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ABSTRACT 

In this paper, we present a novel adaptive thresholding technique 
based upon an anisotropic diffusion model, which may be referred 
to as the anti-geometric heat flow. In contrast to its more popu- 
lar counterparts (such as the geometric heat flow) which diffuse 
parallel to image edges, this model diffuses perpendicular to im- 
age edges, yielding surfaces which are naturally suited for adap- 
tive thresholding and segmentation. While it is possible to apply 
this diffusion for a fixed amount of time to detect features, we 
discuss how to detect features during the diffusion process, thus 
avoiding much of the arbitrariness associated with choosing a sin- 
gle scale (and makes the most notorious problem associated with 
anisotropic diffusion methods, namely “when do you stop?” a 
moot point). We will demonstrate the perfonnance of this tech- 
nique on both synthetic and real images, showing applications to 
thresholding written text and segmentation of mehcal images and 
scenes. 

1. INTRODUCTION 

Thresholding is one of the most widely used techques in image 
processing and low-level vision, sometimes as an end goal and 
sometimes for preprocessing. The goal of thresholdmg is to create 
a binary image from a grayscale image, thus classifying the pixels 
into one of two categories (e.g. foreground and background). In 
this respect, thresholding is tantamount to Segmentation when only 
two region classes are involved. 

The most straight-forward approach to thresholding is to pick a 
fixed grayscale value (the threshold) and classify each image pixel 
by checking whether it lies above or below this value. Methods 
for judiciously choosing this value include: Et a pair of Gaussian 
curves to the histogram of a bimodal image, and choose the inten- 
sity value that minimizes the possibility of misclassification /3 ,9] ;  
construct discriminant functions, measures of class separability, 
and fmd the value that maximizes these functions [lo]; or con- 
struct a criterion function related to the average pixel classification 
error rate, and End the minimum of this function [8]. 

Chow and Kaneko note in [3] that applying a single threshold to 
the entire image was not effective for images with spatially vary- 
ing backgrounds. For such cases, they proposed dividing the image 
into subimages, finding thresholds for each subimage, and interpo- 
lating these local threshold values to construct a global threshold- 
ing surface. This idea can also be used in conjunction with the 
methods of Otsu or l t t l e r  and Illingworth. The resulting thresh- 
olding surface or adaptive threshold gives rise to a spatially vary- 
ing threshold which is used in the same manner as a single thresh- 
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old to classify image pixels (by checking whether the value of a 
given pixel lies above 01 below the thresholding surface). 

Yanowitz and Bruckstein [16] obtain an adaptive threshold by 
noting that pixel intensities near the transitions between fore- 
ground and background (edge pixels), in a smoothed image, serve 
as the best local thresholds. They locate such pixels by checking 
for large gradients and interpolate the grayscale values of these 
pixels to form the thresholding surface. Chan, Lam, and Zhu [2] 
outline a variational approach for obtaining an adaptive threshold- 
ing surface. Their method is accurate near edges, but the surface 
is very sensitive to local grayscale variations in regions far away 
from edges. Ths  can produce false classiEcations in these regions. 

A number of adaptive thresholding methods have been proposed 
which do not directly involve a thresholding surface. Many of 
these techniques approach the thresholding problem as a special 
case of segmentation (with two region classes). Intensity Gradient 
Based Thresholding [ 121 locates edge pixels in the image based 
upon the intensity gradient, classifies those pixels as foreground, 
and uses region growing techniques to classify the remaining pix- 
els. For a fuller discussion of segmentation-based thresholding 
methods (and a more extensive list of references) see [4, 111. Fi- 
nally, we note that much work in thresholding has been done for 
the specific application of document binarization. We refer the 
interested reader to [13, 141 for a complete discussion of this ap- 
plication. 

The intuition behmd our model begins with the observation of 
Yanowitz and Bruckstein [16] that information about the best lo- 
cal threshold is to be found near image edges (transitions between 
foreground and background) on a smoothed version of the image. 
The smoothing step is crucial since the extrema1 greyscale values 
one encounters near a perfect edge will form very poor thresholds 
when compared to the “average” greyscale value encountered in 
themiddle of a smoothed edge. The question is: “What is the best 
way to smooth?” 

It is well understood that there is a close relationship between 
diffusion and other image smoothng techniques such as convolu- 
tion. Accordingly, we will exploit a diffusion process whch we 
believe is best suited to the goals of adaptive thresholding in or- 
der to capture the discriminative information embedded withm the 
image edges. In particular, we will utilize an anisotropic diffu- 
sion model whch, in contrast to most popular anisotropic diffu- 
sion models, diffuses specifically across image edges as opposed 
to along image edges. The latter behavior is desired for image de- 
noising but the former behavior is better suited to adaptive thresh- 
olding since it has the effect of “spreading out” the edge informa- 
tion as far as possible. This will allow us to classify pixels near 
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image edges quickly and accurately. Then, as in Intensity Gradi- 
ent Based Thresholdmg [12], we may extend these classifications 
to the remaining pixels (via interpolation or region growing, for 
example) or we may diffuse wen further to classify additional pix- 
els. 

2. ANTI-GEOMETRIC DIFFUSION 

In th~s section we discuss how diffusion may be used for adap- 
tive thresholding and propose a diffusion model which seems to 
be ideally suited for these techniques. 

A standard adaptive threslnolding technique is to form a thresh- 
olding surface over the domain of an image and then classify im- 
age pixels based upon whether their values lie above or below this 
surface. A straight-forward method for constructing the threshold- 
ing surface is simply to blur the image with a Gaussian low pass 
filter. This is equivalent to diffusing the. image via the linear heat 
equation, giving rise to a family of thresholding surfaces whch 
comprise a well known scale space [15]. Consequently, choosing 
any particular threshold surface from this continuum imposes a 
certain scale on the features that are captured in the resulting bina- 
rized image. Near an image edge, a local average (fine scale) will 
yield an effective threshold. whereas away from an edge, a more 
global average (coarse scab:) is necessary. It is not always clear 
which scale to choose. 

Before addressing the ambiguity of scale (see Section 3), we 
note that it is natural to generalize this basic thresholding algo- 
rithm by using anisotropic diffusion. Anisotropic diffusion pos- 
sesses the advantage of allowing local directional control of the 
diffusion process. This is particularly important where salient im- 
age features are concerned. When the preservation of sharp edges 
is important (as in image denoising), it is natural to consider mod- 
els which diffuse along, but not across, the edge directions. 

Typically, edge directions are related to the tangents of the iso- 
intensity contours (level curves or level sets) of an image I .  Let 71 
denote the direction normal to the level curve through a given point 
(the gradient direction), a n c l  let E denote the tangent direction. 

Since T,I and constitute orthogonal directions, we may express 
the rotationally invariant Laplacian operator as the sum of the sec- 
ond order spatial derivatives I,, and Ice in these directions and 
write the linear heat equation as 

aI  - _  at - v . (VI) = IC< + I,, 
omitting the normal diffusion while keeping the tangential diffu- 
sion yields the well known geometric heat pow, which diffuses 
along the boundaries of image features, but not across them. It de- 
rives its name from the fact that, under this flow, the level curves of 
the image evolve in the noimal direction in proportion to their cur- 
vature. Ths  model is well known for its ability to denoise images 
while maintaining sharp edges and is therefore widely used for im- 
age enhancement and smo(3thing. For a more extensive discussion 
of the many properties of this flow see [ 1,5,6,7]. 

The very property whch makes the geometric heat flow pow- 
erful for image denoising (i.e. its ability to preserve edges in the 
image) makes it a poor flow for constructing adaptive threshold- 
ing surfaces, in which case we actually want to smear the image 
edges. If, instead, we omit the tangential diffusion and keep the 

Fig. 1. Anti-Geometric, Geometric, and Linear Diffusion 
TOP ROW: Ellipse blurred by (left-to-right) anti-geometric, 
geometric, and linear heat flows with equal diffusion times. 
BOTTOM ROW: Regions clearly identified as interior (black) 
or exterior (white) to the ellipse by comparing the original 
and diffused images. Grey regions indicate pixels whose 
original and diffused intensities differ by less than a small, 
uniformly fixed value. 

normal diffusion, we obtain the complementary diffusion model, 
which we will refer to as the anti-geometric heatjhw 

in which diffusion occurs deliberately across the boundaries of im- 
age features. This is precisely what we want to occur when con- 
structing an adaptive thresholding surface. Furthermore, by omit- 
ting the tangential geometric component of the diffusion, we avoid 
the shrinkage of the isointensity contours that occurs in both the 
geometric and the linear heat flow. Intuitively, the family of isoin- 
tensity contours which run through a given edge are spread apart, 
while the shapes of those that remain near the original edge l e  
cation are less distorted than they would be under the curvature- 
based shrinkage that would be induced by the discarded tangential 
diffusion. 

In Figure 1 we illustrate the effects of the anti-geometric, the 
geometric, and the linear heat flows for generating adaptive thresh- 
olding surfaces for a synthetic image of an ellipse. The smearing of 
the ellipse edges induced by the anti-geometric flow is uniform in 
all directions. The resulting thresholding surface allows clear clas- 
sification of all the pixels in aneighborhood of the boundary of the 
curve, regardless of the curvature of the ellipse. In the case of the 
geometric heat flow, there is very little blurring of edges. How- 
ever, the ellipse shrinks, especially at the high-curvatures “tips.” 
The thresholding surface formed with this flow can only classify 
the regions just inside these “tips,” and nothing else. The linear 
heat flow represents a compromise, since it contains both geomet- 
ric and anti-geometric components. As in the anti-geometric flow, 
information flows away from the boundary, and the correspondmg 
thresholding surface provides clear classifications both inside and 
outside the boundary. However, due to the mitigating effect of the 
geometric component, the information flow near the “tips” of the 
ellipse is not as strong as in the anti-geometric case, and pixels 
outside these “tips” are not classified unless they are very close to 
the boundary. 
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Fig. 2. Synthetic shaded image [left] thresholded using a 
fixed threshold [left center] and via anti-geometric diffusion 
[right center and right]. 

3. THRESHOLDING VIA DIFFUSION 

In this section we discuss how to use the anti-geometric diffusion 
process described in Section 2 for adaptive thresholding. One sim- 
ple idea is simply to use an anti-geometrically diffused version 
of the original image as a thresholding surface. This approach, 
however, suffers from an arbitrary choice of diffusion time (which 
relates to a particular scale). 

Rather than using a traditional thresholding surface (obtained 
using anti-geometric diffusion, however), we instead seek to clas- 
sify pixels during the diffusion process. The intuition behind this 
is clarified by Figure 1 which shows that the “clearly classifiable” 
pixels identified by comparing an original and diffused image are 
located near region boundaries. As the diffusion proceeds, pix- 
els further away from the boundaries become classifiable as well. 
Unfortunately, if we wait long enough for diffused intensities of 
pixels far away from region boundaries to differ from their origi- 
nal intensities enough to yield an unambiguous classification, &f- 
fused intensities near boundaries of smaller features may switch 
from being brighter than their original intensities to darker than 
the original intensities (or vice-versa) due to the more global av- 
eraging effect of prolonged diffusion. In other words, the global 
effect of prolonged diffusion helps us in classify distant pixels but 
could hurt us in maintaining a consistent classification of nearby 
pixels. If, however, we classify a given pixel as soon as its clas- 
sification becomes unambiguous (i.e. the diffused and original in- 
tensities differ significantly) and maintain this classification as the 
diffusion proceeds, then we may run the diffusion as long as nec- 
essary to classify pixels far away from region boundanes without 
worrying about consistency problems for pixels that have already 
been classified. In this manner, we are no longer utilizing a single 
thresholding surface, but an entire family of thresholding surfaces 
generating by our anisotropic diffusion model. 

Ths method is effective because pixels in regions withhigh de- 
tail (i.e. high spatial variance) change intensity relatively quickly 
during diffusion; their intensities can be unambiguously classified 
in short periods of time, and are therefore thresholded at a fine 
scale. Pixels in low-detail regions change intensity slowly, are 
thresholded at a much later time, and therefore are thresholded 
with a surface corresponding to a coarse scale. 

One advantage of h s  method is that pixels near edges are 
quickly classified during the anisotropic diffusion process without 
the need for explicit edge detection prior to thresholding. A slight 
drawback is that pixels far away from region boundaries might 
only be classified after an extensive amount of diffusion. On the 
other hand, long runs of diffusion are not necessary to classify such 
pixels. If an image is truly bimodal, the pixels near the boundary of 

Fig. 3. Text image [left] thresholded using two different 
fixed thresholds [middle] and via anti-geometric diffusion. 

each region will be quickly and uniformly classified in the begin- 
ning of the diffusion process. The remaining pixels in this region 
will then be classified correctly by merely extending the classifica- 
tion from its boundary to fill in the remaining unclassified pixels. 

This method is illustrated on a synthetic image in Figure 2. The 
first two images show a shaded image of 16 squares followed by 
a thresholded version using a fixed threshold. The third image 
demonstrates the partial classification via anti-geometric diffusion 
of the image on the left, followed by an extension of these classi- 
fications to the remaining pixels in the last image. 

A pixel’s net intensity change is not the only criterion that may 
be used to decide when to classify it during the diffusion process. 
In cases where a single value will not suffice near all image edges 
(the danger of merely choosing a tiny jump that is small enough to 
work for even the faintest image edges is sensitivity to noise) a bet- 
ter criterion is to check whether a pixel’s diffusing intensity value 
is consistently increasing or consistently decreasing. Another al- 
temativeis to use a combination of intensity change, monotonicity 
requirements, and other criteria. 

4. APPLICATIONS AND SIMULATIONS 

In this section, we demonstrate theuse of anti-geometric diffusion 
thresholding on several classes of images. 

The image of handwritten text shown on the left in Figure 3 
is extremely low-contrast with non-uniform illumination. Fixed 
thresholding is unable to capture all of the text, as shown in the 
two middle images. The far right image demonstrates the use of 
anti-geometric diffusion. 

A nice feature of this dffusion approach is that we are not re- 
stricted to thresholdmg with just two regions. This thresholding 
model, when run on a multi-modal image, will differentiate pixels 
near edges quickly and accurately in relation to the edge, but might 
oversegment regions that are bordered by regions with brighter 
pixels and also by regions with darker pixels. However, an over- 
segmented image can often be a useful preprocessed input into a 
higher level segmentation algorithm. Th~s is demonstrated in Fig- 
ures 4 and 5 in which a cardiac MR image and a scene image (top 
left) are thresholded by running anti-geometric dffusion to clas- 
sify between 40% and 50% of the pixels in the image. Then, in 
the final image (top right), the resulting classified and unclassi- 
fied regions are “colored” with the mean intensity value of each 
corresponding region in the original image. We are investigating 
post-processing procedures to merge these segmented regions ac- 
cording to various criteria; these methods will combat the “flaws” 
in Figure 5. 
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5. CONCLUSION 

Fig. 4. Cardiac MRI [lop left] segmented with anti- 
geometric diffusion and mean-coloring [top right]. For 
comparison, the image is :segmented with two flat thresh- 
olds [middle and lower left] and mean-colored [middle and 
lower right]. (Images may be severely corrupted by dithering; printing 
this page on a laser printer is reccmmended.) 

. ... ..... ..... . ... .-._ : .... .... 

Fig. 5. Scene image 1:top left] segmented with anti- 
geometric diffusion and mean-coloring [top right]. For 
comparison, the image is segmented with two flat thresh- 
olds [middle and lower left] and mean-colored [middle and 
lower right]. (Images may br: severely corrupted by dithering; printing 
this page on a laser printer is recommended.) 

In h s  paper we have outlined a novel method for adaptive thresh- 
olding using an anti-geometric diffusion model to classify pixels 
in a greyscale image. In contrast to traditional approaches to adap- 
tive thresholding, our formulation does not depend upon a single 
thresholding surface but an entire family of thresholding surfaces 
generated by a diffusing image. Pixels are classified during the 
diffusion process in h s  technique. We have shown how this tech- 
nique applies not only to problems in which thresholding is the 
end-goal but also to preprocessing for segmentation. 
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