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ABSTRACT

In this paper we demonstrate the use of an anisotropic PDE
to improve the behavior of first and second derivatives of a dis-
tance function. We begin by deriving a property of these deriva-
tives and showing a natural relationship between this property and
the anti-geometric keat flow. We then construct a PDE that com-
bines a known first-order PDE with the anti-geometric flow and
then demonstrate its effectiveness with a discrete simulation.

1. INTRODUCTION

A distance function is a mapping that describes the distance from

a point to a given set, usually a surface embedded in R". In many |

applications, the surface is known and does not change, so the dis-
tance function can be computed a priori. Applications that rely
such mappings include image registration and curve matching. If
image registration is approached as an optimization problem to be
solved using gradient descent methods, as in [11, then the distance
function needs to be differentiable. For a higher order method
such as quasi-Newton optimization, second detivatives are also re-
quired.

There are many algorithms to compute discrete approxima-
tions of a distance function, ranging from chamfer algorithms [2]
to PDE-based frameworks and fastmarching algorithms. These
range in accuracy and differentiability. Even for accurate algo-
rithms, such as the fastmarching algorithm {3], the accuracy of
the function and its derivatives is limited by the accuracy of the
representation of the surface. In this case, the distance values ad-
facent to the surface (represented as a level set) are initialized very
coarsely; the first and second derivatives cannot be expected to be
accurate, especially in this region.

We present a PDE designed to improve the properties of the
first and second derivatives of distance functions by exploiting the
natural connection between the properties of a distance function
and an anisotropic heat flow, specifically the anti-geometric flow,
Based on this connection, we construct a PDE which integrates a
first-order PDE (derived from the Eikonal equation} with the anti-
geometric flow. We demonstrate that this combined PDE wiil im-
prove the behavior of the first and second derivatives.

The remainder of this paper is structured as follows. In Sec-
tion 2 we derive a property of the second derivatives of a distance
function. We then discuss the anti-geometric heat flow in Section 3
and show the flow’s relaticnship to distance functions. We vatidate
this relationship with experimental results in Section 4 before con-
cluding the discussion in Section 5.
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2. CONDITION ON SECOND DERIVATIVES OF
DISTANCE FUNCTIONS

In this section we derive a condition on the second derivatives of a -
distance function. .

Distance functions are best characterized as satisfying the Eikonal
equation,

Ivel =1
This equation not only is the source of algorithms used to con-
struct discrete approximations of these functions, but also provides
a condition on the first derivatives. In [4], the authors construct a
PDE that can be used to improve the properties the first derivatives
of approximate distance functions,
9 = san(®)(1 - [V, W

This first-order PDE does not guarantee the accuracy of the second
derivatives, however.

A condition on the second derivatives of ® can be constructed
by restating the Eikonal equaticn as

Vol . ve =1
and taking V of both sides, vielding
Vieve =1, (2)

where V2 ® denotes the Hessian of ®.

3. ANTI-GEOMETRIC HEAT FLOW

In this section we first discuss the anti-geometric heat flow as it re-
lates to inage smoothing operators before showing its relationship
to the second-order derivative properties of distance functions.

Typically, edge directions in an image are related to the tan-
gents of the iso-intensity contours (level curves or level sets) of
an image I. Let n denote the direction normal to the level curve
through a given point (the gradient direction), and let £ denote the
tangent direction (see Figure 1). We may write these directions in
terms of the first derivatives of the image I, and [, as

Uely) (kI

= VIE+ LY V¥ LY

Since 17 and £ constitute orthogonal directions, we may ex-
press the rotationally invariant Laplacian operator (the kernel of
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Fig. 1. Normal and tangent directions to a level curve.

the linear heat equation) as the sum of the second order spatial
derivatives I, and I¢¢ in these directions and write the linear heat
equation as

al

T V(NI =Tt + Iy
This decomposition of the linear heat equation has been considered
in many earlier works on anisotropic ditfusion (see (5, 6, 7.8, 9,
10] for a few examples).

Cmitting the nommal diffusion while keeping the tangential
diffusion vields the well known geometric keat flow, which dif-
fuses along the boundaries of image features but not across them.
It derives its name from the fact that. under this flow, the level
curves of the image evolve in the norma) direction in proportion to
their curvature. This model is well known for its ability to denoise
images while maintaining sharp edges and is therefore widely used
for image enhancement and smoothing. For more extensive dis-
cussions of the many properties of this flow and related flows see
[11,5,9,12. 13,14, 15].

In [16] we discuss the applications of the flow constructed by
omitting the tangential diffusion and keeping the normal diffusion.
The general form for this compliment flow, which we refer to as
the anti-geometric heat flow, is

. (v (V1)
me Ivij?

In the case of a distance function @, the derivative in the gra-
dient direction ©,, = 1, which means

Dyn =0,

3

that is, distance functions are solutions to the anti-geometric PDE.
We also note that the numerator of Equation 3 includes the term
V2IVi, which is identical to the left-hand-side of Equation 2.
This implies that, for a distance fonction, V&2 V& and therefore
the numerator of the anti-geometric PDE is zero, that is, at steady
state. This is exactly the property we desire for the second deriva-
tives of a distance function.

To ensure the stability of the zero-level set of the function and
to improve the aceuracy of the first derivatives along with the sec-
ond derivatives, we combine the first-order PDE from Equation 1
with the anti-geometric heat flow, as follows.

%(f = sgn(D)(1 ~ || VO|) + Poysy (@)

The observation that a distance function will satisfy this equa-
tion demonstrates the existence of a solution. The unicity of the
solution is discussed in Section 5.

4. EXPERIMENTAL RESULTS

In this section we discuss in the implementation of the PDE in
Equation 4. We then introduce measures of the “fit” of the prop-
erties of the derivatives and compare the results of the PDEs using
these metrics.
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Fig. 2. Squared error versus time for two PDEs run on a synthetic
distance function.

Discrete implesnentation of the first-order PDE must propa-
gate information only in the upwind direction, as in the fastmarch-
ing algorithm. Specifically, we calculate || V@ as in [17],
maz($77,0)% + min(®1*,0)

+ maz{® Y, 07 + min(dTY,00°
+  maz{® 7,0} + min(®*,0)7,

Ivel

where &% and ®** represent the one-sided derivatives in the
negative and positive = directions, respectively. Calculation of
O,y is simpler, as it relies only on central differences. The evolu-
tion is simulated using the Euler step method, with an approximate
distance function (such as one constructed using the fastmarching
algorithm) as a starting point. .

We are foremost interested in the accuracy of any distance
function. For examples where we can calculate the exact distance
function ®g analytically, the squared error of an approximation of
‘I)Q is

E(®) = f (® — B,)° dv,
Q

where (1 is the domain of the function. We further wish to mea-
sure the properties of the first and second derivatives. As stated
before, the distance function satisfies the Eikonal equation every-
where, except at shocks. To measure how well an approximate
distance function obeys this property, we introduce a measure on
the gradient of the function,

My (®) :f It~ Vo] dv.
Q

Similarly, we construct a measure on the Hessian of the distance
function to measure the deviation from the second derivative prop-
erty in Equation 2,

Ma(®) = f IV20V| do.
0

In Figures 2, 3 and 4 we show experimental values for the
error, gradient measure, and Hessian measure of the distance func-
tion as a function of the time the PDE is run. In this experiment,
we restrict (2 to a small neighborhood around the zero level curve,
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Fig. 3. Gradient error versus time for two PDEs run on a synthetic
distance function.
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Fig. 4. Hessian error versus time for two PDEs run on a synthetic
distance function.

(8t = {z|®(z) < 2}) to emphasize the improvement for the ini-
tial values of the fastmarching algorithny, The distance function,
in this ¢ase the distance from a symmetric cluster of six spheres,
was initialized wsing the fastmarching algorithm. In both figures,
we compare the first-order PDE and the PDE combining the first-
order and antj-geometric terms (as in Equation 4). We begin with
Figure 2, showing that, for short runs, the PDE that includes the
anti-geometric flow improves the overall error of the distance func-
tion. Figure 3 demonstrates that anti-geometric term, when used
in conjunction with the first-order PDE, reduces the norm of the
gradient more than just the first-order PDE alone. Figure 4, shows
the affect of the two PDEs on the second-order property. Including
the anti-geometric term reduces Mo {®) more than 50% (at £ = 1)
compared to the first-order PDE alone.

The graphs in Figures 6 and 7 show the effect of the appli-
cation of the combined PDE to a distance function around the a
surface segmented from a MRI. A cross-section of the skin sur-
face segmentation and the distance function constructed around
this surface are shown in Figure 5. Again, for this experiment (2 is

Fig. 5. Cross sections of skin surface segmentation [left] and
signed distance function [right].
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Fig. 6. Gradient metric versus time for fwo PDEs run on the skin
surface distance function.
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Fig. 7. Hessian metric versus time for two PDEs run on a skin
surface distance function.
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limited to a small neighborhood around the zero level curve. We
are unable to demonstrate the effects on squared error, since there
is no analytic “ground truth™ for this example. However, Figure 6
demonstrates that, for short runs of the PDE, the combined flow
subtly improves the first-order properties of the distance functions.
The mote obvious benefit can be seen in Figure 7, a graph of the
second-order properties of the function, where the combined PDE
again reduces the Hessian measure.

5. CONCLUSION

In the previous section, we improved the first- and second-order
properties of distance functions using short runs of the combined
PDE. Before concluding, we note some properties of the anti-
geometric term that make long runs this PDE ill-suited for the nu-
merical calculation of distance functions.

In general the evolution of the combined PDE diverges from a
distance function, even when initialized with an approximate dis-
tance function. Stated ancther way, although distance functions
satisfy the anti-geometric PDE, they ar¢ not stable solutions to
this PDE. (Stable solutions include tunctions I with the property
I and I, are constant everywhere.) Intuition affirming this ob-
servation begins by recalling that the anti-geometric flow reduces
the magnitude of the norm of the gradient. Numerical approxi-
mations of the distance function, like the fastmarching algorithm,
do not guarantee that || V®|| = 1 everywhere. In regions where
I¥®| < 1 due to numerical errors or shocks, the anti-geometric
flow will always further reduce the norm, diverging from the de-
sired distance function, We combine the anti-geometric term with
the first-order term in Equation 1, which drives the gradient to 1,
to combat this effect; but we cannot guarantee that the steady state
of Equation 4 is a distance function.

Anather explanation begins by recalling that anti-geometric
flow obeys the maximum principle. This means that the evolu-
tion of the PDE is always bounded above and below by the initial
condition, that is, the function is everywhere greater than the mini-
mum value of the initial function and less than the maximum value.
In the case of distance functions, the anti-geomstric PDE can drive
the initial function toward the true distance function only if the ini-
tial function bounds the distance function. In general, schemes for
generating approximate distance functions do not guarantee this.

In this paper, we have discussed the application of an anisotropic
PDE to imptove the behavior of first and second derivatives of an
approximate distance function. We first derived a simple condition
on the second derivatives, and then demonstrated a link between
this condition and anti-geometric heat flow. We then validated this
result via simulation, demonstrating that an anti-geometric term,
coupled with a first-order PDE, effectively reduces the error in the
desired properties of the first and second derivatives of a distance
function.
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