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ABSTRACT 

In this paper we demonstrate the use of an anisotropic PDE 
to improve the behavior of first and second derivatives of a dis- 
tance function. We begin by deriving a property of these deriva- 
tives and showing a M ~ U I ~  relationship between this property and 
the oati-geometric heatflow. We then conshuct a PDE that com- 
bines a known f i rs tader  PDE with the anti-geometric flow and 
then demonstrate its effectiveness with a discrete simulation. 

1. INTRODUCTION 

A distance h c t i o n  is a mapping that describes the distance from 
a point to a given set, usually a surface embedded in R". In many 
applications, the surface is known and does not change, so the dis- 
tance function can be computed U priori. Applications that rely 
such mappings include image regstration and curve matching. If 
image registration is approached as an optimiration problem to be 
solved using gradient descent methods, as in [I], then the distance 
function needs to be differentiable. For a higher order method 
such as qwsi-Newton opth imion ,  second derivatives are also re- 
quired 

There are many algorithms to compute discrete approxima- 
tions o f a  distance functiob mnging from chamfer algorithms [2] 
to PDE-based frameworks and fastmarching algorithms. These 
range in accuracy and differentiability Even for accurate algo- 
rithms, such as the fastmarching algorithm [3], the accuracy of 
the function and its derivatives is limited by the accuracy of the 
representation of the surface. In this case, the distance values ad- 
jacent to the surface (represented as a level set) are initialized very 
coarsely; the first and second derivatives cannot be expected to be 
accurate, especially in tlus region. 

We present a PDE designed to improve the properties of the 
fist and second derivatives of distance functions by exploiting the 
~ t U d  connection between the properties of a distance function 
and an anisotropic heat flow, specifically the anti-geometric flow. 
Based 011 this connection, we construct a PDE which integrates a 
firstorder PDE (derived from the Eikonal equation) with the anti- 
geometric flow. We demonstrate that this combined PDE will im 
prove the behavior of the first and second derivatives. 

The remainder of this paper is structured as follows. In Sec- 
tion 2 we derive a properly of the second derivatives of a distance 
function. We then discuss the anti-geometric heat flaw in Section 3 
and show the flow's relationship to distance functions. We validate 
this relationship with experimental results in Section 4 before con- 
cluding the discussion in Section 5 .  

2. CONDITION ON SECOND DERIVATIVES OF 
DISTANCE FUNCTIONS 

In t l u s  section we derive a condition on the second derivatives o f a  
distance function. 

equation, 

This equation not only is the source of algorithms used to con- 
struct discrete approximations of these functions, but also provides 
a condition on the first derivatives. In [4], the authors construct a 
PDE that can be used to improve the properties the fist derivatives 
of approximate distance functions, 

Distance functions are best characterized as satisfying the Eikonal 

llvq = 1. 

This Iirst-order PDE does not guarantee the accuracy ofthe second 
derivatives, however. 

A condition on the sewnd derivatives of 9 can be constructed 
by restating the Etkond equation as 

vaT. va = 1 

V29VQ = 5. (2) 

and taking V of both sides, yielding 

where V29 denotes the Hessian o f 9  

3. ANTI-GEOMETRIC HEAT FLOW 

In this section we first discuss the anti-geometric heal flow as it re- 
lates to image smoothing operators before showing its relationship 
to the second-order derivative properties of distance functions. 

Typically, edge directions in an image are related to the tao- 
gents of the iso-intensity contours (level curves or level sets) of 
an image I. Let 7 denote the direction normal to the level curve 
through a given point (the gradient direction), and let E denote the 
tangent direction (see Figure 1). We may write these directions in 
tenns of the fmt derivatives ofthe image I, and I, as 

Since 7 and 5 constitute OrthogOMl directions, we may ex- 
press the rotationally invariant Laplacian operator (the kemel of 
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a 
the linear heat equation) as the sum of the second order spatial 
derivatives I,, and I<< in these directions and write the linear heat 
equation as ar - = V .  ( V I )  =I<< + IQ?. at 
This decomposition of the linear heat equation has been considered 
in many earlier works on anisotropic ditfision (see (5 ,  6, 7. 8. Y, 
IO] for a few examples). 

Omitting the normal diffusion while keeping the tangential 
diffision yields the well known zeometric beotpow, which dif- 
fuses along the boundaries of image features hut not across them. 
It derives its name from the fact that. under this flow, the level 
curves ofthe image evolve in the normal direction in propartion to 
their curvature. ’his model is well known for its ability to denoise 
images while maintaining sharp edges and is therefore widely used 
for image enhancement and snioothing. For more extensive dis- 
cussions of the many properties of t h s  flow and related flows see 
111, 5 . 9 ,  12. 13. 14, 151. 

In [I61 we discuss the applications ofthe flow constructed by 
omitting the tangential diffusion and keeping thc nonnal diffusion. 
rile general fonn for this compliment flow. wluch we refer to as 
the ar,li-geonietric healpon, is 

(3) 

In the case of a distance function a, the derivative in the F a -  
dieiit direction *? = I. which means 

@,, = 0,  
that is_ &stance functions are solutions to the anti-geometric PDE. 
We also note that the numerator of Equation 3 includes the term 
V’IVI, which is identical to the left-hand-side of Equation 2. 
This implies that. for a distance function, VQ’VQ and therefore 
the numerator of the anti-geometric PDE is zero, that is, at steady 
state. This is exactly the property we d e s k  for the second deriva- 
ti\,es of a distance function. 

To ensure the stability of the zero-level set of Ihe function and 
to improve the accuracy of the first derivatives along with the sec- 
ond derivatives, we combine the firstader PDE from Equation 1 
with the anti-geometric heat flow. as follows. 

Fig. 1. Squared error versus time for two PDEs run on a synthetic 
distance function. 

Discrete implementation of the fmt-order PDE mnst propa- 
gate hiformation only in the upwind mrection. as in the fastmarch- 
ing algorithm. Specifically, we calculate l[V@ll as i n  [17], 

ljV@I( = mas(Q,-’,Oj? +min(a+=,0)2 
“(a-’ I 0)2 + min(*+’, 0)2 

+ maz(@-’,0)? 4min(@f’,0)2, 
+ 

where a-” and 0’’ represent the one-sided derivatives in the 
negative and positive x directions, respectively. Calculation of 
3,), is simpler. as it relies only on central differences. The evolu- 
tion is simulated using the Euler step method. with ai approximate 
distance function (such as one constructed using the fastmarching 
algorithm) as a starting p i n t .  

We are foremost interested in the accuracy of any distance 
function. For examples where we can calculate the exact distance 
function ’& analytically, the squared emor of an approximation of 
do is 

E(Q) = / (@ - dv. 
n 

where 0 is the domain of the function. We further wish to mea- 
sure the properties of the first and second derivatives. As stated 
before, the distance function satisfies the Eikonal equation eveIy- 
where, except at shocks. l o  measure how wcll an approximate 
distance function obeys this property. we introduce a measure on 
the gradient of the function, 

The observation that a distance fuiiction will satisfy this eqna- 
tion demonstrates the existence of a solution. The unicity of the 
solution is discussed in Section 5 .  

4. EXPERIMENTAL msucrs 
In this section we discuss in tho inplementation of the PDE in 
Equation 4. We then htroduce measures of the “fit” of the prop- 
erties ofthe derivatives and conipare the results d t h e  PDEs using 
these metrics. 

Similarly. we construct a measure on the Hessian of the distance 
fuct ion to measure the deviation from the second derivative prop- 
erty in Equation 2. 

In Figures 2, 3 and 4 we show experimental values for the 
error, gradient measure, and Hessian measure ofthe distance func- 
tion as a function ofthe time the PDE is run. In this experiment. 
we restrict $1 to a small neighhorliootl around the zero level curve. 
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Fig. 5. Cross sections of skin surface scgmeutation [IeA] and 
sisiied distance function [right]. 

I \ h  II 

Fig. 6. Gradent metric versus t m e  for hm PDEs mn on the skm 
surface distance function 

d Y1. II. ;, A ;, y s  ;, ”* ;* \ 
I_ 

Fig. 3. Gradient e m r  versus tune for two PDEs mn on a synthetic 
distance fmction. 

I- 

Fig. 4. Hessian error versus time for two PDEs run on a synthetic 
distance function. 

(n = {zIQ(z) < 2)) to emphasize the improvement forthe ini- 
tial values of the fastlnarchmg algorithni. The distance function, 
in this case the distance from a symmetric cluster of six spheres. 
was initialized using the fastmarching algorithm. In both figures, 
we compare the iirst-order PDE and the PDE combining the first- 
order and anti-geometric terms (as in Equation 4). We begin with 
Figure 2, showing that, for short runs, the PDE that includes the 
anti-geometric flow improves the overall error ofthe distance func- 
tion. Figure 3 demonstrates that anti-geometric term, when used 
in coniunctio11 with the fit-order PDE, reduces the nom of the 
gradient more than just the first-order PDE alone. Figure 4, shows 
the affect of Uie two PDEs on the sccond-order property. Including 
the anti-geometric term reduces Mz (e) more tlm 50% (at t = 1) 
compared to the first-order PDE alone. 

The graphs in Figures 6 and 7 show the effect o f  the appli- 
cation of the combined PDE to a distance function around the a 
surface segmented fmm a MRI. A cross-section o f  the skin sur- 
face segmentation and the distance function constructed amund 
this surface are shown in Figure 5 .  Again, for this experiment n is 

i t  \\ H 

Fig. 7. Hessian metric versus time for two PDEs m on a skin 
surface distance function. 
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lunited to a small neighborhood around the zero level c w e .  We 
are unable to demonstrate the etyects on squared error, since there 
is no analytic “mound truth” for tlus example. However, Figure 6 

[3] J. Sethian, “A fast marching level set method for monotoni- 
cally advancing frouts:’ Proceedings. Notl. Arad. Sci. USA, 
vol. 93. pp. 1591-1.595, Feb 1996. .. 

demonstkes c a t .  for short of the PDE, the combined flow 
subtly improves the firstmder properties of the distance functions. 
The more obvious benefit can be seen in Figure 7, a graph of the 
second-order nronerties of the function. where the combined PDF 

[4] M. sussman. p. Smereka. and S.  J .  Osher. level set method 
for computing solutions to incompressible two-phase flow,” 
J. Conip. Pk.vs., vol. 114, pp. 146-159, 1994. 

r ~ I ~  ~~~~~ ~~~ 

~ -~ ~ 

again reduces the Hessian measure. 

5. CONCLUSION 

Ln the previous section, we iniprowd the first- and second-order 
properties vf distance fnnctions using short runs of the combined 
PDE. Before concludug, we note some properties of the anti- 
geometric term that make long mm tlus PDE ill-suited for the nu- 
merical calculation of distance functions. 

In general the evolution of the combined PDE divexes from a 
distance function, even when initialized with an approximate dis- 
tance fnnction. Stated another way. although distance functions 
satisfy the anti-geometric PDE, they are not stable solutions to 
this PDE. (Stable solutions include functions I with the property 
I, and I ,  are constant everywhere.) Intuition a h i n g  this ab- 
servation begins by recalling that the anti-geometric flow reduces 
the magnitude of the norm of the gradient. Numerical approxi- 
mations ofthe distance function, like the fastmarching algorithm, 
do’not guarantee that I(VQI/ = 1 everywhere. In regions where 
IlVQll < 1 due to numerical errors or shocks, the anti-geometric 
flow will always further reduce the norm, diverging from the de- 
sued distance function. We combine the anti-geometric term with 
the first-order term in Equation 1, which drives the gradient to 1, 
to combat thrs effect; but we cannot guarantee that the steady state 
of Equation 4 is a distance function. 

Another explanation begins by recalling that anti-geometric 
flow obeys the maximum principle. This means that the evolu- 
tion of the PDE is always bounded above and below by the initial 
condition. that is, the function is everywhere greater than the miai- 
mum value ofthe initial function and less than the maximum value. 
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tial function bounds the distance function. In general. schemes for 
generating approximate distance functions do not guarantee this. 

PDE to improve the behavior of first and second derivatives of an 
approximate distance function. We first derived a simple condition 
on the second derivatives, and then demonstrated a link between 
this condition and anti-geometric heat Bow. We then validalcd this 
result via simulation. demonstrating that an anti-geometric term? 
conpled with a first-order PDE, effectively reduces the error in the 
desired properties of the first and second derivatives of a distance 
function. 

In tbis paper, we have discussed the application of an anisotropic 
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