

2.2 Binary images with additive noise

Our previous model may be easily modi�ed to han-
dle greyscale images which are well-approximated by
binary images plus additive white noise so long as the
the contaminating noise is zero-mean. Clearly, since
our cost functional is based on average intensity val-
ues inside and outside the evolving contour, zero-mean
noise away from the contour will not have a signi�cant
e�ect on its evolution. This is not the case for noise in
the vicinity of the contour. The contour may end up
weaving around or encircling extremely small regions
due to noise in order to gain tiny decreases in the
cost functional, causing the contour to appear fractal.
To counter these e�ects, we follow the philosophy of
Mumford and Shah [5, 6] by incorporating a geometric
constraint on the evolving contour via an additional
term in the energy functional (1) which penalizes its
arclength (analogous to the internal energy term of
the original snake formulation in [3]). Doing so yields
the following new energy

E = �
1

2
(u� v)2 + �

Z
~C

ds; (3)

where � � 0 and s represents the arclength parameter
of ~C. Since the gradient direction for length is given

by � ~N , where � denotes the signed curvature of ~C,
the corresponding gradient descent on E is given by

d~C

dt
= (u� v)(

I � u

Au

+
I � v

Av

) ~N � �� ~N: (4)

The inuence of the second term in this ow is most
strongly felt where the magnitude of the curvature is
very large. This helps prevent the contour from wrap-
ping around tiny pieces of noise, with the tradeo� that
sharp corners in the underlying binary image may be
rounded o� by the �nal contour.

2.3 More general binary ows

Until now we have used the term binary to suggest
two separate scalar intensities (greylevels). We may
readily generalize our results to the vector-valued case
by employing the following more general energy func-
tional:

E = �
1

2
ku� vk2 + �

Z
~C

ds; (5)

where u = (u1; : : : ; un) and v = (v1; : : : ; vn) now de-
note average values of some vector-valued measure-
ment I(x; y) = (I1(x; y); : : : ; In(x; y)) inside and out-
side the curve respectively. The corresponding gradi-
ent ow is given by

d~C

dt
=

nX
i=1

(ui � vi)(
Ii � ui
Au

+
Ii � vi
Av

) ~N � �� ~N: (6)

The measurements I1; : : : ; In do not necessarily have
to represent image intensities (as in a color image)
but may represent wavelet coe�cients from a greyscale
image or other forms of multi-spectral measurements.
With this observation, one could segment an image
consisting of two di�erent textures using (6) so long
as a distinguishing \texture vector" can be derived.

Finally, the binary approach may be further gener-
alized by considering statistics other than means. The
basic idea is to formulate a set of statistics which dis-
tinguish the foreground and background regions from
each other and then derive curve evolutions to \pull
them apart".

Suppose, for example, that an image consists of two
regions with identical means but di�erent variances.
In this case, one could descend along the following
energy functional

E = �
1

2
(�2u � �2v)

2 + �

Z
~C

ds; (7)

where �2u and �2v denote the sample variances inside

and outside ~C, using the corresponding gradient ow:

d ~C

dt
=

�
(�2u � �2v)

�
(I � u)2 � �2u

Au
+

(I � v)2 � �2v

Av

�
� ��

�
~N:

(8)
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3 Generalization
In this section, we generalize the methodology of

Section 2 to develop ows for segmenting trimodal or
more general forms of multimodal imagery. The bi-

nary ows (2), (4), (6), and (8) of Section 2 partition
an image domain into exactly two regions. These re-
gions may be multiply connected, consisting of many
individual subregions; however, the evolving contour
distinguishes just two classes of regions at any given
time.

In the �rst part of this section, we present a
framework for handling ternary ows, which partition
an image domain into three di�erent region classes.
Later, the approach is generalized for an arbitrary
number of classes.

3.1 Ternary ows

We begin our discussion of ternary ows by assum-
ing (for now) that the domain of an image I(x; y) con-
sists of two disjoint, simply connected, foreground re-
gions Ra and Rb and a background region Rc (the
complement of Ra [Rb) with mutually distinct inten-

sities Ia, Ib, and Ic, respectively. A closed curve ~Cu
in the domain of I will generally enclose some portion
of each region; thus, the average intensity u inside ~Cu
can be written as a convex combination of Ia, Ib, Ic

(i.e. u = �Ia + �Ib + Ic where 0 � �; �;  � 1 and
�+�+ = 1). Unfortunately, if I takes its values inR,
there is no unique convex combination since any three
points in R are obviously collinear. This poses a prob-
lem since the algorithm we are about to present relies
upon geometrically independent1 statistics to distin-
guish the regions Ra, Rb, and Rc.

To be geometrically independent Ia, Ib, and Ic

must belong to R2 or a higher dimensional space. Ac-
cordingly, assume that I is a vector-valued image with
vectors in R2 and that Ia = (Ia

1
; Ia
2
), Ib = (Ib

1
; Ib
2
),

and Ic = (Ic
1
; Ic
2
) are geometrically independent. We

may now represent u = (u1; u2) as a unique convex
combination of these three values. The same situation
applies to the average intensity v within the interior
of a second curve ~Cv and to the average intensity w
within the mutual exterior of ~Cu and ~Cv . Our seg-
mentation goal is to construct coupled ows that will
continuously attract ~Cu toward one of the boundaries
@Ra or @Rb (of Ra and Rb respectively) while simul-

taneously attracting ~Cv toward the other.
By virtue of their geometric independence, Ia, Ib,

and Ic form the vertices of a triangle Tabc. As con-
vex combinations of these three values, u, v, and w
lie within this triangle, forming another triangle Tuvw
completely contained in Tabc. (This is true even if the

1Noncollinear in this context.

interiors of ~Cu and ~Cv overlap, providing a exibility
to our approach that is not provided by region com-
petition in which evolving regions must be disjoint.)
As such, the area of the triangle Tuvw will always be
less than or equal to the area of the triangle Tabc,
with equality holding if and only if ~Cu = @Ra and
~Cv = @Rb or vice-versa. We may therefore attract ~Cu
and ~Cv toward the desired boundaries without any
prior knowledge of Ia, Ib, or Ic by trying to maximize
the area of Tuvw using the following tri-quadratic en-
ergy functional:

E = �
1

2
det2(u� w; v � w) = �2 area2(Tuvw): (9)

If u, v, and w are geometrically independent, then
u�w and v�w are linearly independent and therefore
yield a nonzero determinant.

By computing the partial variations r~Cu
E and

r~Cv
E of this energy functional with respect to ~Cu

and ~Cv , we may derive the following pair of coupled
gradient descent equations (a detailed derivation ap-
pears in [11]).

d ~Cu

dt
= (u1v2 � u1w2 + v1w2 � v1u2 +w1u2 �w1v2)��

(v2 � w2)
I1 � u1

Au
� (v1 �w1)

I2 � u2

Au
� (10)

(u2 � v2)
I1 �w1

Aw
(1 � �v) + (u1 � v1)

I2 � w2

Aw
(1� �v)

�
~Nu

d ~Cv

dt
= (u1v2 � u1w2 + v1w2 � v1u2 +w1u2 �w1v2)��

(w2 � u2)
I1 � v1

Av
� (w1 � u1)

I2 � v2

Av
� (11)

(u2 � v2)
I1 �w1

Aw
(1� �u) + (u1 � v1)

I2 � w2

Aw
(1 � �u)

�
~Nv

where ~Nu and ~Nv denote the outward unit normals of
~Cu and ~Cv and �u and �v denote the characteristic
functions over Ru and Rv (the interiors of ~Cu and ~Cv
respectively)

When Ru and Rv are disjoint, the evolution of each
curve is not directly tied to the other curve. The cou-
pling, arising from the common set of parameters u, v,
and w, is indirect. The characteristic functions �u and
�v yield a more direct coupling when the curves over-
lap. Nevertheless, in both cases, each curve evolves as
a separate entity, enabling the use of curve evolution
rather than region-based methods. Level set imple-
mentations in particular allow automatic merging and
splitting of initial contours (see [11] for a discussion of
these implementations and their advantages).

Note that the evolution of each curve depends upon
statistics computed over every region in the image. In
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this sense, (10) and (11) comprise a truly global model
for segmentation. On the other hand, the need for
vector-valued statistics imposes a restriction on the
types of data acceptable to our algorithm, The need
for a vector-valued statisitic, however, does not neces-
sarily require vector-valued data. Ternary ows may
be applied to greyscale images, for example, by con-
sidering both means and variances.

3.2 More general ternary ows

We now modify the ows (10) and (11) and their as-
sociated energy functional (9) to handle more general
forms of trimodal imagery.

First, we allow the vector-valued data I to take
its values in Rn where n � 2 as opposed to just R2.
Unfortunately, the determinant in (9) no longer makes
sense when n > 2. However, three noncollinear points,
Ia; Ib; Ic 2 Rn still comprise a triangle in Rn, and
u; v; w 2 Rn, as convex combinations of these values,
will always lie inside this triangle (within the context
of its two-dimensional plane). We may therefore gen-
eralized the ternary energy functional with the same
goal of maximizing the area of the triangle Tuvw:

jarea(Tuvw)j =
1

2
ku� wkkv � wk sin �

4 area2(Tuvw) = ku� wk2kv � wk2 � ((u� w) � (v � w))2

where � denotes the angle between u� w and v � w.

Next, we attach a geometric penalty on the lengths
of ~Cu and ~Cv (as in Section 2.2) to handle the presence
of zero-mean noise in the image. In general one may
penalize the two lengths di�erently; here we consider
an equal penalty and rewrite (9) more generally as

E = �2 area2(Tuvw) + �(

Z
~Cu

ds+

Z
~Cv

ds) (12)

where � � 0. We now use the previous expression to
compute the variation of the �rst term

r(2 area2(Tuvw)) = f �w � ru+ �u � rv + �v � rwg ~N

with the following de�nitions:

ru = (ru1 � ~N; : : : ;run � ~N)

(likewise for rv and rw)

�u = ~u� ~v; ~u = û(v̂ � ŵ); û = u� v
�v = ~v � ~w; ~v = v̂(ŵ � û); v̂ = v � w
�w = ~w � ~u; ~w = ŵ(û � v̂); ŵ = w � u

Since r~Cu
v = r~Cv

u = 0 the gradient descent equa-
tions for E become

d ~Cu

dt
=

(
nX
i=1

�
�wi
Ii � ui

Au
� �vi(1 � �v)

Ii � wi

Aw

�
� ��u

)
~Nu (13)

d ~Cv

dt
=

(
nX
i=1

�
�ui
Ii � vi

Av
� �vi(1� �u)

Ii �wi

Aw

�
� ��v

)
~Nv (14)

where �u and �v denote the signed curvatures of ~Cu
and ~Cv respectively.

3.3 Segmenting more than three regions

In general one may wish to partition an image
domain into m di�erent types of regions, where m
is an arbitrarily large number. By adhering to the
same philosophy of associating the preferred segmen-
tation with a maximal separation of some statistic
over each region, a vector-valued statistic, U , with at
least m � 1 components would be required. If the
m distinct values, U1; : : : ; Um, of this statistic con-
stitute a set of geometrically independent points in
the preferred segmentation of the image, and if the
statistic is chosen such that an arbitrary segmenta-
tion yields values u1; : : : ; um, which are convex com-
binations of U1; : : : ; Um (which is the case if we are
considering means of a vector-valued image) then the
natural energy functional will relate to the volume of
them�1 dimensional simplex whose vertices are given
by u1; : : : ; um. The corresponding gradient ow equa-
tions will yield a coupled evolution of m � 1 curves
which tend to maximize the volume of this simplex,
with the interiors of each curve representing m� 1 re-
gions and their mutual exteriors representing the m'th
region.

4 Simulations
In this section, we demonstrate the performance of

binary and ternary ows on real data.
Flow (4) is used in Fig. 1, to segment a micro-

scopic image of red blood cells, providing a compelling
demonstration of the topological transitions allowed
by its level set implementation (see [7, 10, 4, 11] for
details). A single initial contour appears in the �rst
frame; the multiple steady state contours and the re-
sulting segmentation, showing the steady state mean
intensity values, appear in the last two frames.

The synthetic aperture radar (SAR) image of a for-
rest's tree line in Fig. 2 constitutes a bimodal image of
a rather di�erent nature. Means cannot be used here
to distinguish one region from the other. The forrest
region in the lower left half of the image and the grassy
region in the upper right half of the image give rise to
two di�erent textures with approximately the same
greyscale mean, but with di�erent variances. Flow
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(8), therefore, is able to segment the image quite suc-
cessfully by separating variances rather than means.

Means and variances may also be used together in
this methodology as components of a two-dimensional
vector which must be chosen to minimize the energy
functional (5). However, due to the dissimilarity be-
tween these two statistics, their �rst variations have
di�erent forms. Thus the gradient ow equation is
not given by (6) but by a hybrid ow using the sum
of the image-driven terms of (4) and (8). Such a ow
was used to capture the tadpole dermal cells in the
optical coherence tomography (OCT) image of Fig. 3.

The coupled ternary ows (13) and (14) were used
to segment the clouds, the sky, and the B-2 bomber
from the color image shown in Fig. 4. The �nal seg-
mentation, showing the steady state mean color inten-
sity values, appears in the last frame.

5 Conclusions
We have presented a novel statistical approach to

snakes for the segmentation of images which are known
a priori to consist of a given number of regions distin-
guishable by a given set of statistics. The resulting
gradient ows, derived from deterministic considera-
tions, were designed to essentially pull the values of
these statistics as far apart as the data in a given im-
age would allow, subject to geometric constraints on
the length of the active contour(s).

Two key attractions of the ows in this paper were
a natural use of both local and global information in
the image and a deliberate avoidance of di�erential
operators for detecting edges. In addition, our adher-
ence to separate (although coupled) curve evolution
equations enabled the use of level set techniques in
the implementation of our ows.

To summarize, we have outlined a very general
curve evolution approach to segmentation that clus-
ters pixels in an image based upon both geometric
and statistical considerations. The performance of
our algorithm depends upon how well the chosen set
of statistics is able to distinguish the various regions
within a given image. Speci�cally, we have demon-
strated the use of means, and variances as the dis-
criminating statistics.
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Figure 1: Multiple red blood cells are captured by a single contour using ow (4).

Figure 2: The tree line shown here is captured using ow (8) to separate variances.

Figure 3: Both means and variances are used to segment this OCT image of tadpole cells (image courtesy of
S. Boppart and J. Fujimoto of MIT, and appears in Nature Medicine, vol. 4, pp. 861{865, July 1998).

Figure 4: The B-2 bomber, clouds, and sky are captured by coupled ows (13) and (14).
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