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Abstract

To what extent can three-dimensional shapeand radiance
be inferred from a collection of images? Can the two be es-
timated separately while retaining optimality? How should
the optimality criterion be computed? When is it necessary
to employ an explicit model of the reflectance properties of
a scene? In this paper we introduce a separation principle
for shape and radiance estimation that applies to Lamber-
tian scenes and holds for any choice of norm. When the
scene is not Lambertian, however, shape cannot be decou-
pled from radiance, and therefore matching image-to-image
is not possible directly. We employ a rank constraint on
the radiance tensor, which is commonly used in computer
graphics, and construct a novel cost functional whose min-
imization leads to an estimate of both shape and radiance
for non-Lambertian objects, which we validate experimen-
tally.

1 Introduction

We address the problem of inferring geometric and photo-
metric properties of a scene from a collection of images. In
particular, we wish to understand to what extent it is possi-
ble to recover both geometry (shape) and photometry (radi-
ance), and whether the two problems can be meaningfully
“separated”. For scenes that arestatic, (piecewise)smooth
and Lambertian, we present answers to the following ques-
tions:
1. To what extent can shape and radiance be inferred from
a collection of images? Are theregeneric ambiguities1, i.e.
scenes with different shapeanddifferent radiance that give
rise to the same images under all possible viewing condi-
tions? (Theorem 3)
2. If we pose the problem of inferring shape and radiance as
an optimization problem, relative to some cost functional, is
it possible to“separate” the estimation of shape from the

∗This research was performed while Hailin Jin was with Department of
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1The term “generic” indicates that the ambiguity is present under all
viewing conditions. “Pathological” ambiguities, which we do not study
here, involve zero-measure sets of viewing conditions.

radiance? (Theorem 1)
3. What cost functional should be minimized in the opti-
mization? How should thisfunctionalbecomputed? (The-
orem 2)
For scenes that are non-Lambertian, we:
4. Remind the reader that irradiance cannot be compared
from image to image, but all images must relate to a com-
mon underlying model of reflection (equation (25)).
5. Use a rank constraint on the radiance tensor field, re-
cently introduced in computer graphics, as the underlying
model (equation (33)).
6. Propose a gradient flow guaranteed to converge to (local)
extrema of a novel cost function computed on the image
(equation (34)), yielding an algorithm that estimates both
shape and radiance from a collection of images (Section 4).

1.1 Relation to prior work

The traditional approach to multi-view stereo dodges ques-
tion 2 above bypostulating the separation of radiance
from shape: the former is used to establish correspondence
among photometric features in different views and then the
latter is inferred from the given correspondence. Under this
postulate, question 1 has received a lot of attention during
the past two decades. Just to mention a few key contribu-
tions, Koenderink and van Doorn [11] derived the set of
shape ambiguities for point-like features seen with an affine
camera, and Faugeras [4] proposed a hierarchy of ambigu-
ities (projective, affine, Euclidean), depending on knowl-
edge on camera calibration. The analysis of ambiguities in
the reconstruction of point-wise structure is now well under-
stood (see [6] and references therein), along with a study on
how much data is needed for reconstruction, the behavior of
the solution in the presence of noise etc. .

In this paper we consider scenes that may or may not
have distinct photometric landmarks, and we represent them
as “dense” surfaces at the outset. In this case, the measure-
ments are raw images (not point correspondences), and the
unknowns are (infinite-dimensional) surface shape and radi-
ance, rather than just a collection of point coordinates inR3.
As a consequence, the results in this paper relate to work on
photometric stereo. Belhumeur et. al. [2] showed that there
is a generalized bas relief ambiguity with unknown lighting



and fixed viewpoint. This ambiguity affects both geometry
and albedo, assuming that objects are Lambertian. Yuille
et. al. [16] this work to include changing the viewpoint as
well as the lighting. The ambiguity is an affine transfor-
mation on the geometry of the object in conjunction with
a transformation on the albedo, assuming an affine camera.
Baker et. al. [1] addresses pathological conditions, which
we do not treat in this paper. This work also relates to
the general problem of estimating reflectance properties as
well as shape from sequences of images; for instance, Yu et.
al. [15] use known shape to estimate global illumination,
whereas [12, 17], uses Helmholtz reciprocity to infer shape
for objects with arbitrary reflection properties. In addition
to the analysis, we describe an algorithm that generates an
explicit reconstruction; it is related to the work of Faugeras
and Keriven [5] and Jin et. al. [9], but different in that we
estimate photometry along with geometry, and integrate the
cost functional on the image rather than in space.

1.2 Assumptions and formalization

So far we have used the term “shape” informally to denote
the geometry of the scene, which we represent as a col-
lection of smooth surfaces. Indeed, we consider the case
of a single smooth surfaceS, since extensions of our re-
sults to multiple connected components can be derived. So,
let S : R2 −→ R3; u 7→ P (u) be a smooth surface
embedded inR3, andIt(xt) a moving image, i.e. a map
It : Ω ⊂ R2 −→ R+ indexed byt = 0, 1, . . . , T . The rel-
ative motion between the scene and the camera is described
by a rigid body transformation2 gt ∈ SE(3), t = 0, . . . , T .
Under the Lambertian assumption, radiance can be repre-
sented as a positive-valued functionρ defined on the sur-
face3, ρ(·) : S −→ R+. The irradiance equation [7, page
208] dictates that, in our notation

It(xt) = ρ(P (u)). (1)

Without loss of generality, we will assume that the local co-
ordinates of the imageu ∈ Ω ⊂ R2 coincide with the image
plane on the first camera, with generic coordinatex0. Fi-
nally, we assume that cameras are calibrated (intrinsics and
extrinsics [6]), so thatgt is known, and the imaging process
is governed by a canonical perspective projection4, π, al-
though extensions to unknown camera motion and possibly

2 A rigid motion g acts on pointsP via gP . In coordinates, ifP is
represented byX ∈ R3, theng is represented by a rotation matrixR ∈
SO(3) and a translation vectorT ∈ R3 such thatgP is represented by
RX + T . The action ofg on a vector is represented byg∗, which in
coordinates is given byg∗V = RV for a vectorV ∈ R3.

3 For non-Lambertian surfaces, the radiance function is substituted with
a tensor field,ρ : S → {R : S2 → R+}, where at eachP ∈ S and for
each directionv ∈ S2, RP (v) ∈ R+ measures the amount of energy
irradiated from the pointP in the directionv. In Section 3 we introduce a
discretized version of the tensorR.

4π : R3 −→ P2; X = [X1, X2, X3]T 7→ X/X3.

unknown internal parameters can be derived. We choose to
work in a deterministic setting; extension of our results in
a probabilistic framework are forthcoming. Therefore, the
model of image formation is{

It(xt) = ρ(P (x0)) + nt(xt)
xt = π(gtP (x0))

t = 0, . . . , T ; x0 ∈ Ω

(2)
wherent is a “noise” term that quantifies the deviation from
the ideal irradiance model. Given a collection of images5

(or responses of filters6), {It(xt) ∀ t,xt ∈ Ωt ⊂ R2},
one can formulate the problem of recovering both the scene
structureP (·) and its radianceρ(·) by minimizing some dis-
crepancy between the image and the model. For instance,
from (2), by choosing some norm for the noise,‖nt‖x, we
have{
ρ̂(·), P̂ (·) = arg minρ,P

∑T
t=0 ‖It(xt)− ρ(P (x0))‖x

subject to xt = π(gtP (x0)).
(3)

Whether the problem (3) has a unique, well-behaved solu-
tion depends on whether there are different choices ofρ, P
andgt in (2) that produce the same images. Since the opti-
mization above is over infinite-dimensional spaces (bothρ
andP are functions), regularization may be necessary, as
we discuss in later sections.

2 Separability of shape from radi-
ance in Lambertian stereo

Let us consider the problem of jointly estimating shape and
radiance from a collection of images. For simplicity, we
carry out our discussion for the case of two images, but all
considerations apply to an arbitrary number of images [8].
The model that generates the data is therefore of the form

I1(x) = ρ(P (x)) + n1(x)
I2(π(gP (x))) = ρ(P (x)) + n2(x). (4)

In a calibrated setting, we choose a norm‖ · ‖x for ni, and
minimize it with respect toρ andP subject to equation (4).
The norm should be defined in the space where the measure-
ments (image irradiance)Ii live, i.e. on the image plane.
For instance, the squared 2-norm‖n‖2

2
.=

∫
Ω
(n(x))2dx, or

the 1-norm‖n‖1
.=

∫
Ω
|n(x)|dx whereΩ ⊂ R2 is a do-

main on the image plane. Given the additive model, we can
substitute the expression of the noise asni = Ii − ρ. We

5HereΩt = {π(gtP (x0)) ∀ x0 ∈ Ω}.
6If filter responses are available instead of image irradiance, it is suf-

ficient to substitute them toIt(xt). In this case,ρ : S −→ RK is a
vector-valued function, with as many components as filter responses at any
given pixel.



therefore write the optimization above using the cost func-
tional

φ(P, ρ) .= ‖I1 − ρ‖x + ‖I2 − ρ‖x (5)

so that
P̂ , ρ̂ = arg min

P,ρ
φ(P, ρ). (6)

For simplicity, we often omit the argument of the functions
Ii andρ. The reader can easily reinstate the notation from
equation (4).

At the outset, we notice that, if the shapePtrue(·) was
given, then radianceρ(·) could be easily estimated. For in-
stance, if we choose the 2-norm, the radiance at the point
X = Ptrue(x) is given by the mean of the reprojected im-
ages, or “texture maps”:

ρ̂2(X) =
1
2

2∑
i=1

Ii(π(giX)) = mean{Ii(π(giX))}i=1...N

(7)
whereg1 = e, the identity. If instead we choose the 1-norm,
then it is well-known that

ρ̂1(X) = median{Ii(π(giX))}i=1...N . (8)

Now, it would be desirable if one could “separate” the prob-
lem of estimating shapeP (·) from estimating radianceρ(·),
since this would simplify the optimization task. One way to
do so is to obtain theρ that minimizesφ for any valueof P ,
and substitute it back intoρ. We therefore have a “reduced”
cost functional̂φ(P ) .= minρ φ(P, ρ) and the optimization
(6) becomes

P̂ = arg min
P

φ̂(P ) .= φ(P, ρ̂(P )) (9)

whereρ̂(P ) = arg minρ φ(P, ρ). In general, however, an
analytic expression of̂ρ as a function ofP is difficult to
obtain. Therefore, one may be tempted to “eliminate”ρ
directly from the model (4); for instance,ρ = I1 − n1 from
the first equation can be substituted into the second equation
to yield

P̃ = arg min
P

‖I1(x)− I2(π(gP (x)))‖x
.= ψ(P ) (10)

for some choice of normx. In general, however, this may be
incorrect, sincêφ(P ) 6= ψ(P ) and therefore the minimizers
may be differentP̂ 6= P̃ . Notice that, from equation (5),
the functionalφ denotes the sum of the norms of the error
in each image – a very natural criterion – whereasψ denotes
the norm of thedifferencebetween errors in the image:ψ =
‖n2 − n1‖x, not quite as principled. Notice also thatψ is
what is most commonly used for stereo matching, where
images are compared to images as in (10), as opposed to all
images being compared to a common radiance, as in (5).

The following theorem shows that, somewhat unintu-
itively, the two cost functionalŝφ andψ, although different,
are equivalent in the sense of having the same minimizer.
This has consequences for the stereo problem, because it
implies that one can first solve for shape,P , by minimizing
ψ(P ), and then estimateρ, for instance via (7) or (8) under
the Lambertian assumption.

Theorem 1 (separability of shape from radiance).Let P̂
be such that̂P , ρ̂ = arg minP,ρ φ(P, ρ), whereφ is defined
in equation (5), and let̃P be such that̃P = arg minP ψ(P ),
whereψ(P ) is defined in equation (10). TheñP = P̂ . Con-
sequently,̂ρ can be estimated aŝρ = arg minρ φ(P̃ , ρ).

Proof. We first notice that, by the triangular inequality,
‖I1−I2‖x = ‖(I1−ρ)−(I2−ρ)‖x ≤ ‖I1−ρ‖x+‖I2−ρ‖x

for any choice of normx and any functionρ. In particu-
lar, the inequality is true for the particularρ that minimizes
the right hand-side, that isψ(P ) ≤ minρ φ(P, ρ). On the
other hand,minρ(‖I1 − ρ‖ + ‖I2 − ρ‖) ≤ ‖I1 − I2‖,
because one can always find at least one functionρ for
which the two expressions are equal, namelyρ(·) such that
ρ(P (x)) = I1(x), and therefore the minimum of the left
hand-side must make the expression smaller than the right
hand-side. Therefore, we haveψ(P ) ≤ minρ φ(P, ρ) ≤
ψ(P ) which proves thatψ(P ) = minρ φ(P, ρ).

An extension of this proof to an arbitrary number of views
can be found in [8].

2.1 Where should stereo discrepancy be com-
puted?

The norm‖I2−I1‖x involves integrating the functionsI1(·)
andI2(·) on a domain. There are essentially two ways of
performing this integral. One is to integrate on the image
domain

ψim(P ) .= ‖I2− I1‖im =
∫

Ω

h(I2(π(gP (x)))− I1(x))dx

(11)
where h is a norm onR, for instanceh(n) = n2 or
h(n) = |n|. The other is to integrate on the surface, by
back-projecting the image onto it:

ψs(P ) .= ‖I2−I1‖s =
∫

S

h(I2(π(gP ))−I1(π(P )))dA(P )

(12)
wheredA(P ) is the area form on the surface. Of course,
one could also write the first integralψim(P ) on the surface
by a change of variable

dx = P ·N/Z3dA (13)



whereZ is the third component ofP = [X, Y, Z]T and
N(P ) is the inward unit normal atP :

ψim(P ) =

∫
S

h(I2(π(gP )) − I1(π(P )))
gP · g∗N(P )

Z3
dA(P ).

(14)
This highlights the difference between the two cost func-

tionals (12) and (14): one can see that the two approaches
arenotequivalent, because of the presence of the termP ·N

Z3 .
Does one of the approaches have an advantage over the
other?

Discussion 1.Before answering this question, which we do
analytically in the next paragraph, we note that the mini-
mization ofψ is performed over the surfaceP (·), which in
general lives in an infinite-dimensional space. Therefore,
in order to render the optimization well-posed, one has to
impose regularity by restricting the class of allowable sur-
faces,P ∈ S. Integrating on the surface has the advan-
tage of implicitly imposing regularization, since the surface
P appears in the area formdA. This could be seen as an
advantage, because minimizingψs automatically enforces
some sort of regularity. On the other hand, having reg-
ularity imposed via the area form causes the discrepancy
between images to change depending on the surface being
estimated. A more principled approach to imposing reg-
ularity in the surface is to separate the data fidelity term
(which should only depend on the data, and not on the sur-
face) from the regularizer (which should only depend on the
surface, and not on the data). This is best achieved by per-
forming the integral on the image, and adding a regulariza-
tion term, if necessary (regularization can also be imposed
by restricting the class of allowable surfaces, for instance
by choosing a parametric class), rather than “twisting” the
metric to act as a regularizer.

In Section 2 we have shown that, when the radiance is
unconstrained (ρ can be an arbitrary function), then com-
paring images to images (throughψ) or images to the model
(throughφ) is equivalent. This is no longer the case when
an explicit model of radiance is present. We now show that,
when a model of radiance is present, by computing the dis-
crepancy measure on the images (i.e.ψim) the variation of
the cost functional does not depend on derivatives of the im-
ages. This means that we can write gradient flow algorithms
for estimating shape that do not entail computing derivatives
of the image but compute derivatives of themodelinstead.
This is a very desirable property in view of the fact that im-
ages are only measured up to noise, which is amplified by
differentiation, whereas the model is not subject to noise.
We will note that this property does not hold if one were
to compute the discrepancy measure on the surface instead
(i.e. ψs).

Let us start with the case of two images; extension to
an arbitrary number is straightforward. We rewrite the cost

functionals on the image and on the surface for convenience
as follows:

φs(ρ, P ) =

∫
S

h(I1 − ρ) + h(I2 − ρ)dA (15)

φim(ρ, P ) =

∫
S

h(I1 − ρ)

Z3
P ·N +

h(I2 − ρ)

Z3
P2 ·N2dA (16)

whereP2 = gP , N2 = g∗N and, again,h is a norm inR
and we have omitted the arguments ofρ(P ), I1(π(P )) and
I2(π(gP )). We now show that the variation ofφs depends
directly on the gradient of the imagesI1, I2, whereas the
variation ofφim does not. The gradient of the image can
be thought of as a 2-D gradient∇xI ∈ R1×2 or, by writing
the image pointx in homogeneous coordinates asx̄, as a
3-D gradient∇x̄I ∈ R1×3, where the image is extended in
space as being constant along the projection rayP . In this
case, clearly

∇x̄I(π(P )) · P = 0 (17)

sinceI is constant alongP . For simplicity, we carry out the
derivation only for the first of the two terms in the integrand
in equation (15), which we write in a more concise form
respectively as∫

S

h(I − ρ)dA and
∫

S

h(I − ρ)
Z3

P ·NdA. (18)

The derivation for the second term in the integrand follows
the same steps, with a slightly more involved notation be-
cause of the poseg. Now, the gradient flow corresponding
to the integral on the image (left in equation (18)) is given
by

dPs

dt
= 2H (h(I − ρ)−∇h(I − ρ))N (19)

where the term∇h(I−ρ) involves derivatives of the image
I. On the other hand, the integral on the right in equation
(18), which calculates the discrepancy on the image, can be
thought of as the flux of the vector fieldhZ3P through the
surfaceS. This can be written as the volume integral of the
divergence of the vector field in the volume contained inS,∫

V
∇ ·

(
h(I−ρ)

Z3 P
)
dV . The gradient flow in this case is

given simply by

dPim

dt
= ∇ ·

(
h(I − ρ)
Z3

P

)
N. (20)

Now, the divergence of the product of a scalar,h/Z3, with
a vector,P , is the inner product of the gradient of the scalar
part by the vector, plus other terms that do not contain
derivatives of the scalar part. Therefore, the only term in
the equation above that involves derivatives of the image is
∇(h(I−ρ)

Z3 ) · P , where the gradient of the image appears,
through the chain rule, as an inner product with the vector
partP . However, in virtue of equation (17), this term can-
cels out! Carrying out the derivation for the second term in



the integrand in equation (15) leads to a proof of the follow-
ing theorem.

Theorem 2 (independence of image derivatives).The
first variation of the functionalφim(P, ρ) in equation (15)
does not depend the gradient of the images∇Ii.

Note that this result is made possible exactly by the pres-
ence of the termP ·N

Z3 in the image integralφim, which is
what distinguishes it from the surface integralφs.

Naturally, the flow of equation (20) has to be comple-
mented with a regularization term, as we have discussed in
Section 2.1.

2.2 Ambiguities in shape and radiance

As we have noted in Section 2, if the “true”P (·) and gt

were given, the best estimate ofρ would be given, for in-
stance, by equation (7) or (8), depending on the choice of
the norm. When the true shape is not known, Theorem 1
guarantees that one can substitute it with the best estimate
of shapeP̂ in the expressions (7) or (8) and obtain the best
estimate of radiance. Therefore, if there is an ambiguity in
the recovery ofP orgt, the resultingρwould also be subject
to an ambiguity. Vice versa, Theorem 1 suggests that lack
of knowledge of the radiance does not introduce additional
ambiguities. This is clarified in the following claim, whose
proof we carried out only in the absence of visibility limita-
tions (it is omitted due to space constraints, and appears in a
technical report [14]). It is worth noting that this result rein-
forces well-known facts for stereo and structure for motion
based on point features, and extends it to arbitrary surfaces
supporting a Lambertian reflection.

Theorem 3 (radiance–shape ambiguity). The set
of surface shapesP̃ (·), radiances ρ̃(·) and motions
g̃t, t = 0, . . . , T that cannot be distinguished from
P (·), ρ(·), gt, t = 0, . . . , T for any number of imagesT
and for all pointsx0 ∈ Ω is given by

P̃ (X) = αgwP (X) ∀ gw ∈ SE(3) (21)

ρ̃(X) = ρ

(
X
α

)
∀ α ∈ R+ (22)

g̃t = gtg
−1
w ∀ t = 0, . . . , T. (23)

There are no additionalgenericambiguities.

We would like to emphasize that Theorem 3 addresses
generic ambiguities in estimating shape and radiance from
multiple views. It does not apply to pathological ambigui-
ties [1].

3 Non-Lambertian scenes

The results obtained so far apply to scenes that exhibit Lam-
bertian reflection. If the scene is non-Lambertian, reflection

can no longer be represented by a functionρ : S → R+;
instead, a tensor is necessary to represent the amount of en-
ergy that the surface radiates at each pointP in any direc-
tion v (see footnote 3). In the next subsection we describe
a discretized representation of this tensor that was derived
from computer graphics [3] and first used in the context of
reconstruction by Jin et. al. [9].

3.1 The radiance tensor field

We denote withTPS the tangent plane to the surface at the
point P . The generic vector on the tangent plane (embed-
ded in Euclidean space) has coordinatesv ∈ R3. Measure-
ments are obtained at a discrete numbern of camera poses,
g1, g2, . . . , gn, and at a discrete numberm of pixels which
we represent, for convenience, in a neighborhood of each
point P , as the projection of a tessellation of the tangent
planeΩP ⊂ TPS via the vectorsv1, v2, . . . , vm. There-
fore, for each pointP , we can associate an array of mea-
surements, one column for each view and one row for each
vector in the grid onΩP :

RP =

 ρ(v1, g1) . . . ρ(v1, gn)
...

...
ρ(vm, g1) . . . ρ(vm, gn)

 (24)

whereρ(vi, gj) represents the local radiance of the surface.
Notice that7 Rij

.= ρ(vi, gj) relates to the image irradiance
via of the coordinates ofP (the underscore “P ” indicates
this dependency); assuming a pin-hole projection we have,
for all j = 1, 2, . . . , n,

Rij = Ij(π(gj(P + vi))) ∀ vi ∈ ΩP . (25)

Unlike its Lambertian counterpart equation (1), hereIj de-
pends onvi, and thereforeR cannot be eliminated to yield
a discrepancy of the type (10). This addresses point 4 in the
introduction (Section 1). The mapS → Rm×n; P 7→ RP

defines a tensor field onS, R which, for any fixedP , is an
m × n matrix, called theradiance tensor, or simply “radi-
ance”. In practice, the imagesIj are measured only up to
noise, so what is available is

Ĩj(x) = Ij(x) + wj(x); R̃ij = Rij + wij (26)

wherewj(x) is a noise term that can be modeled as the real-
ization of a random process (and therefore assumed to have
a distribution associated to it), or simply as an unknown ma-
trix whose norm we wish to minimize. We call̃R the radi-
ance tensor field obtained by substituting the noisy images
Ĩ in equation (25).

7Not to be confused with the rotation matrixR ∈ SO(3) in footnote
2.



In general, the radiance tensor depends on the material
properties of the surface and the lighting condition. For in-
stance, for the simplest case of Lambertian reflection,RP

has rank one at every point since, by the Lambertian as-
sumption, the radiance is independent of the viewpoint, and
therefore all the columns ofR are equal. For more complex
materials, the rank ofR will be greater than one in general
but, for most materials, it will be less than full. As shown
by Jin et. al. in [9], constraining the rank to be2 or less rep-
resents a good compromise between richness of the model
(it allows capturing specular highlights) and simplicity; al-
lowing the rank to be higher, say3 or 4, is straightforward,
but offset by the complexity of the resulting model. We re-
fer the reader to [9] for a more thorough exposition. For
the purpose of illustration, we will restrict our attention to
the case of rank2, which is often used in computer graphics
for light field rendering. Therefore, at each pointP , we
consider the radiance tensor field to be given by

RP = d1(v)sT
1 (g) + d2(v)sT

2 (g) (27)

for some unknown functionsdi, si, where di(v) stands
for [di(v1), di(v2) . . . , di(vm)]T , and si(g) stands for
[si(g1), si(g2), . . . , si(gn)]T , i = 1, 2. The reader should
notice thatdi(v), si(g), i = 1, 2 are functions of the point
P on the surface.

3.2 A discrepancy measure for non-
Lambertian scenes

Jin et. al. [9] proposed using the rank constraint in (27)
as a discrepancy function for stereo matching. This is done
by setting up an error function between the measured ra-
diance tensor̃RP and the modelRP at each pointP (see
equation (26)):

Φ(P ) .= ‖R̃P − d1(v)sT
1 (g)− d2(v)sT

2 (g)‖2
F (28)

where the subscriptF indicates the Frobenius norm.
ClearlyΦ(P ) will depend on the coordinates ofP . In ad-
dition, Φ(P ) will also depend on the normal atP , sincevi

lives inTPS: Φ(P ) = Φ(X, N). If we define

φij = R̃ij − d1(vi)s1(gj)− d2(vi)s2(gj), (29)

whereR̃ij is the(i, j)-th element ofR̃P , then the squared
Frobenius norm is the sum of the square of each element
φij . The surfaceS can then be found as the minimizer of
the energyE

.=
∫

S
Φ(P )dA.

In this paper, motivated by the analysis of Section 2.1,
we propose using a different cost functional, obtained by
integrating the square of the Frobenius norm on theimage
rather than on the surface:

Ŝ
.= arg min

S

∫
S

m,n∑
i,j

φ2
ijσjdA, (30)

where σj = 〈gjP,gj∗N(P )〉
〈gjP,e3〉3

and e3 = [0, 0, 1]T . This

is equivalent to replacing̃RP with ΣR̃P in equation (28)
whereΣ = diag(

√
σ1,

√
σ2, . . . ,

√
σn). Note that the rank

of ΣR̃P is the same as that of̃RP , asΣ is a full-rank di-
agonal matrix. Naturally, the actual measured tensorΣR̃
will not satisfy the rank constraint; therefore, it will in gen-
eral have full rank. We can write it, for eachP , using the
singular value decomposition (SVD) as

ΣR̃P =
r∑

i=1

d̃i(v)s̃T
i (g) (31)

wherer = min{m,n}. Since, from the rank constraint, we
can choose the basis ofΣR arbitrarily, we have

di(v) = d̃i(v) and si(g) = s̃i(g) i = 1, 2 (32)

andΣRP = d̃1(v)s̃T
1 (g)+ d̃2(v)s̃T

2 (g). The functionΦ can
therefore be written as

Φ(P ) = ‖d̃3(v)s̃T
3 (g)+ d̃4(v)s̃T

4 (g)+ · · ·+ d̃r(v)s̃T
r (g)‖2

F .
(33)

3.3 Estimation of shape and radiance

Let the subscript denote partial differentiation, andH the
mean curvature. It can been shown (the proof is omitted due
to space limitations) that the flow based on the first-order
derivatives of the gradient descent flow for the functional
(30) is given by the following partial differential equation:

St =
(
αH −

m,n∑
i,j=1

2φijσj

〈
R̃ijX, N

〉 )
N. (34)

Note thatαH comes from regularization (H is mean curva-
ture andα a tuning parameter). We implement the flow (34)
using the level set method of Osher and Sethian [13].

The radiance map is provided by the functionsdi(v) and
si(g) for i = 1, 2, estimated at each point of the surface,P ,
using the SVD of the measured radiance tensorΣR̃, accord-
ing to equation (32). Given a novel vantage pointgnew, the
corresponding functionsi(gnew), i = 1, 2 is interpolated
from the existingsi(gj). Notice thatdi(v), i = 1, 2 does
not depend on the viewpoint, and therefore does not need to
be interpolated. We refer the reader again to [9] for more
details on estimating the radiance.

4 Experiments

In Figure 1 (top left) we show an image of a textured ob-
ject together with the “pseudo-ground truth” (top right).
In Figure 1 (bottom-right) we show the reconstruction ob-
tained by a gradient flow algorithm based on equation (19),



Figure 1: (Top:) Sample view of a textured object used in
the experiment (left) and the “pseudo-ground truth” recon-
struction (right). (Bottom:) Reconstruction via the gradient
flow (35) obtained by integrating the cost functional on the
image (left). Compare with the results provided by a gra-
dient flow that integrates the cost function on the surface
(right), according to equation (19). Edges are smoothed out
due to the uneven weighting of the image data at occluding
boundaries. Regularization is fixed by the area form and
cannot be controlled. Integrating on the image results in a
19% decrease of the re-projection error.

computed by integrating the cost functional on the surface.
One can see that the edges of the object are “smoothed out”
by the algorithm, which includes implicitly a regularizing
termdA, as discussed in Section 2.1. This is due to the fact
that, when the cost functional is integrated on the surface, at
the occluding boundary little image information is allowed
to affect large portions of the surface via the Jacobian (13).
We have then implemented a regularized version of the gra-
dient flow (20), in particular

dP

dt
=
dPim

dt
+ αH (35)

wheredPim/dt is given in equation (20) andα was chosen
to match the level of smoothness implicit in (19). In Fig-
ure 1 (bottom-left) we show the results, that exhibit much
sharper boundaries. The re-projection error from the es-
timated surface to ground truth is reduced by19% when
integrating on the image.

None of these algorithms, however, would work on the
scene in Figure 2 (top row, data courtesy of Daniel Wood,
University of Washington), due to significant deviations
from the Lambertian model. The object is made of pol-
ished ceramic, and is highly specular. We therefore test the
model-based algorithm described in Section 3 on this ob-
ject. Note that there is no restriction whatsoever imposed
on the variation of the diffuse component of the radiance,

Figure 2:Original images of the fish dataset (top row), cour-
tesy of Daniel Wood, University of Washington and esti-
mated radiance (bottom row).

and nowhere it is assumed that it be constant or smooth.
Feature points or curves are effortlessly handled (indeed,
welcome) by the algorithm. In Figure 3 we show the esti-
mates of shape produced by the algorithm described in Sec-
tion 3.3, compared with pseudo-ground truth. We found the
rank-2 condition described in the previous section to be a
good compromise between robustness and generality; in-
creasing the rank is conceptually straightforward although
the resulting algorithms would be less robust with respect to
image noise due to the increased number of functionsdi, si

to be estimated. Note that our algorithm and that in [9] re-
turn the estimates of both shape and radiance, while other
existing variational algorithms (such as [5, 10]) can only es-
timate shape. In the bottom row of Figure 2 we show a few
synthetic images compared with the real images from same
vantage points. Notice that the specularities move with the
viewpoint, an indication of the non-Lambertian nature of
the model. This is a true estimate of the radiance,not a
texture map.

5 Conclusions

We have shown that, for Lambertian smooth scenes, com-
paring images to models (and therefore jointly estimating
shape and radiance) is equivalent to comparing images to
images (and therefore estimate shape and radiance sepa-
rately). This result is remarkably simple but compelling
since the two cost functionals appear to be very different,
one integrating the sum of the norm of the the noise in ev-



Figure 3:Estimated shape (top row) and ground truth shape
(bottom row). This scene is particularly challenging due to
a highly specular surface and dim lighting. With the excep-
tion of the fins, the shape and radiance are correctly cap-
tured.

ery image, the other integrating the pairwise difference of
noise terms in individual images. When an explicit model
of radiance is present, however, comparing images to the
model allows enforcing such constraints explicitly. The cost
functional that describes the discrepancy of corresponding
images should be integrated on the images themselves, and
not on the (model) surface, because this avoids the com-
putation of derivatives of the image in the first-order op-
timality conditions, which are used in gradient flow algo-
rithms. Jointly recovering radiance and shape is subject to
the same ambiguities that one would expect when perform-
ing point feature-based stereo reconstruction. The results
we have presented hold for any choice of norm, and can be
generalized in a variety of ways. For non-Lambertian re-
flection, we have presented a novel cost functional based on
a rank constraint of the radiance tensor, as used in computer
graphics, which yields a (locally) optimal algorithm to re-
construct both shape and radiance for scenes that exhibit a
“specular+diffuse” reflection.
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