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Abstract. What does it mean for a deforming object to be “moving”? How can we separate the overall motion (a
finite-dimensional group action) from the more general deformation (a diffeomorphism)? In this paper we propose
a definition of motion for a deforming object and introduce a notion of “shape average” as the entity that separates
the motion from the deformation. Our definition allows us to derive novel and efficient algorithms to register non-
identical shapes using region-based methods, and to simultaneously approximate and align structures in greyscale
images. We also extend the notion of shape average to that of a “moving average” in order to track moving and
deforming objects through time. The algorithms we propose extend prior work on landmark-based matching to
smooth curves, and involve the numerical integration of partial differential equations, which we address within the
framework of level set methods.
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1. Introduction

Consider a sheet of paper falling. If it were a rigid
object, one could describe its motion by providing the
coordinates of one particle and the orientation of an
orthogonal reference frame attached to that particle.
That is, 6 numbers would be sufficient to describe the
object at any instant of time. However, being a non-
rigid object, in order to describe it at any instant of
time one should really specify the trajectory of each
individual particle on the sheet (Arnold, 1978). That is,
if γ0 represents the initial collection of particles, one
could provide a function f that describes how the entire
set of particles evolves in time: γt = f (γ0, t). Indeed,
if each particle can move independently, there may be
no notion of “overall motion,” and a more appropriate

description of f is that of a “deformation” of the sheet.
That includes as a special case a rigid motion, described
collectively by a rotation matrix R(t) ∈ SO(3) and a
translation vector T (t) ∈ R

3, so that γt = f (γ0, t) =
R(t)γ0 + T (t) with R(t) and T (t) independent of the
particle in γ0. In practice, however, that is not how one
usually describes a sheet of paper falling. Instead, one
may say that the sheet is “moving” downwards along
the vertical direction while “deforming.” That is, even
when the object is not rigid, one may still want to retain
a notion of overall, or “global,” motion, and describe
departures from rigidity as a “deformation.” This stems
from one’s desire to capture the fact that the sheet of
paper is somehow moving as a whole, and its particles
do not just behave like a swarm of bees. The jellyfish
in Fig. 1 is just another example to illustrates the same
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Figure 1. A jellyfish is “moving while deforming.” What exactly does it mean? How can we separate its “global” motion from its “local”
deformation?

issue. It certainly “moves,” and it certainly “deforms”
in the process of moving.

But what does it even mean for a deforming object
to be “moving”? From a mathematical standpoint, rig-
orously defining a notion of motion for deforming ob-
jects presents a challenge. In fact, if we describe the
deformation f as the composition of a rigid motion
(R(t), T (t)) and a “deformation” function h(·, t), so
that γt = h(R(t)γ0 + T (t), t), we can always find in-
finitely many different choices h̃(·, t), R̃(t), T̃ (t) that
give rise to the same overall deformation f :

γt = f (γ0, t) = h(R(t)γ0 + T (t), t) = h̃(R̃γ0 + T̃ (t), t)

by simply choosing h̃(γ, t)
.= h(R R̃

T
(γ − T̃ ) + T, t)

for any rigid motion (R̃, T̃ ). Therefore, we could de-
scribe the motion of our sheet with (R, T ) as well as
with (R̃, T̃ ), which is arbitrary, and in the end we would
have failed in defining a notion of “motion” that is
unique to the event observed.

So, how can we define a notion of motion for a de-
forming object in a mathematically sound way that
reflects our intuition? The relevance of this problem
goes beyond describing a falling sheet of paper. For in-
stance, in Fig. 6, how do we describe the “motion” of a
jellyfish? Or in Fig. 5 the “motion” of a storm? In neu-
roanatomy, how can we “register” a database of images
of a given structure, say the corpus callosum (Fig. 9),
by “moving” them to a common reference frame? In a
defense scenario, how can we “track” targets that de-
form as they move, for instance a tank with a rotating
turret?

All these questions ultimately boil down to an at-
tempt to separate the overall motion from the more
general deformation. Before proceeding, note that this
is not always possible or even meaningful. In order to
talk about the “motion” of an object, one must assume
that “something” of the object is preserved as it de-
forms. For instance, it may not make sense to try to
capture the “motion” of a swarm of bees, or of a col-
lection of particles that indeed all move independently.
What we want to capture mathematically is the notion

of overall motion when indeed there is one that corre-
sponds to our intuition!

The key to this paper is the observation that the no-
tion of motion and the notion of shape are very tightly
coupled. Indeed, we will see that our definition of shape
average is exactly what allows separating the motion
from the deformation. As a consequence, in our frame-
work the process of “registering” a collection of shapes
provides automatically an estimate of their average.
Similarly, the process of segmenting a collection of
images naturally results in their automatic alignment.

We now proceed to make the discussion above pre-
cise in a formal setting. We first propose our defini-
tions for the simplest case where the “object” is a one-
dimensional contour in Section 2, and later extend it
to more general objects and more general notions of
motion. We then give a detailed derivation of an al-
gorithm to compute shape and motion in Section 3,
which also results in an efficient way to compute the
distance between planar shapes. When an object is be-
ing tracked over time, the notion of shape average is
extended to that of a “moving average” (Section 4).
We then extend these results from geometric shapes to
images, resulting in their simultaneous approximation
and registration in Section 5. Finally, in Section 6, we
show results on a representative set of synthetic shapes
as well as on real image sequences that illustrate our
theory.

Before all that, in the next two sections we give a
succinct description of the vast literature on shape and
motion and how it relates to the contributions of our
research.

1.1. Prior Related Work

The study of shape spans at least a hundred years
of research in different communities from mathemat-
ical morphology to statistics, geology, neuroanatomy,
paleontology, astronomy etc. Some of the earlier at-
tempts to formalize a notion of shape include D’Arcy
Thompson’s treatise “Growth and Form” (Thompson,
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1917), the work of Matheron on “Stochastic Sets”
(Matheron, 1975) as well as that of Thom (1975),
Giblin (1977) and others.

In statistics, the study of “Shape Spaces” was cham-
pioned by Kendall (1984), Le and Kendall (1993), Mar-
dia and Dryden (1989), and Carne (1990). Shapes are
defined as the equivalence classes of N points in R

M

under the similarity group, R
MN/{SE(M) × R}. Shape

spaces are thus organized in a fiber bundle where mo-
tion along the fibers corresponds to rotated, translated
and scaled versions of the collection of points, while
motion across fibers corresponds to deformations that
change their mutual position individually (not just by
a global scale). The fiber bundle can be endowed with
a metric structure and with probability measures that
allow comparing the so-defined shapes and compute
statistics of collections of shapes. These tools have
proven useful in contexts where distinct “landmarks”
are available, for instance in comparing biological
shapes with N distinct “parts.” However, comparing
objects that have a different number of parts, or ob-
jects that do not have any distinct landmark, is elusive
within the framework of statistical shape spaces. Al-
though the framework clearly distinguishes the notion
of “motion” (along the fibers) from the “deformation”
(across fibers), the analytical tools are essentially tied
to the point-wise representation. One of our goals in
this paper is to extend the theory to smooth curves,1

surfaces and other geometric objects that do not have
distinct “landmarks.”

In computer vision, a wide literature exists for the
problem of “matching” or “aligning” objects based on
their images, and space limitations do not allow us to do
justice to the many valuable contributions. We refer the
reader to Veltkamp and Hagedoorn (1999) for a recent
survey. A common approach consists of matching col-
lections points organized in graphs or trees (e.g. Lades
et al., 1993; Fischler and Elschlager, 1973). Belongie,
et al. (2001) propose comparing planar contours based
on their “shape context.” There, points are not bound to
represent particular “landmarks” but are just a discrete
representation of the contour. Their matching is, by
construction, invariant with respect to either the affine
or the Euclidean group, and the resulting match is based
on “features” rather than on image intensity directly,
similarly to Chui and Rangarajan (2000) and Dutta and
Jain (2001). Koenderink (1990) is credited with pro-
viding some of the key ideas involved in formalizing
a notion of shape that matches our intuition. However,
Mumford has critiqued current theories of shape on the

grounds that they fail to capture the essential features
of perception (Mumford, 1991).

“Deformable Templates,” pioneered by Grenander
(1993), do not rely on “features” or “landmarks;”
rather, images are directly deformed by a (possibly
infinite-dimensional) group action and compared for
the best match in an “image-based” approach (Yuille,
1991). There, the notion of “motion” (or “alignment” or
“registration”) coincides with that of deformation, and
there is no clear distinction between the two (Bereziat
et al., 1997). Grenander’s work sparked a current that
has been particularly successful in the analysis of med-
ical images, for instance (Grenander and Miller, 1994).
We would like to retain some of the power and flexi-
bility of deformable templates, but within this frame-
work mark a clear distinction between “motion” and
“deformation.”

Another line of work uses variational methods and
the solution of partial differential equations (PDEs) to
model shape and to compute distances and similarity.
In this framework, not only can the notion of align-
ment or distance be made precise (Azencott et al., 1996;
Younes, 1998; Miller and Younes, 1999; Kimmel and
Bruckstein, 1995; Samson et al., 1999), but quite so-
phisticated theories that encompass perceptually rele-
vant aspects, can be formalized in terms of the proper-
ties of the evolution of PDEs (e.g. Kimmel et al., 1998).
The work of Kimia et al. (1995) and Sebastian et al.
(2000) describes a scale-space that corresponds to vari-
ous stages of evolution of a diffusing PDE, and a “react-
ing” PDE that splits “salient parts” of planar contours
by generating singularities. Kimia et al. (1995) also
contains a nice taxonomy of existing work on shape
and deformation and a review of the state of the art as
of 1994.

The variational framework has also proven very ef-
fective in the analysis of medical images (Malladi et al.,
1995, 1996; Thompson and Toga, 1996). Although
most of the ideas are develop in a deterministic setting,
many can be transposed to a probabilistic context (e.g.
Zhu et al., 1995). None of these approaches, however,
distinguishes a notion of motion that is separate from
the deformation; the evolution of shapes is driven by
energy and regularization terms, rather than by the ac-
tion of a finite-dimensional group of transformations.
We would like to extend this framework to evolve con-
tours simultaneously with respect to a group element
and a generic deformation, and try to infer both from
data and render them separate or “independent” in a
precise sense.
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A common approach to matching planar contours
within the context of scale-space is to not match the
contours directly, but to first represent them through
a common scale-space and then match a given scale,
or even all scales. The rationale being that, even if the
original contours are not well matched by a group ac-
tion, their representations through scale-space at some
scale may be. Scale-space is a very active research area,
and some of the key contributions as they relate to the
material of this paper can be found in Jackway and
Deriche (1996), ter Haar Romeny et al. (1997), Kimmel
(1997), Alvarez and Morel (1994), and Alvarez et al.
(1993, 1999) and references therein. The “alignment,”
or “registration,” of curves has also been used to de-
fine a notion of “shape average” by several authors (see
Leventon et al., 2000 and references therein). The shape
average, or “prototype,” can then be used for recog-
nition in a nearest-neighbor classification framework,
or to initialize image-based segmentation by provid-
ing a “prior.” Leventon et al. (2000) perform principal
component analysis in the aligned frames to regular-
ize the segmentation of regions with low contrast in
brain images. However, the alignment is performed ad-
hoc by pre-processing the images, rather than posing
it as part of the inference problem. Errors in the pre-
processing stage can never be compensated. Similarly,
Yezzi and Soatto (2001) performs the joint segmen-
tation of a number of images by assuming that their
registration (stereo calibration) is given. We wish to
extend these approaches to situations where the cali-
bration/registration is not known a-priori. A somewhat
complementary work is Yezzi et al. (2001), where ob-
jects, assumed to be identical except for a group ac-
tion, are registered by minimizing a region-based cost
functional. We wish to extend that approach to situa-
tions where the objects are not “similar” (i.e. equiv-
alent under the group action), but they also undergo
deformations.

Also related to this paper is the recent work of
Paragios and Deriche, where active regions are tracked
as they “move.” In Paragios and Deriche (2000) the
notion of motion is not made distinct from the general
deformation, and therefore what is being tracked is a
general (infinite-dimensional) deformation. Our aim is
to define tracking as a trajectory on a finite-dimensional
group, despite infinite-dimensional deformations. Sub-
stantially different in methods, but related in the
intent, is the work on stochastic filters for contour track-
ing and snakes (see Blake and Isard, 1998 and refer-
ences therein). There, however, what is being tracked

over time is a general deformation (although finitely
parametrized via splines or other parametric descrip-
tions), rather than a (group) motion. Therefore, the end
product of these tracking algorithms is not a trajectory
on a finite-dimensional group, but a generic sequence
of deformations.

1.2. Contributions of This Paper

We wish to warn the reader at the outset that we do
not intend to present a comprehensive theory of shape
that captures the complexity and intricacy of the prob-
lem or that subsumes and generalizes existing theories.
Rather, within this vast theme, we have identified the
particular issue of “separating” the notion of motion
from a more general deformation as a crucial one, on
which we wish to say something fairly precise. The
consequences of our analysis are robust algorithms for
matching, registering and tracking deforming objects,
computing a meaningful notion of “shape average” and
the distance between shapes.

The situations we wish to describe are those where
objects undergo a distinct overall “global” motion
while “locally” deforming.2 Our approach does not ap-
ply when objects deform wildly, when different “parts”
of the object undergo different deformations, and it en-
tails no notion of hierarchy or compositionality.

Under these assumptions, our contribution consists
of (1) a novel definition of motion for a deforming ob-
ject and (2) a corresponding definition of shape average
(Section 2). Our definition allows us to derive novel
and efficient algorithms to (3) register non-identical
(or non-equivalent) shapes using region-based meth-
ods. We use our algorithms to (4) simultaneously ap-
proximate and register structures in images, or to simul-
taneously segment and calibrate images (Section 5). In
the context of tracking, we extend our definition to a
novel notion of (5) “moving average” of shape, and
use it to (6) perform tracking for deforming objects
(Section 4).

Our definition of motion and shape average does
not rely on a particular representation of objects (e.g.
explicit vs. implicit, parametric vs. non-parametric),
nor on the particular choice of group (e.g. affine,
Euclidean), nor is it restricted to a particular model-
ing framework (e.g. deterministic, energy-based vs.
probabilistic). For the implementation of our algo-
rithms on deforming contours, we have chosen an im-
plicit non-parametric representation in terms of level
sets, following Osher and Sethian (1988), and we
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have implemented numerical algorithms for integrat-
ing PDEs to converge to the steady-state of an energy-
based functional. However, these choices can be easily
changed without altering the nature of the contribution
of this paper.

Naturally, since shape and motion are computed as
the solution of a nonlinear optimization problem, the
algorithms we propose are only guaranteed to converge
to local minima and, in general, no conclusions can be
drawn on uniqueness. Indeed, it is quite simple to gen-
erate pathological examples where the setup we have
proposed fails. In the experimental section we will
highlight the limitations of the approach when used
beyond the assumptions for which it is designed.

2. Defining Motion and Shape Average

The key idea underlying our framework is that the no-
tion of motion throughout a deformation is very tightly
coupled with the notion of shape average. In particu-
lar, if a deforming object is recognized as moving, there
must be an underlying object (which will turn out to be
the shape average) moving with the same motion, from
which the original object can be obtained with mini-
mum deformations. Therefore, we will model a general
deformation as the composition of a group action g on
a particular object, on top of which a local deformation
is applied. The shape average is defined as the one that
minimizes such deformations.

Figure 2. A model (commutative diagram) of a deforming contour.

Let γ1, γ2, . . . , γn be n “shapes” (we will soon make
the notion precise.) Let the mappings between each pair
of shapes be Ti j

γi = Ti jγ j , i, j = 1 . . . n. (1)

Each comprises the action of a group g ∈ G (e.g.
G = SE(2)) and a pair more general transformations
hi , h j that belong to a pre-defined classH (for instance
diffeomorphisms). The deformations are not arbitrary,
but originate from a common “shape” µ, defined in
such a way that

γi = hi ◦ gi (µ), i = 1 . . . n. (2)

Therefore, in general, following the commutative
diagram of Fig. 2, we have that

Ti j
.= hi ◦ gi ◦ g−1

j (µ) ◦ h−1
j (3)

so that g = gi g
−1
j . Given two or more “shapes” and

a cost functional E : H→ R
+ defined on the set of

diffeomorphisms, the motion gt and the shape average
are defined as the minimizers of

∑n
i=1 E(hi ) subject to

γi = hi ◦gi (µ). Since all that matter in the cost of hi are
the “shapes” before and after the transformation, µi

.=
gi (µ) and γi , we can write, with an abuse of notation,
E(h(µi , γi ))

.= E(µi , γi ). We are therefore ready to
define our notion of motion during a deformation.
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Definition 1. Let γ1, . . . , γn be a collection of com-
pact hypersurfaces embedded in R

N (in this paper we
concentrate on N = 3), which we call pre-shapes. Let
H be a class of diffeomorphisms acting on γi , and let
E :H → R

+ be a positive, real-valued functional. Con-
sider now a group G acting on γi via g(γi ). We say that
ĝ1, . . . , ĝn is a motion undergone by γi , i = 1 . . . n,
if there exists a pre-shape µ̂ such that

ĝ1, . . . , ĝn, µ̂ = arg min
gt ,µ

n∑
i=1

E(hi )

subject to γi = hi ◦ gi (µ) i = 1 . . . n

(4)

The pre-shape µ̂ is called the shape average relative
to the group G, or G-average, and the quantity ĝ−1

i (γi )
is called the shape of γi .

Remark 1 (Invariance). In the definition above, one
will notice that the shape average is actually a pre-
shape, and that there is an arbitrary choice of group
action g0 that, if applied to γi and µ, leaves the def-
inition unchanged (the functional E is invariant with
respect to g0 because Ti j (g ◦ g0, hi ◦ g0, h j ◦ g0) =
Ti j (g, hi , h j ) ∀ g0). For the case of the Euclidean group
SE(N ), a way to see this is to notice that the reference
frame where µ is described is arbitrary. Therefore, one
may choose, for instance, µ = h−1

1 (γ1).

Remark 2 (G-average). Notice that the notion of
shape average above is relative to the particular choice
of group G. For instance, given a number of pre-
shapes γ1, . . . , γn , the shape average µ̂ relative to the
Euclidean group will, in general, be different than the
shape average relative to the affine or the projective
group (e.g. Fig. 3). Therefore, when we talk about av-
erage, we always have to specify the group G, e.g.
Euclidean average, affine average etc.

Remark 3 (Symmetries). In Definition 1 we have pur-
posefully avoided to use the article “the” for the mini-
mizing value of the group action ĝt . It is in fact possible
that the minimum of (4) may not be unique. A partic-
ular case when this occurs is when the pre-shape γ

is (symmetric, or) invariant with respect to an entire
subgroup of G. Another way to say this is that the pre-
shape is symmetric with respect to a subgroup of G.
For instance, consider the set of closed contours de-
scribed in the previous section, and let g0 be such that
g0(γ ) = γ ∀ g0 ∈ G0 ⊂ G. Then, clearly ĝ and ĝ ◦ g0

produce the same value in the functional E , and there-

fore the two are indistinguishable from the data. The
simplest case is a circular contour, which is invariant
with respect to rotations around its center. It is clear
that by matching circles we can detemine the relative
position of their centers, but not the relative orientation
of the reference frame attached to each circle, since
the latter is arbitrary. Notice, however, that the notion
of shape average is still well-defined even when the
notion of motion is not unique. This is because any
element in the symmetry group suffices to register the
pre-shapes, and therefore compute the shape average
(Fig. 3).

In Section 3 we specialize this definition for the case of
a planar contour undergoing Euclidean or affine motion
and differentiable deformations, and we show how to
compute motion, shape average, as well as distances
between shapes.

3. Shape and Deformation of a Planar Contour

In this section we consider the implementation of the
program above for a simple case: two closed planar con-
tours, γ1 and γ2, where we choose as the cost functional
for the deformations h1, h2 either the set-symmetric
difference � of their interior (the union minus the in-
tersection of µi and hi (µi )), or what we call the signed
distance score3 ψ

ψ(µi , γi )
.=

∫
µ̄i

ζ (γi ) dx (5)

where µ̄i denotes the interior of the contour µi and ζ

is the signed distance function of the contour γi ; dx
is the area form on the plane. In either case, since we
have an arbitrary choice of the global reference frame,
we can choose g1 = e, the group identity. We also call
g

.= g2, so that µ2 = g(µ). The problem of defin-
ing the motion and shape average can then be written
as

ĝ, µ̂ = arg min
g,µ

2∑
i=1

E(hi )

(6)
subject to γ1 = h1(µ); γ2 = h2 ◦ g(µ).

As we have anticipated, we choose either E(hi ) =
�(gi (µ), γi ) or E(hi )

.= ψ(gi (µ), γi ). Therefore, abus-
ing the notation as anticipated before Definition 1,
we can write the problem above as an unconstrained
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minimization

ĝ, µ̂ = arg ming,µ φ(γ1, γ2) where

φ(γ1, γ2)
.= E(µ, γ1) + E(g(µ), γ2) (7)

and E is either � or ψ . The estimate ĝ defines the
motion between γ1 and γ2, and the estimate µ̂ defines
the average of the two contours.

If one thinks of contours and their interior, repre-
sented by a characteristic function χ , as a binary image,
then the cost functionals above are just particular cases
of a more general cost functional where each term is
obtained by integrating a function inside and a function
outside the contours

φ =
2∑

i=1

∫
µ̄in

fin(x, γi ) dx +
∫

µ̄out

fout(x, γi ) dx (8)

where the bar in µ̄ indicates that the integral is com-
puted on a region inside or outside µ and we have
emphasized the fact that the function f depends upon
the contour γi . For instance, for the case of the set-
symmetric difference, we have fin = (χγ − 1) and
fout = χγ . To solve the problem, therefore, we need to
minimize the following functional

∫
µ̄in

fin(x, γ1) dx +
∫

µ̄out

fout(x, γ1) dx

+
∫

g(µ̄in)
fin(x, γ2) dx +

∫
g(µ̄out)

fout(x, γ2) dx (9)

which can be written, after a change of variable in the
second two terms and some rearranging, as

∫
µ̄in

fin(x, γ1) dx +
∫

µ̄out

fout(x, γ1) dx

+
∫

µ̄in

fin(g(x), γ2)|Jg| dx +
∫

µ̄out

fout(g(x), γ2)|Jg| dx

(10)∫
µ̄in

fin(x, γ1) + fin(g(x), γ2)|Jg| dx

+
∫

µ̄out

fout(x, γ1) + fout(g(x), γ2)|Jg| dx (11)

where |Jg| is the determinant of the Jacobian of the
group action g. This makes it easy to compute the com-

ponent of the first variation of φ along the normal di-
rection to the contour µ, so that we can impose

∇µφ · N = 0 (12)

to derive the first-order necessary condition. If we
choose G = SE(2), an isometry, it can be easily shown
that (Zhu et al., 1995)

∇µφ = fin(x, γ1) − fout(x, γ1)

+ fin(g(x), γ2) − fout(g(x), γ2) (13)

3.1. Representation of Motions

For the specific case of matrix Lie groups (e.g. G =
SE(2)), there exist twist coordinates ξ that can be rep-
resented as a skew-symmetric matrix ξ̂ so that4

g = eξ̂ and
∂g

∂ξi
= ∂ξ̂

∂ξi
g (14)

where the matrix ∂ξ̂

∂ξi
is composed of zeros and ones

and the matrix exponential can be computed in closed
form. In Appendix A we give the expression of the
exponential for the case of SO(2), SE(2), SO(3), SE(3),
known as Rodrigues’ formula.

3.2. Variation with Respect to the Group Action

To compute the variation of the functional φ with re-
spect to the group action g, we first notice that the first
two terms in φ do not contribute since they are indepen-
dent of g. Therefore, we are left with having to compute
the variation of∫

g(µ̄in)
fin(x, γ2) dx +

∫
g(µ̄out)

fout(x, γ2) dx. (15)

To simplify the derivation, we consider the case of
SE(3). Other cases follow along similar lines (ex-
cept for the Jacobian of the transformations, which
is one in the isometric case); we also note that
both terms above are of the generic form A(g)

.=∫
g(µ̄) f (x) dx. Therefore, we consider the variation of

A with respect to the components of the twist ξi , ∂ A
∂ξi

,
which we will eventually use to compute the gradient
with respect to the natural connection ∇Gφ = (̂ ∂φ

∂ξ
)g.

We first rewrite A(g) using the change of measure
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∫
g(µ̄) f (x) dx = ∫

µ̄
f ◦ g(x)|Jg| dx which leads to

∂ A(g)
∂ξi

= ∫
µ̄

∂
∂ξi

( f ◦ g(x))|Jg|dx+∫
µ̄

( f ◦ g(x)) ∂
∂ξi

|Jg|dx
and note that the Euclidean group is an isometry and
therefore the determinant of the Jacobian is one and
the second integral is zero. The last equation can be
re-written, using Green’s theorem, as

∫
g(µ)〈 f (x) ∂g

∂ξi
◦

g−1(x), N 〉ds = ∫
µ
〈 f ◦ g(x) ∂g

∂ξi
, g∗N 〉ds where g∗ in-

dicates the push-forward. Notice that g is an isometry
and therefore it does not affect the arc length; we then
have

∂ A(g)

∂ξi
=

∫
µ

f (g(x))

〈
∂ξ̂

∂ξi
g, g∗N

〉
ds (16)

After collecting all the partial derivatives into an op-
erator ∂φ

∂ξ
, we can write the evolution of the group

action.

3.3. Evolution

The algorithm for evolving the contour and the group
action consists of a two-step process where an initial
estimate of the contour µ̂ = γ1 is provided, along with
an initial estimate of the motion ĝ = e, the identity of
the group.5 The contour and motion are then updated
in an iterated minimization where motion is updated
according to

dĝ

dt
=

̂(
∂φ

∂ξ

)
ĝ (17)

Notice that this is valid not just for SE(2), but for any
(finite-dimensional) matrix Lie group, although there
may not be a closed-form solution for the exponential
map like in the case of SE(3) and its subgroups. In prac-
tice, the group evolution (17) can be implemented in
local (exponential) coordinates by evolving ξ defined
by g = eξ̂ via dξ

dt = ∂φ

∂ξ
. In the level set framework, the

derivative of the cost function φ with respect to the co-
ordinates of the group action ξi can be computed as the
collection of two terms, one for fin, one for fout where
∂φ

∂ξi
= ∫

g(γ1,2)〈 ∂g(x)
∂ξi

, f{in,out}(g(x), γ1,2)J (g∗T )〉ds. The
contour µ̂ evolves according to

dµ̂

dt
= ( fin(x, γ1) − fout(x, γ1)

+ fin(g(x), γ2) − fout(g(x), γ2))N . (18)

As we have already pointed out, the derivation can be
readily extended to surfaces in space.

3.4. Distance Between Shapes

The definition of motion ĝ and shape average µ̂ as a
minimizer of (7) suggests defining the distance6 be-
tween two shapes as the “energy” necessary to deform
one into the other via the average shape:

d(γi , γ j )
.= E(γi , T (ĝ, ĥ)γ j ). (19)

For instance, for the case of the set-symmetric differ-
ence of two contours, we have

d�(γ1, γ2)
.=

∫
χµ̂ + χγ1 − 2χµ̂χγ1 + χĝ(µ̂)

+ χγ2 − 2χĝ(µ̂)χγ2 dx (20)

and for the signed distance score we have

dψ (γ1, γ2)
.=

∫
ˆ̄µ
ζ (γ1) dx +

∫
ĝ( ˆ̄µ)

ζ (γ2) dx. (21)

In either case, given two contours, a gradient flow al-
gorithm based on Eqs. (17) and (18), when it converges
to the global minimum, returns as the minimum value
the distance between the shapes corresponding to the
two contours.

4. Moving Average and Tracking

The discussion above assumes that an unsorted col-
lection of shapes is available, where the deformation
between any two shapes is “small” (modulo G), so that
the whole collection can be described by a single av-
erage shape. Consider however the situation where an
object is evolving in time, for instance Fig. 5. While
the deformation between adjacent time instants could
be captured by a group action and a small deformation,
as time goes by the object may change so drastically
that talking about a global time average may not make
sense.

One way to approach this issue is by defining a notion
of “moving average,” similar to what is done in time se-
ries analysis.7 In order to adapt this model to our case,
the most significant change is the representation of the
uncertainty during the evolution. In classical linear time
series, uncertainty is modeled via additive noise. In our
case, the uncertainty is an infinite-dimensional defor-
mation h that acts on the measured contour. So the
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model becomes

{
µ(t + 1) = g(t)µ(t)

γ (t) = h(µ(t))
(23)

where µ(t) represents the moving average of order
k = 1. The procedure described in Section 3, initialized
with µ(0) = γ1, provides an estimate of the moving av-
erage of order 1, as well as the tracking of the trajectory
g(t) in the group G, which in (23) is represented as the
model parameter. Note that the procedure in Section 3
simultaneously estimates the state µ(t) and identifies
the parameters g(t) of the model (23). It does so, how-
ever, without imposing restrictions on the evolution of
g(t). If one wants to impose additional constraints on
the motion parameters, one can augment the state of
the model to include the parameters g.




g(t + 1) = eξ̂ (t)g(t)

µ(t + 1) = g(t)µ(t)

γ (t) = h(µ(t))

(24)

and specify restrictions on ξ . This, however, is beyond
the scope of this paper. In Fig. 5 we show the results
of tracking a storm with a moving average of order
one.

5. Simultaneous Approximation and
Registration of Non-Equivalent Shapes

So far we have assumed that the given shapes are ob-
tained by moving and deforming a common underlying
“template” (the average shape). Even though the given
shapes are not equivalent (i.e. there is no group action g
that maps one exactly onto the other), g is found as the
one that minimizes the cost of the deviation from such
an equivalence. In the algorithm proposed in Eqs. (17)
and (18), however, there is no explicit requirement that
the deformation between the given shapes be small.
Therefore, the procedure outlined can be seen as an al-
gorithm to register shapes that are not equivalent under
the group action. A registration is a group element ĝ
that minimizes the cost functional (4).

To illustrate this fact, consider the two considerably
different shapes shown in Fig. 7, γ1, γ2. The simulta-
neous estimation of their average µ, for instance rela-
tive to the affine group, and of the affine motions that
best matches the shape average onto the original ones,

g1, g2, provides a registration that maps γ1 onto γ2 and
viceversa: g = g2g−1

1 .
In Fig. 9 we extend this approach to the simulta-

neous approximation and registration of a collection
of 4 images of the corpus callosum. This is done by
running a joint segmentation algorithm that simultane-
ously segments all images. Modulo smoothness con-
straints, this procedure converges in steady-state to the
minimum squared-error thresholding of the collection
of images. This is in general better than first segment-
ing images individually, and then running the proce-
dure we have described in previous section to binary
shapes.

6. Experiments

In this section we report the result of various exper-
iments on both binary shapes and grayscale images.
Since our procedure is based on a gradient descent,
in principle it is subject to convergence to local min-
ima. However, in all the experiments we have con-
ducted, convergence is reached from a generic initial
state (e.g. a circle or square on the plane, and a sphere in
space).

Figure 3 illustrates the difference between the mo-
tion and shape average computed under the Euclidean
group, and the affine one. The three examples show
the two given shapes γi , the mean shape registered
to the original shapes, gi (µ) and the mean shape µ.
Notice that affine registration allows us to simultane-
ously capture the square and the rectangle, whereas the
Euclidean average cannot be registered to either one,
and is therefore only an approximation.

Figure 4 compares the effect of choosing the signed
distance score (left) and the set-symmetric difference
(right) in the computation of the motion and aver-
age shape. The first choice results in an average that
captures the common features of the original shapes,
whereas the second captures more of the features in
each one. Depending on the application, one may pre-
fer one or the other.

Figure 5 shows the results of tracking a storm. The
affine moving average is computed, and the resulting
affine motion is displayed. The same is done for the
jellyfish in Fig. 6.

Figures 7 and 8 are meant to challenge the assump-
tions underlying our method. The pairs of shapes cho-
sen, in fact, are not simply local deformations of one
another. Therefore, the notion of shape average is not
meaningful per se in this context, but serves to compute
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Figure 3. Euclidean (top) vs. affine (bottom) registration and average. For each pair of objects γ1, γ2, the registration g1(µ), g2(µ) relative to
the Euclidean motion and affine motion is shown, together with the Euclidean average and affine average µ. Note that the affine average can
simultaneously “explain” a square and a rectangle, whereas the Euclidean average cannot.

Figure 4. Signed distance score (left) vs. set-symmetric difference (right). Original contours (γ1 on the top, γ2 on the bottom), registered
shape gi (µ) and shape average µ. Note that the original objects are not connected, but are composed by a circle and a square. The choice of
pseudo-distance between contours influences the resulting average. The signed distance score captures more of the features that are common to
the two shapes, whereas the symmetric difference captures the features of both.

Figure 5. Storm (first row) a collection of images from EUMETSAT c©2001, affine motion of the storm based on two adjacent time instances,
(bottom) moving average of order 1.
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Figure 6. Jellyfish. Affine registration (top), moving average and affine motion (bottom) for the jellyfish in Fig. 1. Last row: affine scales along
x and y, and rotation about z during the sequence.

Figure 7. Registering non-equivalent shapes. Left to right: two binary images representing two different shapes; affine registration; corre-
sponding affine shape; approximation of the original shapes using the registration of the shape average based on the set-symmetric difference.
Results for the signed distance score are shown in Fig. 8.

the change of (affine) pose between the two shapes
(Fig. 7). Nevertheless, it is interesting to observe how
the shape average allows registering even apparently
disparate shapes. Figure 8 shows a representative ex-
ample from an extensive set of experiments. In some
cases, the shape average contains disconnected com-
ponents, in some other it includes small parts that are
shared by the original dataset, whereas in others it re-
moves parts that are not consistent among the initial
shapes (e.g. the tails). Notice that our framework is not
meant to capture such a wide range of variations. In
particular, it does not possess a notion of “parts” and it
is neither hierarchical nor compositional. In the context
of non-equivalent shapes (shapes for which there is no

group action mapping one exactly onto the other), the
average shape serves purely as a support to define and
compute motion in a collection of images of a given
deforming shape.

Figure 9 shows the results of simutaneously seg-
menting and computing the average motion and reg-
istration for 4 images from a database of magnetic res-
onance images of the corpus callosum.

Finally, Fig. 10 shows an application of the same
technique to simultaneously register and average two
3D surfaces. In particular, two 3D models in different
poses are shown. Our algorithm can be used to register
the surfaces and average them, thus providing a natural
framework to integrate surface and volume data.
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Figure 8. Biological shapes. For the signed distance score, we show the original shape with the affine shape average registered and superimposed.
It is interesting to notice that in some cases the average shape is disconnected.

Figure 9. Corpus Callosum. (top row) a collection of (MR) images from different patients (courtesy of N. Dutta and A. Jain (2001), further
translated, rotated and distorted to emphasize their misalignment, alignment and (bottom) average template corresponding to the affine group.
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Figure 10. 3D Averaging and registration. (left) two images of 3D
models in different poses (center) registered average (right) affine
average. Note that the original 3D surfaces are not equivalent. The
technique presented allows “stitching” and registering different 3D
models in a natural way.

Appendix A: Rodrigues’ Formula

We describe Rodrigues’ formula for the case of G =
SE(3). The cases of SO(3), SE(2), SO(2) follow directly
as a special case. Each element (rigid motion) g is rep-
resented as a matrix:

g =
[

R T

0 1

] ∣∣∣∣ T ∈ R
3, R ∈ SO(3).

The group operations in SE(3) coincide with the group
operations of GL(4), so that the composition of rigid
motions may be represented as a matrix multiplication:
g1 ◦ g2 = G1G2. The tangent space at the origin of
SE(3) has the structure of a Lie algebra, and is called
se(3). Elements of se(3) are called “twists,” and may
be represented in so-called “Plücker coordinates” as

ξ̂
.= ġg−1 =

[
ω̂ v

0 0

]
, where v ∈ R

3

and

ω̂
.=




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




belongs to the Lie algebra of the skew-symmetric ma-
trices so(3)

.= {S | ST = −S}, which is isomorphic to
R

3 via ω̂ ↔ [ω1 ω2 ω3]T ∈ R
3. An explicit expression

for the exponential map on SE(3) is given by

[
R T

0 1

]
= exp

([
ω̂ v

0 0

])

where

R
.= eω̂ = I + ω̂

‖ω‖ sin(‖ω‖) + ω̂2

‖ω‖2
(1 − cos(‖ω‖))

(25)

T
.= 1

‖ω‖ [(I − eω̂)ω̂ + ωωT ]v. (26)

The exponential map may be inverted locally for com-
puting v and ω from R and T when ‖ω‖ ∈ (0 , π ).
In the case ‖ω‖ = 0, the exponential map is defined
simply by

R
.= I (27)

T
.= v. (28)

Note that the exponential map, together with the iso-
morphism of so(3) with R

3, gives a local coordinate
parametrization of SE(3), which is called the canonical
exponential representation. The case of SE(2) can be
derived simply as a special case of SE(3).
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Notes

1. An anonymous reviewer suggested that the recent work of Davies
et al. (2001) also addresses shapes with no natural landmarks. The
work of Camion and Younes (2001) was also suggested, although
it appeared after our manuscript was submitted.

2. Local in this context is intended in the space of deformation
functions h, rather than local to the particular object, for instance
when the deformation only affects a “part” of the object.

3. The rationale behind this score is that one wants to make the
integral of the signed distance transform of one contour positive
as possible outside the other contour, and as negative as possible
inside.

4. The “widehat” notation ,̂ which indicates a lifting to the Lie
algebra, should not be confused with the “hat” ,̂ which indicates
an estimated quantity.

5. The identity of the group SE(3) is e = (R, T ) = (O, I ), and should
obviously not be confused with the base of the natural exponen-
tial.

6. Here we use the term distance informally, since we do not require
that it satisfies the triangular inequality. The term pseudo-distance
would be more appropriate.
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7. For instance, consider a point x(t) moving on the plane according
to a simple linear dynamics, observed through a “noisy” measure-
ment y(t): 


x(t) = A1x(t − 1) + A2x(t − 2) + · · ·

+Akx(t − k) + v(t)

y(t) = Cx(t) + w(t).

(22)

This model describes a dynamical system where the state x can be
interpreted as the (autoregressive) moving average of y. Without
loss of generality one may assume that k = 1 since the difference
equation above can always be reduced to first-order by augment-
ing the dimension of the state (see Ljung (1987) for details).
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