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Abstract. We propose a model of the shape, motion and appearance of a se-
quence of images that captures occlusions, scene deformations, arbitrary view-
point variations and changes in irradiance. This model is based on a collection
of overlapping layers that can move and deform, each supporting an intensity
function that can change over time. We discuss the generality and limitations of
this model in relations to existing ones such as traditional optical flow or motion
segmentation, layers, deformable templates and deformotion. We then illustrate
how this model can be used for inference of shape, motion, deformation and ap-
pearance of the scene from a collection of images. The layering structure allows
for automatic inpainting of partially occluded regions. We illustrate the model
on synthetic and real sequences where existing schemes fail; we implement our
gradient-based infinite-dimensional optimization using level set methods.

1 Introduction

We are interested in modeling video sequences where changes occur over time due to
viewer motion, motion or deformation of objects in the scene – including occlusions
– and appearance variations due to the motion of objects relative to the illumination.
A suitable model will trade off generality, by allowing variations of shape, motion and
appearance, with tractability, by being amenable to inference and analysis. The goal of
modeling is to support inference, and depending on the application one may be more
interested in recovering shape (e.g. in shape analysis, classification, recognition, reg-
istration), or recovering motion (e.g. tracking, optical flow), or appearance variations
(e.g. segmentation). Traditionally, therefore, the modeling task has been approached by
making strict assumptions on some of the unknowns in order to recover the others, for
instance the brightness-constancy assumption in optical flow, or the affine warping in
shape analysis and registration. This is partly justified because in any image-formation
model there is ambiguity between the three factors – shape, motion and appearance –
and therefore the most general inference problem is ill-posed. In some applications,
for instance video compression, the ambiguity is moot since all that matters is for the
model to capture the sequence as faithfully and parsimoniously as possible. Neverthe-
less, since all three factors affect the generation of the image, a more germane approach
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would call for modeling all three jointly, then letting the analysis dictate the responsi-
bility of each factor, and the application dictate the choice of suitable regularizers to
make the inference algorithms well posed. We therefore concentrate our attention on
modeling, not on any particular application. So, this is not yet another paper on track-
ing, nor on motion segmentation, nor on optical flow, nor on shape registration. It is a
little bit of each.

We propose a model of image formation that is general enough to capture shape, mo-
tion and appearance variations (Sect. 2), and simple enough to allow inference (Sect.
3). We want to be able to capture occlusion phenomena, hence our model will entail
a notion of hierarchy or layering; we want to capture image variability due to arbi-
trary changes in viewpoint for non-planar objects, hence our model will entail infinite-
dimensional deformations of the image domain. Such deformations can be due to
changes in viewpoint for a rigid scene, or changes of shape of the scene seen from
a static viewpoint, or any combination thereof. Our model will not attempt to resolve
this ambiguity, since that requires higher-level knowledge. Furthermore, we want to
capture large-scale motion of objects in the scene, as opposed to deformations, hence
we will allow for a choice of a finite-dimensional group, e.g. Euclidean or affine. Fi-
nally, we want to capture changes in appearance, hence scene radiance will be one of
the unknowns in our model. Changes in radiance can come from changes in reflectance
or changes in illumination, including changes in the mutual position between the light
sources and the scene; again we do not attempt to resolve this ambiguity, since that re-
quires higher-level knowledge. The image-formation model we propose is not the most
general that one can conceive; far from it. Indeed, it is far less general than the simplest
models considered acceptable in Computer Graphics, and we illustrate the lack of gen-
erality in Sect. 2.1. Nevertheless, it is more general than any other model used so far
for motion analysis in Computer Vision, as we discuss also in Sect. 2.1, and is complex
enough to be barely tractable with the analytical and computational tools at our disposal
today. We pose the inference problem within a variational framework, involving partial
differential equations, integrated numerically in the level set framework [15], although
any other computational scheme of choice would do, including stochastic gradients or
Markov-chain Monte Carlo. The point of this paper is to propose a model and show that
it can be inferred with at least one particular computational scheme, not to advocate a
particular optimization technique.

1.1 Relation to Existing Work

This work relates to a wide body of literature in scene modeling, motion estimation,
shape analysis, segmentation, and regsitration which cannot be properly reviewed in
detail in the limited space available. In Sect. 2.1 we illustrate the specific relationship
between the model we propose and existing models. These include Layers [20, 12],
which only model affine deformations of the domain and can therefore only capture
planar scenes under small viewer motion or small aperture, and where there is no ex-
plicit spatial consistency within each layer and the appearance of each layer is fixed. As
we will illustrate, our model allows deformations that can model arbitrary viewpoint
variation, layer deformation and enforce spatial coherence within each layer. One could
think of our work as a generalization of existing work on Layers to arbitrary view-
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point changes, or arbitrary scene shape, and to changes in radiance (texture), all cast
within a principled variational framework. Our work relates to a plethora of variational
algorithms for optical flow computation, for instance [18, 1, 8] and references therein,
except that we partition the domain and allow arbitrary smooth deformations as well
as changes in appearance (that would violate the brightness constancy constraints that
most work on optical flow is based on, with a few exceptions, e.g. [10]). It also relates
to various approaches to motion segmentation, where the domain is also partitioned
and allowed to move with a simple motion, e.g. Euclidean or affine, see for instance
[7] and references therein. Such approaches do not allow deformations of the region
boundaries, or changes in the intensity within each region. Furthermore, they realize a
partition, rather than a hierarchy, of domain deformations, so our model can be thought
of as motion segmentation with moving and deforming layers with changes in inten-
sity and inpainting [3]. In this, our work relates to [19], except that we allow layers
to overlap. So, our work can be though of as a layered version of Deformotion with
changes in region intensities. Also very related to our work is work done by [17] in
registering one distance function to another using a rigid and non-rigid transformation.
Our work relates to deformable templates [14, 9], in the sense that each of our layers
will be a deformable template. However, we do not know the shape and intensity pro-
file of the template, so we estimate that along with the layering structure. Our work
is also related to active appearance models [6, 2], in that we seek the same goal, al-
though rather than imposing regularization of shape and appearance by projection onto
suitably inferred linear subspaces we employ generic regularizers. One can therefore
think of our work as a generalization of active appearance models to smooth shape
and intensity deformations, cast in a variational framework. Of course this work relates
more generically to active contours, e.g. [4, 13, 5, 16] and references therein. In the next
section we introduce our model, and in Sect. 3 we illustrate our approach to infer its
(infinite-dimensional) constitutive elements.

2 Modeling

We represent a scene as a collection of L overlapping layers. Each layer, labeled by an
index l = 1, . . . , L, is a function that has associated with it a domain, or shape Ωl ⊂ R

2,
and a range, or radiance ρl : Ωl → R

+. Layer boundaries model the occlusion process,
and each layer l undergoes a motion, described by a (finite-dimensional) group action
gl, for instance gl ∈ SE(2) or A(2), and a deformation, or warping, described by a
diffeomorphism wl : Ωl → R

2, in order to generate an image I at a given time t.
Warping models changes of viewpoint for non-planar scenes, or actual changes in the
shape of objects in the scene. Since each image is obtained from the given scene after a
different motion and deformation, we index each of them by t: gl

t, wl
t, and It. Finally,

since layers occlude each other, there is a natural ordering in l which, without loss of
generality, we will assume to coincide with the integers: Layer l = 1 is occluded by
layer l = 2 and so on. So, the only layer that will contribute to the intensity at a pixel
in a given image is the frontmost that intersects the warped domain. For simplicity we
assume that Ω0 = R

2 (the backmost layer, or “the background”). With this notation,
the model of how the value of the generic image It : Ω0 → R

+ at the location x ∈
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Ω0 ⊂ R
2 is generated can be summarized as It

(
gl

t ◦wl
t(x)

)
= ρl(x), with x ∈ Ωl, l =

max{k | x ∈ Ωk}. To simplify the notation, we call xl
t

.= gl
t ◦ wl

t(x), which sometimes
we indicate, for simplicity, as xt, so that

{
It

(
xl

t

)
= ρl(x), x ∈ Ωl

xl
t = gl

t ◦ wl
t(x), l = max{k | x ∈ Ωk}.

(1)

Our goal in this work is to infer the radiance family {ρl}l=1,...,L, the shape
family {Ωl}l=1,...,L, the motions {gl

t}l=1,...,L;t=1,...,N and the deformations
{wl

t}l=1,...,L;t=1,...,N that minimize the discrepancy of the measured images from the
ideal model (1), subject to generic regularity constraints. Such a discrepancy is mea-
sured by a cost functional φ(Ωk, ρk, wk

t , gk
t ) to be minimized as

φ
.=

N∑

t=1

∫

Ω0

(
It(xt) − ρl(wl

t

−1 ◦ gl
t

−1
(xt))

)2
dxt +

+λ

L∑

k=1

∫

Ωk

‖∇ρk(x)‖2dx + µ

L,N∑

k,t=1

∫

Ωl

r(wk
t (x))dx (2)

subject to l = max{k | x ∈ Ωk}.

Here r is a regularizing functional, for instance r(w) .= |ẇ| + 1
|ẇ| , and λ, µ are positive

constants. Note that l is a function, specifically l : Ω0 → Z
+.

2.1 Generality of the Model

It can be easily shown that eq. (1) models images of 3-D scenes with piecewise smooth
geometry exhibiting Lambertian reflection with piecewise smooth albedo1 viewed un-
der diffuse illumination from an arbitrarily changing viewpoint. It does not capture
global or indirect illumination effects, such as cast shadows or inter-reflections, com-
plex reflectance, such as specularities, anisotropies or sub-surface scattering. These are
treated as modeling errors and are responsible for the discrepancy between the model
and the images, which is measured by φ in eq. (2). We lump these discrepancies to-
gether with sensor errors and improperly call them “noise.” Although far from general,
(1) is nevertheless a more ambitious model than has ever been used in the context of
motion estimation and tracking. In fact, the reader can easily verify that many existing
models are special cases of (1). In particular, L = 0, g = Id, λ = 0 yields traditional
optical flow, where ρ = It+1. There are too many variants of this model to review here,
depending on the choice of norm and regularizers, stemming from the ancestor [11].
Choosing L = 1, w = Id, λ = 0 yields motion segmentation, that has also been
addressed by many, see for instance [7] and references therein for the case of affine
motion g ∈ A(2). L = 1, ρ = const, r(w) = ‖w‖ yields a model called Deformotion

1 The model can be further generalized by allowing ρl to be vector-valued to capture a set of
radiance statistics such as the coefficients of a filter bank or other texture descriptors, but this
is beyond the scope of this paper.
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in [19], and has also been extended to grayscale images L = 1, r(w) = ‖w‖. Choosing
L > 1, w = Id, Ωk unconstrained and g ∈ A(2) would yield a variational version of
the Layers model [20], that to the best of our knowledge has never been attempted. Note
that this is different than simpler variational multi-phase motion segmentation, since in
that case the motion of a phase affects the shape of neighboring phases, whereas in
the model (1) layers can overlap without distorting underlying domains. One can think
of the Layer model as a multi-phase motion segmentation with inpainting [3] of oc-
cluded layers and shape constraints. The model also relates to deformable templates,
where ρ = const in the traditional model [9] and ρ = smooth in the more general ver-
sion [14]. Another relevant approach is Active Appearance Models where the regions,
warping and radiances are modeled as points in a linear space. The model (1) does not
impose such restrictions, and render the problem well-posed by generic regularization
instead.

3 Inference

Minimizing the cost functional in (2) is a tall order. It depends upon each domain
boundary (a closed planar contour) Ωk, its deformation (a flow of planar diffeomor-
phisms) wk

t , the radiance (a piecewise smooth function) ρk, all of which are infinite-
dimensional unknowns. In addition, it depends on a group action per layer per instant,
gk

t , and on the occlusion model, which is represented by the discrete-valued function
l(x) = max{k | x ∈ Ωk}, and all of this for each layer k = 1, . . . , K . The first simpli-
fication is to notice that, as long as each layer is a compact region bounded by a simple
smooth curve, there is no loss of generality in assuming that Ωk are fixed. This is be-
cause each diffeomorphism wk

t will act transitively on it. Therefore, we assume that
each region Ωk is a circle in most of the examples. While there is no loss of generality,
there is a loss of energy, in that if we were allowed to also optimize with respect to the
initial regions we would be able to reach each deforming layer with less energy. This,
however, does not enhance the generality of the model, hence we will forgo it (see Fig.
1 for an illustration of this effect).

Apart from this simplification, we proceed by minimizing the functional (2) using
simultaneous gradient flows with respect to the groups (motion), the radiances (appear-
ance) and the diffeomorphisms (deformation). The detailed evolution equations are a bit
complicated depending upon the number of layers and the occlusion structure between
layers. To help avoid excessive subscripting and superscripting and multiple-case defi-
nitions according to occlusion relationships, we will outline some of the key properties
of the various gradient flows for the case of a background layer Ω0, a single image I ,
and a single foreground layer Ω1. We will also, to help keep the illustration simple,
assume that the group action g0 and the warp w0 for the background layer are simply
the identity transforms. This is the simplest possible scenario that will allow us to still
show the key properties of the gradient flows.

Let x̂ = g1(w1(x)) and Ω̂1 = g1(w1(Ω1)). With this notation, we may write
image-dependent terms in our energy functional as follows.

E =
∫

Ω̂1

(
I(x̂) − ρ1(x)

)2
dx̂ +

∫

Ω0\Ω̂1

(
I(x) − ρ0(x)

)2
dx (3)
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If g denotes any single parameter (e.g. horizontal translation) of the group g1, then
differentiating yields

∂E

∂g
=

∫

∂Ω̂1

〈
∂x̂

∂g
, N̂

〉((
I(x̂)−ρ1(x)

)2−
(
I(x̂)−ρ0(x̂)

)2
)
dŝ (4)

+2
∫

Ω̂1

(
I(x̂)−ρ1(x)

)〈
∇ρ(x), inv

[(
w1)′

] ∂

∂g
inv[g1](x̂)

〉
dx̂

where N̂ and dŝ denote the outward unit normal and the arclength element of ∂Ω̂1

respectively. We are able to note two things. First, the update equations for the group
involve measurements both along the boundary of its corresponding layer (first integral)
as well as measurements within the layer’s interior (second integral). Notice that this
later integral vanishes if a constant radiance ρ is utilized for the layer. We also see that
it is not necessary to differentiate the image data I . Derivatives land on the estimated
smooth radiance ρ instead, which is a significant computational perk of our model that
results in considerable robustness to image noise.

A similar gradient structure arises for the case of the infinite dimensional warp w
(boundary based terms and region based terms for each layer similar to previous inte-
grals). However, additional terms arise in the gradient flow equations for w depending
upon the choice of regularization terms in the energy functional (smoothness penalties,
magnitude pentalties etc.).

The curve evolution is also similar to the boundary based term for the evolution of
the g’s:

∂C

∂t
= −

((
I(x̂)−ρ1(x)

)2−
(
I(x̂)−ρ0(x̂)

)2
)
N̂ (5)

Finally, the optimality conditions for the smooth radiance functions ρ0 and ρ1 are
given by the following Poisson-type equations.

∆ρ1(x) = λ
(
ρ1(x) − I(x̂)

)
, x ∈ Ω1 (6)

∆ρ0(x) =
{

0, x ∈ Ω̂1

λ
(
ρ0(x) − I(x)

)
, x ∈ Ω0 \ Ω̂1 (7)

Notice that the background radiance ρ0 is “inpainted” in regions occluded by the fore-
ground layer Ω1 by harmonic interpolation (as it satisfies Laplace’s equation ∆ρ0 =0)
of values along the boundary of Ω̂1.

4 Experiments

The first simple experiment is meant to illustrate that there is no lack of generality in the
model by assuming that the shape of the initial regions Ω is fixed. This is because the
transformations g and w act transitively to obtain regions bounded by general simple,
closed, smooth planar contours. In Fig. 1 we illustrate this point by allowing a circular
region to capture the motion and deformation of a rectangle. This simulation involves
one background layer, one foreground layer, and one set of transformations g and w. We
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Fig. 1. Rectangle Captured By a Circle: The shape of the region is fixed to be a circle (left), and
the appearance of the images (in this case a simple binary image of a rectangular domain) is
captured by its motion g (middle) and deformation w (right) without loss of generality

can simultaneously find g and w, but in this experiment the similarity transformation g
is allowed to reach steady state and then the warp w is found. The data fidelity term used
is a Mumford-Shah term, so the radiances representing each layer are smooth functions.
Figure 1 shows the initial circle placed over the image and then the image with the sim-
ilarity transformation at steady state; Finally, the warp w is applied. Adding the regions
Ω to the model, therefore, would only simplify the optimization procedure, and allow
us to reach various shapes with less energy, but not add to the generality of the model.

In the next experiment we illustrate the capability of our model to track deforming
layers. In Figure 2 we show three sequences of an image where a deflating balloon is
undergoing a rather errating motion while deforming from an initial waterdrop shape to
a circular one, finally to a spermatozoidal shape. On the top row of Fig. 2 we show the
layer boundaries for a model that only allow for affine deformations of the initial con-
tour (a circle). This is essentially a variational implementation of the model of [20]. As it
can be seen, it captures the gross motion of the balloon, but it cannot capture the subtler

Fig. 2. Tracking a Balloon: Three sample views are shown from a sequence of a deflating baloon
moving with an erratic motion while changing its shape from a drop-like shape to a circle. In the
top row we show the boundary of the first layer as estimated by an affine layer model that does
not allow for layer deformation, akin to a variational implementation of traditional layer models.
As it can be seen, the model tracks the motion of the layer, but it fails to capture its deformation.
On the bottom row we show the same three images with the first layer superimposed, where
the layer is allowed to both move (affinely) and deform (diffeomorphically), yielding 12% lower
RMS residual error, and capturing the subtler shape variations.
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Fig. 3. Original Tree Background 300x300 image

shape variations. The second row shows the same three sample images with the bound-
ary of the first layer superimposed, where the layer is allowed to deform according to
the model we have introduced. Again the data fidelity term used is a Mumford-Shah
term so the radiances representing each layer are smooth functions. As it can be seen,
the layer changes shape to adapt to the deforming baloon, all while capturing its rather
erratic motion. The average RMS error per image for the affine layer model is 30.87,
whereas the residual for the case of the deforming layers is 5.51, corresponding to a
12% improvement. More importantly, the phenomenology of the scene, visible in the
figure, has been correctly captured.

Figure 3 shows a 300x300 image of a tree that was used in an experiment that al-
lows the foreground boundary (contour) to move and allows separate transformations
for the foreground and background layers to be found. Figure 4 shows 100x100 im-
ages that have been cut out of Figure 3 that were used for this experiment. Figure 4
shows this example that has a rigid transformation for the foreground layer and has
a separate rigid transformation for the background layer. The contour that bounds the

Fig. 4. Curve evolution with background and foreground transformations: The 100x100 images
here are taken from Fig 3. The top row shows the initial curve, the bottom row shows the final
segmentation and registration of the tree. A transform is computed for the background as well
and gives rise to the next Figure 5.



Dynamic Shape and Appearance Modeling Via Moving and Deforming Layers 435

Fig. 5. Reconstructed Tree Background: This image is the smooth approximation of the back-
ground ρ0 given by the background regions from the three images in Figure 4

foreground layer is allowed to evolve to capture the tree. The reconstructed background
function is shown in Figure 5.

In the next experiment we illustrate all the features of our model by showing how
it allows recovering the background behind partially occluded layers while recovering
their motion and deformation. In Figure 6 we show a few samples from this dataset
where the silhouette of a moving hand forms a victory sign while moving the relative
position between the fingers. The background, which is partially occluded, is a spiral.
Here we use the average shape as the initial shape of the foreground layer to find its

Fig. 6. Victory sign, with deforming hand, moving in front of a partially occluded background
portraying a spiral. The goal here is to recover the radiance of each layer (the spiral in the back-
ground and the constant black intensity of the hand), as well as the motion and deformation of
the foreground layer. Note that current layer models based only on affine motion would fail to
capture the phenomenology of this scene by over-segmenting the region into three regions, each
moving with independent affine motion. Our model captures the overall motion of the layer with
an affine group, and then the relative motion between the fingers as a deformation, as we illustrate
in the next figure 7.
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w1 w2
w3

Image 1 Image 2 Image 3

Layer 1 Layer 2

g1 g2 g3

Fig. 7. Multiple Layers Mapping onto Multiple Images: The inference process returns an estimate
of the albedo in each layer (top). Since we are assuming smooth albedo, the spiral is smoothed.
The deformation of each layer is estimated (second row) together with its affine motion, to yield
an approximation of the image (third row). This is used for comparison with the measured images
(bottom row) that drives the optimization scheme.
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affine motion, and then the diffeomorphic warp wi. Again we assume smooth radiance
within each layer, so when we recover the background layer we will only be able to
show a slightly smoothed version of the spiral (of course we could further segment the
black spiral from the background and thus obtain sharp boundaries, but this is standard
and therefore we do not illustrate it here.)

In Fig. 7 we illustrate the results of this experiments, arranged to summarize the
modeling process. On the top row we show the recovered layers. Since we are assuming
a smooth radiance within each layer, we can only recover a smoothed version of the
spiral. These layers are deformed according to a diffeomorphism, one per layer, defined
on the domain of the layer (second row) and then moved according to an affine motion.
The third row shows the image generated by the model, which can therefore be though
of as a generative (although deterministic) model since it performs comparison at the
image level, not via some intermediate feature. The corresponding images are displayed
in the last row, with the layers superimposed for comparison.

5 Discussion

We have presented a generative model of the appearance (piecewise smooth albedo),
motion (affine transformation) and deformation (diffeomorphism) of a sequence of im-
ages that include occlusions. We have used this model as a basis for a variational opti-
mization algorithm that simultaneously tracks the motion of a number of overlapping
layers, estimates their deformation, and estimates the albedo of each layer, including
portions that were partially occluded. Where no information is available, the layers are
implicitly impainted by their regularizers.

This model generalizes existing layer models to the case of deforming layers. Al-
ternatively, one can think of our algorithm as a layered version of deformable tracking
algorithms, or as a generalized version of optical flow or motion segmentation where
multiple layers are allowed to occlude each other without disturbing the estimate of
adjacent and occluded ones.

Our numerical implementation of the flow-based algorithm uses level set methods,
and is realized without taking derivatives of the image, a feature that yields significant
robustness when compared with boundary-based of optical flow algorithms. We have
illustrated our approach on simple but representative sequences where existing methods
fail to capture the phenomenology of the scene by either over-segmenting it, or by
failing to capture its deformation while only matching its affine motion.
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