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Abstract

We cast the problem of multiframe stereo reconstruc-
tion of a smooth shape as the global region segmentation
of a collection of images of the scene. Dually, the prob-
lem of segmenting multiple calibrated images of an object
becomes that of estimating the solid shape that gives rise
to such images. We assume that the radiance has smooth
statistics. This assumption covers Lambertian scenes with
smooth or constant albedo as well as fine homogeneous
textures, which are known challenges to stereo algorithms
based on local correspondence. We pose the segmentation
problem within a variational framework, and use fast level
set methods to approximate the optimal solution numeri-
cally. Our algorithm does not work in the presence of strong
textures, where traditional reconstruction algorithms do. It
enjoys significant robustness to noise under the assumptions
it is designed for.

1 Introduction

Inferring spatial properties of a scene from one or more
images is a central problem in Computer Vision. When
more than one image of the same scene is available,
the problem is traditionally approached by first matching
points or small regions across different images (local cor-
respondence) and then combining the matches into a three-
dimensional model1. Local correspondence, however, suf-
fers from the presence of noise and local minima, which
cause mismatches and outliers.

The obvious antidote to the curse of noise is to avoid

1Since point-to-point matching is not possible due to the aperture prob-
lem, points are typically supported by small photometric patches that are
matched using correlation methods or other cost functions based on a lo-
cal deformation model. Sometime local correspondence and stereo recon-
struction are combined into a single step, for instance in the variational
approach to stereo championed by Faugeras and Keriven [11].

local correspondence altogether by integrating visual infor-
mation over regions in each image. This naturally leads to
a segmentation problem. The diarchy between local and
region-based methods is very clear in the literature on seg-
mentation, where the latter are recognized as being more
resistant to noise albeit more restrictive in their assump-
tions on the complexity of the scene2. The same cannot be
said about stereo, where the vast majority of the algorithms
proposed in the literature relies on local correspondence.
Our goal in this paper is to formulate multiframe stereo as
a global region segmentation problem, thus complement-
ing existing stereo algorithms by providing tools that work
when local correspondence fails.

We present an algorithm to reconstruct scene shape and
radiance from a number of calibrated images. We make the
assumption that the scene is composed by rigid objects that
support radiance functions with smooth statistics. This in-
cludes Lambertian objects with smooth albedo (where lo-
cal correspondence is ill-posed) as well as densely textured
objects with isotropic or smoothly-varying statistics (where
local correspondence is prone to multiple local minima).
Therefore, our algorithm works under conditions that pre-
vent traditional stereo or shape from shading to operate.
However, it can provide useful results even under condi-
tions suitable for shape from shading (constant albedo) and
stereo (dense texture).

1.1 Relation to prior work

Since this paper touches the broad topics of segmentation
and solid shape reconstruction, it relates to a vast body of
work in the Computer Vision community.

In local correspondence-based stereo (see [10] and ref-
erences therein), one makes the assumption that the scene
is Lambertian and the radiance is nowhere constant in order

2Local methods involve computing derivatives, and are therefore ex-
tremely sensitive to noise. Region-based methods involve computing inte-
grals, and suffer less from noise.



to recover a dense model of the three-dimensional structure
of the scene. Faugeras and Keriven [11] pose the stereo re-
construction problem in a variational framework, where the
cost function corresponds to the local matching score. In
a sense, this work can be interpreted as extending the ap-
proach of [11] to regions. In shape carving [17], the same
assumptions are used to recover a representation of shape
(the largest shape that is photometrically consistent with the
data) as well as photometry. We use a different assumption,
namely that radiance and shape are smooth, to recover a
different representation (the smoothest shape that is photo-
metrically consistent with the data in a variational sense)
as well as photometry. Therefore, this work could be inter-
preted as performing space carving in a variational frame-
work to minimize the effects of noise. Note, however, that
once a pixel is deleted by the carving procedure, it can never
be retrieved. In this sense, shape carving is uni-directional.
Our algorithm, on the other hand, is bidirection, in that sur-
faces are allowed to evolve inward or outward. This work
also relates to shape from shading [14] in that it can be used
to recover shape from a number of images of scenes with
constant albedo (although it is not bound by this assump-
tion). However, traditional shape from shading operates on
single images under the assumption of known illumination.
There is also a connection to shape from texture algorithms
[29] in that our algorithm can be used on scenes with dense
texture, although it operates on multiple views as opposed
to just one. Finally, there is a relationship between our re-
construction methods and the literature on shape from sil-
houettes [7], although the latter is based on local correspon-
dence between occluding boundaries. In a sense, this work
can be interpreted as a region-based method to reconstruct
shape from silhouettes.

The material in this paper is tightly related to a wealth
of contributions in the field of region-based segmentation,
starting from Mumford and Shah’s pioneering work [22],
and including [2, 3, 8, 15, 16, 19, 34, 35, 28, 37]. This line
of work stands to complement local contour-based segmen-
tation methods such as [15, 35]. There are also algorithms
that combine both features [4, 5].

In the methods used to perform the actual reconstruction,
our work relates to the literature on level set methods of
Osher and Sethian [25].

1.2 Contributions of this paper

We propose an algorithm to reconstruct solid shape and
radiance from a number of calibrated views of a scene with
smooth shape and radiance or homogeneous fine texture.
To the best of our knowledge, work in this domain is novel.
We forego local matching altogether and process (regions
of) images globally, which makes our algorithms resistant
to noise and local extrema in the local matching score. We

work in a variational framework, which makes the enforcing
of geometric priors such as smoothness simple, and use the
level set methods of Osher and Sethian [25] to efficiently
compute a solution.

Our algorithm does not work in the presence of strong
textures or boundaries on the albedo; however, under those
conditions traditional stereo algorithms based on local cor-
respondence or shape carving do.

2 A variational formulation

We assume that a scene is composed of a number of
smooth surfaces supporting smooth Lambertian radiance
functions (or dense textures with spatially homogeneous
statistics). Under such assumptions, most of the signif-
icant irradiance discontinuities (or texture discontinuities)
within any image of the scene correspond to occlusions
between objects (or the background). These assumptions
make the segmentation problem well-posed, although not
general. In fact, “true” segmentation in this context corre-
sponds directly to the shape and pose of the objects in the
scene3. Therefore, we set up a cost functional to minimize
variations within each image region, where the free param-
eters are not the boundaries in the image themselves, but
the shape of a surface in space whose occluding contours
happen to project onto such boundaries.

2.1 Notation

In what follows ����� ��� �	� 
 � will represent a generic
point of a scene in �� expressed in global coordinates
(based upon a fixed inertial reference frame) while ������ ��� � � � � 
 � � will represent the same point expressed in “cam-
era coordinates” relative to an image � � (from a sequence
of images � � � � � � � � � of the scene). To be more precise,
we assume that the domain � � of the image � � belongs
to a 2D plane given by 
 ����� and that � ��� � � � � consti-
tute Cartesian coordinates within this image plane. We let� ��� � �� � � � �! �#"�����$� "�	� � "� � � denote an ideal perspec-
tive projection onto this image plane, where "�	���%��� & 
 �
and "� ���'� � & 
 � . The primary objects of interest will be
a regular surface ( in �  (with area element ) * ) support-
ing a radiance function + � ( � � , and a background ,
which we treat as a sphere of infinite radius (“blue sky”)
with angular coordinates - �%� .�� /	� that may be related
in a one-to-one manner with the coordinates "��� of each im-
age domain � � through the mapping - � (i.e. - � - � � "��� � ).
We assume that the background supports a different radi-
ance function 0 � , � � . Given the surface ( , we may
partion the domain � � of each image � � into a “foreground”

3We consider the background to be yet another object that happens to
occupy the entire field of view (the “blue sky” assumption).



region
� ��� � � � ( ��� � � , which back-projects onto the

surface ( , and its complement
���� (the “background” re-

gion), which back-projects onto the background. Although
the perspective projection � � is not one-to-one (and there-
fore not invertible), the operation of back-projecting a point
from

� � onto the surface ( (by tracing back along the ray
defined by � � � ray ��� "��� until the first point on ( is encoun-
tered) is indeed one-to-one with � � as it’s inverse. There-
fore, we will make a slight abuse of notation and denote
back-projection onto the surface ( by ��� �� � � � � ( . Fi-
nally, in our computations we will make use of the rela-
tionship between the area measure ) * of the surface ( and
the measure ) � ��� ) "�	� ) "� � of each image domain. This
arises from the form of the corresponding projection � � and
is given by 
 � ) � � ��� � ���
	 � � � ) * , where � � denotes the
outward unit normal � of ( expressed in the same coordi-
nate system as ��� .

2.2 Cost functional

In order to infer the shape of a surface ( , we im-
pose a cost on the discrepancy between the projection of
a model surface and the actual measurements. Such a cost,� � + � 0 � ( � , depends upon the surface ( as well as upon the
radiance of the surface + and of the background 0 . We will
then adjust the model surface and radiance to match the
measured images. Since the unknowns (surface ( and ra-
diances + � 0 ) live in an infinite-dimensional space, we need
to impose regularization. In particular, we can leverage on
our assumption that the radiance is smooth. However, this is
still not enough, for the estimated surface could converge to
a very irregular shape to match image noise and fine details.
Therefore, we impose a geometric prior on shape (smooth-
ness). These are the three main ingredients in our approach:
a data fidelity term

�� � � � � + � 0 � ( � that measures the dis-
crepancy between measured images and images predicted
by the model, a smoothness term for the estimated radiances��� ��� � � � � + � 0 � ( � and a geometric prior

��� � � � � ( � . We con-
sider the composite cost functional to be the sum (or more
generally a weighted sum) of these three terms:��� � � ��� �
 �!"��# $ % $ � � � ��� �
 &'�)( *
+ + % , � � � �-� �� -&.�)/ 0 + * � �� 

(1)
We conjecture that, like in the case of the Mumford-Shah

functional [22], these ingredients are sufficient to define a
unique solution to the minimization problem.

In particular, the geometric and smoothness terms are
given by ��� � � � �21 3 ) * (2)

��� ��� � � � �21 354 6 3 + 4 7 ) *"8 1 9.4 6 0 4 7 ) - (3)

which favor surfaces ( of least surface area and radiance
functions + and 0 of least quadratic variation. ( 6 3 denotes

the intrinsic gradient on the surface ( ). Finally, the data
fidelity term

�� � � �
may be measured in the sense of : 7 by

�� � � � �
�;
� < � 1 =�>)? + � ��� �� � "��� � ��� � � � "��� � @ 7 ) � � 8 (4)

8 �;
� < � 1 =�A> ? 0 � - � � "��� � �)� � � � "��� � @ 7 ) � � �

In order to facilitate the computation of the first variation
with respect to ( , we would rather express these integrals
over the surface ( as opposed to the partitions

� � and
���� .

We start with the integrals over
� � and note that they are

equivalent to

1 B C D>�E =�> F G 7� � ��� H � � � � � � ) * (5)

where G � � ����� + � ����� � � � � � � ��� � and H � � � � � � �I� � ����	� � � & 
 � . Now we move to the integrals over
���� and note

that they are equivalent to

1 J-> K 7� � "��� � ) � ��� 1 B C D> E =�> F K 7� � � � � ��� � H � � � � � � ) *
where K � � "��� � � 0 ? - � � "��� ��� � � � "��� � @ . Combining these “re-
structured” integrals yields:

1 J > K 7� � "��� � ) � � 8 1 B C D> E =�> F�? G 7� � ��� � K 7� � � � � ��� � @ H � � � � � � ) *
Note that the first integral in the above expression is inde-
pendent of the surface ( (and its radiance function + ) and
that the second integral is taken over only a subset of (
given by ��� �� � � � � . We may express this as an integral over
all of ( (and thereby avoid the use of ��� �� in our expression)
by introducing a characteristic function L � � ����M.N O � � P into
the integrand where L � � ��� � � for �QM ��� �� � � � � andL � � �����RO for �%&M � � �� � � � � (i.e. for points that are oc-
cluded by other points on ( ). We therefore obtain the fol-
lowing equivalent expression for

�� � � �
given in (4):

�� � � � �
�;
� < � 1 J-> K 7� � "��� � ) � � 8 (6)

8 1 3 L � � ��� ? G 7� � ���)� K 7� � � � � ��� � @ H � � � � � � ) * �
2.3 Evolution equation

In order to find the surface ( and the radiances + and 0
that minimize the functional (1) we set up an iterative pro-
cedure where we start from an initial surface ( , compute
optimal radiances + and 0 based upon this surface, and then
update ( through a gradient flow based on the first variation



of
� � + � 0 � ( � which we denote by

 3 � (then new radiance
estimates are obtained in order to update ( again). The vari-
ation of

��� � � �
, which is just the surface area of ( , is given

by � )
) (
��� � � � �2� � ���

where
�

denotes mean curvature and � the outward unit
normal. The variation of

��� ��� � � �
is given by

� )
) (
��� ��� � � � � ? ��� 6 3 + � * � � 6 3 + � � 4 6 3 + 4 � @ � �

where � denotes the Gaussian curvature of ( , 6 3 denotes
the gradient of + taken with respect to isothermal coordi-
nates (the “intrinsic gradient” on ( ), and * denotes the sec-
ond fundamental form of ( with respect to these coordi-
nates.

The variation of
�� � � �

requires some attention. In fact,
the data fidelity term in (6) involves an explicit model of
occlusions4 via a characteristic function. Discontinuities in
the kernel cause major problems, for they can result in vari-
ations that are zero almost everywhere (e.g. for the case of
constant radiance). One easy solution is to mollify the cor-
responding gradient flow. This can be done in a mathemati-
cally sound way by interpolating a smooth force field on the
surface in space. Alternatively, the characteristic functionsL � in the data fidelity term can be mollified, thereby making
the integrands differentiable everywhere.

In order to arrive at an evolution equation, we note that
the components of the data fidelity term, as expressed in
equation (6), which depend upon ( , have the following
form � � � ( ���21 3�� � � ���)	 � � ) * � (7)

The gradient flows corresponding to such energy terms have
the form � )

) (
� ��� � � 6 ��	 � � � � � (8)

where 6 � denotes the gradient with respect to ��� (recall that��� is the representation of a point using the camera coordi-
nates associated with image � � as described in Section 2.1).
In particular,� � � ����� � L � � ���)? G 7� � ���)� K 7� � � � � ��� � @ ���
 � (9)

and the divergence of � � , after simplification, is given by

�	��
 � �
 ! � � �� �
 � � 
 � ��& � 
 � � � � ��
 ��
 � ��
  (10)&�� ��
� �
 � � 
 � �  � ��
 � � ��
  �
where we have omitted the arguments of + , 0 , and � � for

the sake of simplicity. A particularly nice feature of this
4The geometric and smoothness terms are independent of occlusions.

final expression (which is shared by the standard Mumford-
Shah formulation for direct image segmentation) is that it
depends only upon the image values, not upon the image
gradient, which makes it less sensitive to image noise when
compared to other variational approaches to stereo (and
therefore less likely to cause the resulting flow to become
“trapped” in local minima). Notice that the first term in this
flow involves the gradient of the characteristic function L �
and is therefore non-zero only on the portions of ( which
project (� � ) onto the boundary of the region

� � . As such,
this term may be directly associated with a curve evolution
equation for the boundary of the region

� � within the do-
main � � of the image � � . The second term, on the other
hand, may be non-zero over the entire patch �)� �� � � � � of ( .

We may now write down the complete gradient flow for� � �� � � � 8 ��� ��� � � � 8 ��� � � � as

) (
) � �

�;
� < � +

� 0

 ��� � ��� +�8 � �
� 0�� � 6 � L ��	 ��� � � 8

8 �;
� < �
� L �
 � � � �
� + � � 6 � + 	 ��� � � � � � 8 (11)

8 � � 6 3 + � * � � 6 3 + � � � 4 6 3 + 4 � ���
2.4 Estimating scene radiance

Once an estimate of the surface ( is available, the radi-
ance estimates + and 0 must be updated. For a given surface
( we may regard our energy functional

� � ( � + � 0 � as a func-
tion only of + and 0 and minimize it accordingly. A neces-
sary condition is that + and 0 satisfy the Euler-Lagrange
equations for

�
based upon the current surface ( . These

optimal estimate equations are given by the following el-
liptic partial differential equations (PDEs) on the surface (
and the background , ,

�! + � �;
� < � L � � + � � � � H � and

�!" 0 � �;
� < � "L � � 0 � � � �

(12)
where

�  
denotes the Laplace-Beltrami operator on the sur-

face ( , where
� "

denotes the Laplacian on the background
, with respect to its spherical coordinates - , and where
"L � � - � denotes a characteristic function for the background
, where "L � � - � =1 if - � �� � - � M ���� and "L � � - � =0 otherwise.

3 The piecewise constant case

The full development and implementation of the flow
corresponding to the case of general piecewise smooth
statistics as described in Section 2 is well beyond the scope
of this paper. In Section 3.1 we specialize the derivation
of Section 2 to the case of scenes with piecewise constant



albedo statistics (i.e. the functions + and 0 defined on the
surface ( and background , are approximated by con-
stants). This will result in a particularly simple and elegant
flow that is easily implemented.

Despite the apparent restrictiveness of the assumptions
(i.e. despite the simplicity of the class of scenes captured
by this model) we show that the resulting implementation
– which uses level set methods – is extremely robust, to
the point of easily tolerating significant violations of such
assumptions. We do so in Section 3.2 by means of experi-
ments on real image sequences that patently depart from the
model

3.1 Optimal Estimates and Gradient Flow

We obtain a special piecewise constant5 energy func-
tional as a limiting case of the more general energy func-
tional (1) by giving the smoothness term

��� ��� � � �
infinite

weight. In this case, the only critical points are constant
radiance functions. We may obtain an equivalent formula-
tion, by dropping the

��� ��� � � �
term

� � � � � � � � � � �� � � � 8��� ��� � � �
, leading to

� � � � � � � � � � �;
� < � 1 =�> ? + � ��� �� � "��� � �)� � � � "��� � @ 7 ) � � 88 1 =�A> ? 0 � - � � "��� � ��� � � � "��� � @ 7 ) � � 8 1 3 ) * �

and by restricting our class of admissible radiance func-
tions + and 0 to be only constants. This is analogous to the
segmentation work of Chan and Vese in [6] who consider
the piecewise-constant version of the Mumford-Shah func-
tional for the segmentation of images with bimodal statis-
tics. In this simpler formulation, one no longer needs to
solve a PDE on the surface ( nor on the background , , to
obtain optimal estimates for + and 0 (given the current loca-
tion of the surface ( ). In this case,

� � � � � � � � � is minimized
by setting the constants + and 0 to be the overall sample
mean of � � over the regions

� � (for each � ������� ) and
the overall sample mean of � � over the complementary re-
gions

���� respectively. The gradient flow associated with
the
�� � � �

term simplifies. Recall that, in the general case,
the
�� � � �

gradient flow depends upon two terms (given by
(10)), one of which only acts upon the points of ( which
project to the boundaries of the regions

� � , giving rise to
curve evolutions for these segmentation boundaries, while
the second term acts upon each entire patch of ( associ-
ated with each region

� � . In the piecewise constant case,

5We say “piecewise constant” even though each radiance function is
treated as a single constant since the segmentations obtained by projecting
these objects with constant radiances onto the camera images yield piece-
wise constant approximations to the image data.

this second term drops out (since it depends upon the gra-
dient of + ), and therefore only the boundary evolution term
remains. Thus, the gradient flow for

� � � � � � � � � is given by

) (
) � �

�;
� < � +

� 0

 � � � � � + 8 � � � 0�� � 6 � L � 	 ��� � � � � ��� (13)

3.2 Experiments

A numerical implementation of the evolution equation
above has been carried out within the level set framework of
Osher and Sethian [25]. A number of sequences has been
captured and the relative position and orientation of each
camera has been computed using standard camera calibra-
tion methods. Here we show the results on two represen-
tative experiments. Although the equation above assumes
that the scene is populated by objects with constant albedo,
the reader will recognize that the scenes we have tested our
algorithms on represent significant departures from such as-
sumptions. They include fine textures, specular highlights
and even substantial calibration errors.

In Figure 1 we show 4 of 22 calibrated views of a
scene that contains three objects: two shakers and the back-
ground. This scene would represent a challenge to tradi-
tional correspondence-based stereo algorithms: the shakers
exhibit very little texture (making local correspondence ill-
posed), while the background exhibits very dense texture
(making local correspondence prone to local minima). In
addition, the shakers have a dark but shiny surface, that re-
flects highlights that move relative to the camera since the
scene is rotated while the light is kept stationary. In Fig-

Figure 1. The “salt and pepper” sequence (4 of 22
views).

ure 2 we show the surface evolving from a large ellipse that
neither contains nor is contained in the shape of the scene,



Figure 2. (Top) Rendered surface during evolution (6 of 800 steps). Notice that the initial surface is neither contains
nor is contained by the final surface. (Bottom) segmented image during the evolution from two different viewpoints.

to a final solid model. Notice that some parts of the initial
surface evolve outward, while other parts evolve inward in
order to converge to the final shape. This bi-directionality is
a feature of our algorithm, which is not shared - for instance
- by shape carving methodologies. There, once a pixel has
been deleted, it cannot be retrieved. In Figure 3 we show
the final result from various vantage points. In Figure 4 we
show the final segmentation in some of the original views
(top). We also show the segmented foreground superim-
posed to the original images. Two of the 22 views were
poorly calibrated, as it can be seen from the large repro-
jection error. However, this does not significantly impact
the final reconstruction, for there is an averaging effect by
integrating data from all views.

In Figure 5 we show an image from a sequence of views
of a watering can, together with the initial surface. The es-
timated shape is shown in Figure 6
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Figure 5. The “watering can” sequence and the ini-
tial surface. Notice that the initial surface is not sim-
ply connected and neither contains nor is contained
by the final surface. In order to capture a hole it is
necessary that it is intersected by the initial surface.
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Figure 6. Final estimated shape for the watering can.
The two initial surfaces, as seen in Figure 5, have
merged. Although no ground truth is available for
these sequences, it is evident that the topology and
geometry of the watering can has been correctly cap-
tured.


