# **Stereoscopic Segmentation**

Anthony J. Yezzi Georgia Institute of Technology Electrical and Computer Engineering 777 Atlantic Dr. N.W. Atlanta – GA 30332 ayezzi@ece.gatech.edu

### Abstract

We cast the problem of multiframe stereo reconstruction of a smooth shape as the global region segmentation of a collection of images of the scene. Dually, the problem of segmenting multiple calibrated images of an object becomes that of estimating the solid shape that gives rise to such images. We assume that the radiance has smooth statistics. This assumption covers Lambertian scenes with smooth or constant albedo as well as fine homogeneous textures, which are known challenges to stereo algorithms based on local correspondence. We pose the segmentation problem within a variational framework, and use fast level set methods to approximate the optimal solution numerically. Our algorithm does not work in the presence of strong textures, where traditional reconstruction algorithms do. It enjoys significant robustness to noise under the assumptions it is designed for.

# 1 Introduction

Inferring spatial properties of a scene from one or more images is a central problem in Computer Vision. When more than one image of the same scene is available, the problem is traditionally approached by first matching points or small regions across different images (local correspondence) and then combining the matches into a threedimensional model<sup>1</sup>. Local correspondence, however, suffers from the presence of noise and local minima, which cause mismatches and outliers.

The obvious antidote to the curse of noise is to avoid

Stefano Soatto UCLA Computer Science Los Angeles – CA 90095, and Washington University, St.Louis soatto@ucla.edu, soatto@ee.wustl.edu

local correspondence altogether by integrating visual information over regions in each image. This naturally leads to a segmentation problem. The diarchy between local and region-based methods is very clear in the literature on segmentation, where the latter are recognized as being more resistant to noise albeit more restrictive in their assumptions on the complexity of the scene<sup>2</sup>. The same cannot be said about stereo, where the vast majority of the algorithms proposed in the literature relies on local correspondence. Our goal in this paper is to formulate multiframe stereo as a global region segmentation problem, thus complementing existing stereo algorithms by providing tools that work when local correspondence fails.

We present an algorithm to reconstruct scene shape and radiance from a number of calibrated images. We make the *assumption* that the scene is composed by rigid objects that support radiance functions with *smooth statistics*. This includes Lambertian objects with smooth albedo (where local correspondence is ill-posed) as well as densely textured objects with isotropic or smoothly-varying statistics (where local correspondence is prone to multiple local minima). Therefore, our algorithm works under conditions that prevent traditional stereo or shape from shading to operate. However, it can provide useful results even under conditions suitable for shape from shading (constant albedo) and stereo (dense texture).

### **1.1 Relation to prior work**

Since this paper touches the broad topics of segmentation and solid shape reconstruction, it relates to a vast body of work in the Computer Vision community.

In local correspondence-based stereo (see [10] and references therein), one makes the assumption that the scene is Lambertian and the radiance is nowhere constant in order

<sup>&</sup>lt;sup>1</sup>Since point-to-point matching is not possible due to the aperture problem, points are typically supported by small photometric patches that are matched using correlation methods or other cost functions based on a local deformation model. Sometime local correspondence and stereo reconstruction are combined into a single step, for instance in the variational approach to stereo championed by Faugeras and Keriven [11].

<sup>&</sup>lt;sup>2</sup>Local methods involve computing derivatives, and are therefore extremely sensitive to noise. Region-based methods involve computing integrals, and suffer less from noise.

to recover a dense model of the three-dimensional structure of the scene. Faugeras and Keriven [11] pose the stereo reconstruction problem in a variational framework, where the cost function corresponds to the local matching score. In a sense, this work can be interpreted as extending the approach of [11] to regions. In shape carving [17], the same assumptions are used to recover a representation of shape (the largest shape that is photometrically consistent with the data) as well as photometry. We use a different assumption, namely that radiance and shape are smooth, to recover a different representation (the smoothest shape that is photometrically consistent with the data in a variational sense) as well as photometry. Therefore, this work could be interpreted as performing space carving in a variational framework to minimize the effects of noise. Note, however, that once a pixel is deleted by the carving procedure, it can never be retrieved. In this sense, shape carving is uni-directional. Our algorithm, on the other hand, is bidirection, in that surfaces are allowed to evolve inward or outward. This work also relates to shape from shading [14] in that it can be used to recover shape from a number of images of scenes with constant albedo (although it is not bound by this assumption). However, traditional shape from shading operates on single images under the assumption of known illumination. There is also a connection to shape from texture algorithms [29] in that our algorithm can be used on scenes with dense texture, although it operates on multiple views as opposed to just one. Finally, there is a relationship between our reconstruction methods and the literature on shape from silhouettes [7], although the latter is based on local correspondence between occluding boundaries. In a sense, this work can be interpreted as a region-based method to reconstruct shape from silhouettes.

The material in this paper is tightly related to a wealth of contributions in the field of region-based segmentation, starting from Mumford and Shah's pioneering work [22], and including [2, 3, 8, 15, 16, 19, 34, 35, 28, 37]. This line of work stands to complement local contour-based segmentation methods such as [15, 35]. There are also algorithms that combine both features [4, 5].

In the methods used to perform the actual reconstruction, our work relates to the literature on level set methods of Osher and Sethian [25].

## **1.2** Contributions of this paper

We propose an algorithm to reconstruct solid shape and radiance from a number of calibrated views of a scene with smooth shape and radiance or homogeneous fine texture. To the best of our knowledge, work in this domain is novel. We forego local matching altogether and process (regions of) images globally, which makes our algorithms resistant to noise and local extrema in the local matching score. We work in a variational framework, which makes the enforcing of geometric priors such as smoothness simple, and use the level set methods of Osher and Sethian [25] to efficiently compute a solution.

Our algorithm does *not* work in the presence of strong textures or boundaries on the albedo; however, under those conditions traditional stereo algorithms based on local correspondence or shape carving do.

## **2** A variational formulation

We assume that a scene is composed of a number of smooth surfaces supporting smooth Lambertian radiance functions (or dense textures with spatially homogeneous statistics). Under such assumptions, most of the significant irradiance discontinuities (or texture discontinuities) within any image of the scene correspond to occlusions between objects (or the background). These assumptions make the segmentation problem well-posed, although not general. In fact, "true" segmentation in this context corresponds directly to the shape and pose of the objects in the scene<sup>3</sup>. Therefore, we set up a cost functional to minimize variations within each image region, where the free parameters are not the boundaries in the image themselves, but the shape of a surface in space whose occluding contours happen to project onto such boundaries.

## 2.1 Notation

In what follows  $\mathbf{x} = (x, y, z)$  will represent a generic point of a scene in  $\mathbb{R}^3$  expressed in global coordinates (based upon a fixed inertial reference frame) while  $\mathbf{x}_i$  =  $(x_i, y_i, z_i)$  will represent the same point expressed in "camera coordinates" relative to an image  $I_i$  (from a sequence of images  $I_1, \ldots, I_n$  of the scene). To be more precise, we assume that the domain  $\Omega_i$  of the image  $I_i$  belongs to a 2D plane given by  $z_i = 1$  and that  $(x_i, y_i)$  constitute Cartesian coordinates within this image plane. We let  $\pi_i: \mathbb{R}^3 \to \Omega_i; \mathbf{x} \mapsto \hat{\mathbf{x}}_i = (\hat{x}_i, \hat{y}_i)$  denote an ideal perspective projection onto this image plane, where  $\hat{x}_i = x_i/z_i$ and  $\hat{y}_i = y_i/z_i$ . The primary objects of interest will be a regular surface S in  $\mathbb{R}^3$  (with area element dA) supporting a radiance function  $\mathbf{f} : S \to \mathbb{R}$ , and a background B which we treat as a sphere of infinite radius ("blue sky") with angular coordinates  $\Theta = (\theta, \phi)$  that may be related in a one-to-one manner with the coordinates  $\hat{\mathbf{x}}_i$  of each image domain  $\Omega_i$  through the mapping  $\Theta_i$  (i.e.  $\Theta = \Theta_i(\hat{\mathbf{x}}_i)$ ). We assume that the background supports a different radiance function  $\mathbf{g}: B \to \mathbb{R}$ . Given the surface S, we may partion the domain  $\Omega_i$  of each image  $I_i$  into a "foreground"

<sup>&</sup>lt;sup>3</sup>We consider the background to be yet another object that happens to occupy the entire field of view (the "blue sky" assumption).

region  $R_i = \pi_i(S) \subseteq \Omega_i$ , which back-projects onto the surface S, and its complement  $R_i^c$  (the "background" region), which back-projects onto the background. Although the perspective projection  $\pi_i$  is not one-to-one (and therefore not invertible), the operation of back-projecting a point from  $R_i$  onto the surface S (by tracing back along the ray defined by  $\pi_i(ray) = \hat{\mathbf{x}}_i$  until the first point on S is encountered) is indeed one-to-one with  $\pi_i$  as it's inverse. Therefore, we will make a slight abuse of notation and denote back-projection onto the surface S by  $\pi_i^{-1}:R_i\to S.$  Fi nally, in our computations we will make use of the relationship between the area measure dA of the surface S and the measure  $d\Omega_i = d\hat{x}_i d\hat{y}_i$  of each image domain. This arises from the form of the corresponding projection  $\pi_i$  and is given by  $z_i^3 d\Omega_i = -(\mathbf{x}_i \cdot N_i) dA$ , where  $N_i$  denotes the outward unit normal N of S expressed in the same coordinate system as  $\mathbf{x}_i$ .

# 2.2 Cost functional

In order to infer the shape of a surface S, we impose a cost on the discrepancy between the projection of a model surface and the actual measurements. Such a cost,  $E(\mathbf{f}, \mathbf{g}, S)$ , depends upon the surface S as well as upon the radiance of the surface **f** and of the background **g**. We will then adjust the model surface and radiance to match the measured images. Since the unknowns (surface S and radiances  $\mathbf{f}, \mathbf{g}$ ) live in an infinite-dimensional space, we need to impose regularization. In particular, we can leverage on our assumption that the radiance is smooth. However, this is still not enough, for the estimated surface could converge to a very irregular shape to match image noise and fine details. Therefore, we impose a geometric prior on shape (smoothness). These are the three main ingredients in our approach: a data fidelity term  $E_{data}(\mathbf{f}, \mathbf{g}, S)$  that measures the discrepancy between measured images and images predicted by the model, a smoothness term for the estimated radiances  $E_{smooth}(\mathbf{f}, \mathbf{g}, S)$  and a geometric prior  $E_{geom}(S)$ . We consider the composite cost functional to be the sum (or more generally a weighted sum) of these three terms:

$$E(\mathbf{f}, \mathbf{g}, S) = E_{data}(\mathbf{f}, \mathbf{g}, S) + E_{smooth}(\mathbf{f}, \mathbf{g}, S) + E_{geom}(S)$$
(1)

We conjecture that, like in the case of the Mumford-Shah functional [22], these ingredients are sufficient to define a unique solution to the minimization problem.

In particular, the geometric and smoothness terms are given by

$$E_{geom} = \int_{S} dA \tag{2}$$

$$E_{smooth} = \int_{S} \|\nabla_{S} \mathbf{f}\|^{2} dA + \int_{B} \|\nabla \mathbf{g}\|^{2} d\Theta \qquad (3)$$

which favor surfaces S of least surface area and radiance functions **f** and **g** of least quadratic variation. ( $\nabla_S$  denotes

the intrinsic gradient on the surface S). Finally, the data fidelity term  $E_{data}$  may be measured in the sense of  $\mathcal{L}^2$  by

$$E_{data} = \sum_{i=1}^{n} \int_{R_i} \left( \mathbf{f}(\pi_i^{-1}(\hat{\mathbf{x}}_i)) - I_i(\hat{\mathbf{x}}_i) \right)^2 d\Omega_i + (4)$$
  
+ 
$$\sum_{i=1}^{n} \int_{R_i^c} \left( \mathbf{g}(\Theta_i(\hat{\mathbf{x}}_i)) - I_i(\hat{\mathbf{x}}_i) \right)^2 d\Omega_i.$$

In order to facilitate the computation of the first variation with respect to S, we would rather express these integrals over the surface S as opposed to the partitions  $R_i$  and  $R_i^c$ . We start with the integrals over  $R_i$  and note that they are equivalent to

$$\int_{\pi_i^{-1}(R_i)} \epsilon_i^2(\mathbf{x}) \sigma_i(\mathbf{x}, N) \, dA \tag{5}$$

where  $\epsilon_i(\mathbf{x}) = \mathbf{f}(\mathbf{x}) - I_i(\pi_i(\mathbf{x}))$  and  $\sigma_i(\mathbf{x}, N) = -(\mathbf{x}_i \cdot N_i)/z_i^3$ . Now we move to the integrals over  $R_i^c$  and note that they are equivalent to

$$\int_{\Omega_i} \varepsilon_i^2(\hat{\mathbf{x}}_i) \, d\Omega_i - \int_{\pi_i^{-1}(R_i)} \varepsilon_i^2(\pi_i(\mathbf{x})) \sigma_i(\mathbf{x}, N) \, dA$$

where  $\varepsilon_i(\hat{\mathbf{x}}_i) = \mathbf{g}(\Theta_i(\hat{\mathbf{x}}_i) - I_i(\hat{\mathbf{x}}_i))$ . Combining these "restructured" integrals yields:

$$\int_{\Omega_i} \varepsilon_i^2(\hat{\mathbf{x}}_i) \, d\Omega_i + \int_{\pi_i^{-1}(R_i)} \left( \epsilon_i^2(\mathbf{x}) - \varepsilon_i^2(\pi_i(\mathbf{x})) \right) \sigma_i(\mathbf{x}, N) \, dA$$

Note that the first integral in the above expression is independent of the surface S (and its radiance function  $\mathbf{f}$ ) and that the second integral is taken over only a subset of S given by  $\pi_i^{-1}(R_i)$ . We may express this as an integral over all of S (and thereby avoid the use of  $\pi_i^{-1}$  in our expression) by introducing a characteristic function  $\chi_i(\mathbf{x}) \in \{0, 1\}$  into the integrand where  $\chi_i(\mathbf{x}) = 1$  for  $\mathbf{x} \in \pi_i^{-1}(R_i)$  and  $\chi_i(\mathbf{x}) = 0$  for  $\mathbf{x} \notin \pi_i^{-1}(R_i)$  (i.e. for points that are occluded by other points on S). We therefore obtain the following equivalent expression for  $E_{data}$  given in (4):

$$E_{data} = \sum_{i=1}^{n} \int_{\Omega_{i}} \varepsilon_{i}^{2}(\hat{\mathbf{x}}_{i}) d\Omega_{i} + (6)$$
  
+ 
$$\int_{S} \chi_{i}(\mathbf{x}) (\epsilon_{i}^{2}(\mathbf{x}) - \varepsilon_{i}^{2}(\pi_{i}(\mathbf{x}))) \sigma_{i}(\mathbf{x}, N) dA.$$

## 2.3 Evolution equation

In order to find the surface S and the radiances  $\mathbf{f}$  and  $\mathbf{g}$  that minimize the functional (1) we set up an iterative procedure where we start from an initial surface S, compute optimal radiances  $\mathbf{f}$  and  $\mathbf{g}$  based upon this surface, and then update S through a gradient flow based on the first variation

of  $E(\mathbf{f}, \mathbf{g}, S)$  which we denote by  $\frac{d}{dS}E$  (then new radiance estimates are obtained in order to update S again). The variation of  $E_{geom}$ , which is just the surface area of S, is given by

$$-\frac{d}{dS}E_{geom} = -HN,$$

where H denotes mean curvature and N the outward unit normal. The variation of  $E_{smooth}$  is given by

$$-\frac{d}{dS}E_{smooth} = \left(K\left\langle \nabla_{S}\mathbf{f}, A^{-1}\nabla_{S}\mathbf{f}\right\rangle - \|\nabla_{S}\mathbf{f}\|H\right)N,$$

where K denotes the Gaussian curvature of S,  $\nabla_S$  denotes the gradient of **f** taken with respect to isothermal coordinates (the "intrinsic gradient" on S), and A denotes the second fundamental form of S with respect to these coordinates.

The variation of  $E_{data}$  requires some attention. In fact, the data fidelity term in (6) involves an explicit model of occlusions<sup>4</sup> via a characteristic function. Discontinuities in the kernel cause major problems, for they can result in variations that are zero almost everywhere (e.g. for the case of constant radiance). One easy solution is to mollify the corresponding gradient flow. This can be done in a mathematically sound way by interpolating a smooth force field on the surface in space. Alternatively, the characteristic functions  $\chi_i$  in the data fidelity term can be mollified, thereby making the integrands differentiable everywhere.

In order to arrive at an evolution equation, we note that the components of the data fidelity term, as expressed in equation (6), which depend upon S, have the following form

$$E_i(S) = \int_S G_i(\mathbf{x}) \cdot N_i \, dA. \tag{7}$$

The gradient flows corresponding to such energy terms have the form

$$-\frac{d}{dS}E_i = -(\nabla_i \cdot G_i)N,\tag{8}$$

where  $\nabla_i$  denotes the gradient with respect to  $\mathbf{x}_i$  (recall that  $\mathbf{x}_i$  is the representation of a point using the camera coordinates associated with image  $I_i$  as described in Section 2.1). In particular,

$$G_i(\mathbf{x}) = -\chi_i(\mathbf{x}) \left(\epsilon_i^2(\mathbf{x}) - \varepsilon_i^2(\pi_i(\mathbf{x}))\right) \frac{\mathbf{x}_i}{z_i^3} \qquad (9)$$

and the divergence of  $G_i$ , after simplification, is given by

$$-\nabla_{i} \cdot G_{i} = \frac{\mathbf{f} - \mathbf{g}}{z_{i}^{3}} \Big[ I_{i} - \mathbf{f} + I_{i} - \mathbf{g} \Big] (\nabla_{i} \chi_{i} \cdot \mathbf{x}_{i}) \quad (10)$$
$$+ \frac{2\chi_{i}}{z_{i}^{3}} (I_{i} - \mathbf{f}) (\nabla_{i} \mathbf{f} \cdot \mathbf{x}_{i}),$$

where we have omitted the arguments of  $\mathbf{f}$ ,  $\mathbf{g}$ , and  $I_i$  for the sake of simplicity. A particularly nice feature of this final expression (which is shared by the standard Mumford-Shah formulation for direct image segmentation) is that it depends only upon the image values, not upon the image gradient, which makes it less sensitive to image noise when compared to other variational approaches to stereo (and therefore less likely to cause the resulting flow to become "trapped" in local minima). Notice that the first term in this flow involves the gradient of the characteristic function  $\chi_i$  and is therefore non-zero only on the portions of S which project ( $\pi_i$ ) onto the *boundary* of the region  $R_i$ . As such, this term may be directly associated with a curve evolution equation for the boundary of the region  $R_i$  within the domain  $\Omega_i$  of the image  $I_i$ . The second term, on the other hand, may be non-zero over the entire patch  $\pi_i^{-1}(R_i)$  of S.

We may now write down the complete gradient flow for  $E = E_{data} + E_{smooth} + E_{geom}$  as

$$\frac{dS}{dt} = \sum_{i=1}^{n} \frac{\mathbf{f} - \mathbf{g}}{z_{i}^{3}} \Big[ I_{i} - \mathbf{f} + I_{i} - \mathbf{g} \Big] (\nabla_{i} \chi_{i} \cdot \mathbf{x}_{i}) N + \\
+ \sum_{i=1}^{n} \frac{2\chi_{i}}{z_{i}^{3}} (I_{i} - \mathbf{f}) (\nabla_{i} \mathbf{f} \cdot \mathbf{x}_{i}) N - HN + \quad (11) \\
+ K \langle \nabla_{S} \mathbf{f}, A^{-1} \nabla_{S} \mathbf{f} \rangle N - \| \nabla_{S} \mathbf{f} \| HN.$$

## 2.4 Estimating scene radiance

Once an estimate of the surface S is available, the radiance estimates  $\mathbf{f}$  and  $\mathbf{g}$  must be updated. For a given surface S we may regard our energy functional  $E(S, \mathbf{f}, \mathbf{g})$  as a function only of  $\mathbf{f}$  and  $\mathbf{g}$  and minimize it accordingly. A necessary condition is that  $\mathbf{f}$  and  $\mathbf{g}$  satisfy the Euler-Lagrange equations for E based upon the current surface S. These optimal estimate equations are given by the following elliptic partial differential equations (PDEs) on the surface S and the background B,

$$\Delta_{s} \mathbf{f} = \sum_{i=1}^{n} \chi_{i} (\mathbf{f} - I_{i}) \sigma_{i} \quad \text{and} \quad \Delta_{\Theta} \mathbf{g} = \sum_{i=1}^{n} \hat{\chi}_{i} (\mathbf{g} - I_{i})$$
(12)

where  $\Delta_s$  denotes the Laplace-Beltrami operator on the surface *S*, where  $\Delta_{\Theta}$  denotes the Laplacian on the background *B* with respect to its spherical coordinates  $\Theta$ , and where  $\hat{\chi}_i(\Theta)$  denotes a characteristic function for the background *B* where  $\hat{\chi}_i(\Theta)=1$  if  $\Theta_i^{-1}(\Theta) \in R_i^c$  and  $\hat{\chi}_i(\Theta)=0$  otherwise.

## **3** The piecewise constant case

The full development and implementation of the flow corresponding to the case of general piecewise smooth statistics as described in Section 2 is well beyond the scope of this paper. In Section 3.1 we specialize the derivation of Section 2 to the case of scenes with piecewise constant

<sup>&</sup>lt;sup>4</sup>The geometric and smoothness terms are independent of occlusions.

albedo statistics (i.e. the functions  $\mathbf{f}$  and  $\mathbf{g}$  defined on the surface S and background B are approximated by constants). This will result in a particularly simple and elegant flow that is easily implemented.

Despite the apparent restrictiveness of the assumptions (i.e. despite the simplicity of the class of scenes captured by this model) we show that the resulting implementation – which uses level set methods – is extremely robust, to the point of easily tolerating significant violations of such assumptions. We do so in Section 3.2 by means of experiments on real image sequences that patently depart from the model

#### 3.1 Optimal Estimates and Gradient Flow

We obtain a special piecewise constant<sup>5</sup> energy functional as a limiting case of the more general energy functional (1) by giving the smoothness term  $E_{smooth}$  infinite weight. In this case, the only critical points are constant radiance functions. We may obtain an equivalent formulation, by dropping the  $E_{smooth}$  term  $E_{constant} = E_{data} + E_{smooth}$ , leading to

$$E_{constant} = \sum_{i=1}^{n} \int_{R_{i}} \left( \mathbf{f}(\pi_{i}^{-1}(\hat{\mathbf{x}}_{i})) - I_{i}(\hat{\mathbf{x}}_{i}) \right)^{2} d\Omega_{i} + \int_{R_{i}^{c}} \left( \mathbf{g}(\Theta_{i}(\hat{\mathbf{x}}_{i})) - I_{i}(\hat{\mathbf{x}}_{i}) \right)^{2} d\Omega_{i} + \int_{S} dA,$$

and by restricting our class of admissible radiance functions  $\mathbf{f}$  and  $\mathbf{g}$  to be only constants. This is analogous to the segmentation work of Chan and Vese in [6] who consider the piecewise-constant version of the Mumford-Shah functional for the segmentation of images with bimodal statistics. In this simpler formulation, one no longer needs to solve a PDE on the surface S nor on the background B, to obtain optimal estimates for f and g (given the current location of the surface S). In this case,  $E_{constant}$  is minimized by setting the constants  $\mathbf{f}$  and  $\mathbf{g}$  to be the overall sample mean of  $I_i$  over the regions  $R_i$  (for each  $1 \leq i \leq n$ ) and the overall sample mean of  $I_i$  over the complementary regions  $R_i^c$  respectively. The gradient flow associated with the  $E_{data}$  term simplifies. Recall that, in the general case, the  $E_{data}$  gradient flow depends upon two terms (given by (10)), one of which only acts upon the points of S which project to the boundaries of the regions  $R_i$ , giving rise to curve evolutions for these segmentation boundaries, while the second term acts upon each entire patch of S associated with each region  $R_i$ . In the piecewise constant case,

this second term drops out (since it depends upon the gradient of  $\mathbf{f}$ ), and therefore only the boundary evolution term remains. Thus, the gradient flow for  $E_{constant}$  is given by

$$\frac{dS}{dt} = \sum_{i=1}^{n} \frac{\mathbf{f} - \mathbf{g}}{z_i^3} \Big[ I_i - \mathbf{f} + I_i - \mathbf{g} \Big] (\nabla_i \chi_i \cdot \mathbf{x}_i) N - HN.$$
(13)

# 3.2 Experiments

A numerical implementation of the evolution equation above has been carried out within the level set framework of Osher and Sethian [25]. A number of sequences has been captured and the relative position and orientation of each camera has been computed using standard camera calibration methods. Here we show the results on two representative experiments. Although the equation above assumes that the scene is populated by objects with constant albedo, the reader will recognize that the scenes we have tested our algorithms on represent significant departures from such assumptions. They include fine textures, specular highlights and even substantial calibration errors.

In Figure 1 we show 4 of 22 calibrated views of a scene that contains three objects: two shakers and the background. This scene would represent a challenge to traditional correspondence-based stereo algorithms: the shakers exhibit very little texture (making local correspondence illposed), while the background exhibits very dense texture (making local correspondence prone to local minima). In addition, the shakers have a dark but shiny surface, that reflects highlights that move relative to the camera since the scene is rotated while the light is kept stationary. In Fig-



**Figure 1.** The "salt and pepper" sequence (4 of 22 views).

ure 2 we show the surface evolving from a large ellipse that neither contains nor is contained in the shape of the scene,

<sup>&</sup>lt;sup>5</sup>We say "piecewise constant" even though each radiance function is treated as a single constant since the segmentations obtained by projecting these objects with constant radiances onto the camera images yield *piecewise constant* approximations to the image data.



**Figure 2.** (*Top*) Rendered surface during evolution (6 of 800 steps). Notice that the initial surface is neither contains nor is contained by the final surface. (Bottom) segmented image during the evolution from two different viewpoints.

to a final solid model. Notice that some parts of the initial surface evolve outward, while other parts evolve inward in order to converge to the final shape. This bi-directionality is a feature of our algorithm, which is not shared - for instance - by shape carving methodologies. There, once a pixel has been deleted, it cannot be retrieved. In Figure 3 we show the final result from various vantage points. In Figure 4 we show the final segmentation in some of the original views (top). We also show the segmented foreground superimposed to the original images. Two of the 22 views were poorly calibrated, as it can be seen from the large reprojection error. However, this does not significantly impact the final reconstruction, for there is an averaging effect by integrating data from all views.

In Figure 5 we show an image from a sequence of views of a watering can, together with the initial surface. The estimated shape is shown in Figure 6

#### Acknowledgements

This research is supported in part by NSF grant IIS-9876145, ARO grant DAAD19-99-1-0139 and Intel grant 8029. The authors wish to thank Hailin Jin for his assistance with the experiments. We thank Wilfrid Gangbo and Luigi Ambrosio for very helpful discussions and insights, Allen Tannenbaum and Guillermo Sapiro for comments and suggestions. We also wish to thank Luminita Vese, Tony Chan and Stan Osher for comments.

# References

- M. Bertalmio, L. Cheng, S. Osher, and G. Sapiro, "Variational Problems and Partial Differential Equations on Implicit Surfaces: The Framework and Examples in Image Processing and Pattern Formation". *CAM Technical Report 00-23*, UCLA, June 2000.
- [2] V. Caselles, F. Catte, T. Coll, and F. Dibos, "A geometric model for active contours in image processing," *Numerische Mathematik*, vol. 66, pp. 1–31, 1993.
- [3] V. Caselles, R. Kimmel, G. Sapiro, "Geodesic snakes," Int. J. Computer Vision, 1998.
- [4] A. Chakraborty and J. Duncan, "Game-Theoretic Integration for Image Segmentation," *IEEE Trans. Pattern Anal. Machine Intell.*, vol. 21, no. 1, pp. 12–30, Jan. 1999.
- [5] A. Chakraborty, L. Staib, and J. Duncan, "Deformable Boundary Finding in Medical Images by Integrating Gradient and Region Information," *IEEE Trans. Medical Imaging*, vol. 15, no. 6, pp. 859–870, Dec. 1996.
- [6] T. Chan and L. Vese, "An active contours model without edges," Int. Conf. Scale-Space Theories in Computer Vision, pp. 141-151, 1999.
- [7] R. Cipolla and A. Blake. Surface shape from the deformation of apparent contours. Int. J. of Computer Vision, 9 (2), 1992.
- [8] L. Cohen, "On active contour models and balloons," CVGIP: Image Understanding, vol. 53, pp. 211–218, 1991.
- [9] M. Crandall, H. Ishii, and P. Lions, "Users guide to viscosity solutions of second order partial differential equations," *Bulletin of Amer. Math. Soc.*, vol. 27, pp. 1–67, 1992.
- [10] O. Faugeras. Three dimensional vision, a geometric viewpoint. MIT Press, 1993.
- [11] O. Faugeras and R. Keriven. Variational principles, surface evolution pdes, level set methods and the stereo problem. *INRIA Technical report*, 3021:1–37, 1996.
- [12] W. Fleming and H. Soner, Controlled Markov processes and viscosity solutions. Springer-Verlag, New York, 1993.



**Figure 4.** (Top) Image segmentation for the salt and pepper sequence. (Bottom) Segmented foreground superimposed to the original sequence. The calibration in two of the 22 images was inaccurate (one of which is shown above; the fourth image from the left). However, the effect is mitigated by the global integration, and the overall shape is only marginally affected by the calibration errors.



Figure 7. Rendered surface during evolution for the watering can.

- [13] G. Gimelfarb and R. Haralick, "Terrain reconstruction from multiple views," in PRoc. 7th Intl. Conf. on Computer Analysis of Images and Patterns, pp. 695-701, 1997.
- [14] B. Horn and M. Brooks (eds.). Shape from Shading. MIT Press, 1989.
- [15] M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: active contour models," *Int. Journal of Computer Vision*, vol. 1, pp. 321–331, 1987.
- [16] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi, "Conformal Curvature Flows: From Phase Transitions to Active Vision," *Arch. Rational Mech. Anal.*, vol. 134, pp. 275–301, 1996.
- [17] K. Kutulakos and S. Seitz. A theory of shape by space carving. In Proc. of the Intl. Conf. on Comp. Vision, 1998.
- [18] Y. Leclerc, "Constructing stable descriptions for image partitioning," *Int. J. Computer Vision*, vol. 3, pp. 73–102, 1989.
- [19] R. J. LeVeque, *Numerical Methods for Conservation Laws*, Birkhäuser, Boston, 1992.
- [20] P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Pitman Publishing, Boston, 1982.
- [21] R. Malladi, J. Sethian, and B. Vemuri, "Shape modeling with front propagation: a level set approach," *IEEE Trans. Pattern Anal. Machine Intell.*, vol. 17, pp. 158–175, 1995.
- [22] D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and associated variational problems. *Comm. on Pure and Applied Mathematics*, 42:577–685, 1989.
- [23] D. Mumford and J. Shah, "Boundary detection by minimizing functionals," *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, San Francisco, 1985.

- [24] S. Osher, "Riemann solvers, the entropy condition, and difference approximations," SIAM J. Numer. Anal., vol. 21, pp. 217–235, 1984.
- [25] S. Osher and J. Sethian. Fronts propagating with curvaturedependent speed: algorithms based on Hamilton-Jacobi equations. *J. of Comp. Physics*, 79:12–49, 1988.
- [26] N. Paragios and R. Deriche, "Geodesic Active Regions for Supervised Texture Segmentation," *Proceedings of ICCV*, Sept. 1999, Corfu, Greece.
- [27] N. Paragios and R. Deriche, "Coupled Geodesic Active Regions for Image Segmentation: a level set approach," *Proceedings of ECCV*, June 2000, Dublin, Ireland.
- [28] R. Ronfard, "Region-Based Strategies for Active Contour Models," Int. J. Computer Vision, vol. 13, no. 2, pp. 229–251, 1994.
- [29] R. Rosenholtz and J. Malik. A differential method for computing local shape-from-texture for planar and curved surfaces. UCB-CSD 93-775, Computer Science Division, University of California at Berkeley, 1993.
- [30] C. Samson, L. Blanc-Feraud, G. Aubert, and J. Zerubia. "A Level Set Method for Image Classification," *Int. Conf. Scale-Space Theories in Computer Vision*, pp. 306-317, 1999.
- [31] J. Sethian, Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Material Science, Cambridge University Press, 1996.
- [32] K. Siddiqi, Y. Lauziere, A. Tannenbaum, and S. Zucker, "Area and length minimizing flows for segmentation," *IEEE Trans. Image Processing*, vol. 7, pp. 433–444, 1998.
- [33] D. Snow, P. Viola and R. Zabih, "Exact voxel occupancy with graph cuts," Proc. of the Intl. Conf. on Comp. Vis. and Patt. Recog., 2000







**Figure 5.** The "watering can" sequence and the initial surface. Notice that the initial surface is not simply connected and neither contains nor is contained by the final surface. In order to capture a hole it is necessary that it is intersected by the initial surface. One way to guarantee this is to start with a number of small surfaces.





- [34] H. Tek and B. Kimia, "Image segmentation by reaction diffusion bubbles," *Proc. Int. Conf. Computer Vision*, pp. 156–162, 1995.
- [35] D. Terzopoulos and A. Witkin, "Constraints on deformable models: recovering shape and non-rigid motion," *Artificial Intelligence*, vol. 36, pp. 91–123, 1988.
- [36] A. Yezzi, A. Tsai, and A. Willsky, "A Statistical Approach to Image Segmentation for Bimodal and Trimodal Imagery," *Proceedings of ICCV*, September, 1999.
- [37] S. Zhu and A. Yuille, "Region Competition: Unifying snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 18, no. 9, pp. 884–900, Sep. 1996.

**Figure 6.** Final estimated shape for the watering can. The two initial surfaces, as seen in Figure 5, have merged. Although no ground truth is available for these sequences, it is evident that the topology and geometry of the watering can has been correctly captured.