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Abstract. All previous geometric active contour models that have been formulated as gradient flows of various
energies use the same L2-type inner product to define the notion of gradient. Recent work has shown that this
inner product induces a pathological Riemannian metric on the space of smooth curves. However, there are also
undesirable features associated with the gradient flows that this inner product induces. In this paper, we reformulate
the generic geometric active contour model by redefining the notion of gradient in accordance with Sobolev-type
inner products. We call the resulting flows Sobolev active contours. Sobolev metrics induce favorable regularity
properties in their gradient flows. In addition, Sobolev active contours favor global translations, but are not restricted
to such motions; they are also less susceptible to certain types of local minima in contrast to traditional active
contours. These properties are particularly useful in tracking applications. We demonstrate the general methodology
by reformulating some standard edge-based and region-based active contour models as Sobolev active contours and
show the substantial improvements gained in segmentation.
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1. Introduction

Active contours, introduced by Kass et al. (1987), have
been widely used for the segmentation problem. The
idea is to minimize an energy, defined on contours or
curves living in the domain of the image, that contains
an image based edge attraction term and a smoothness
term, which becomes large when the curve is irregular.
An evolution is derived to minimize the energy and
thereby drive the contour towards the boundary of
the object of interest in the image while maintaining
smoothness. There have been many variations to
original model of Kass et al.; for example, see Cohen

(1991), and a survey in Blake and Isard (1998). An
unjustified feature of the model of Kass et al. (1987) is
that the evolution is dependent on the way the contour
is parameterized. Hence there have been geometric
evolutions similar to the idea of Kass et al. in Caselles
et al. (1993) and Malladi et al. (1995), which can be
implemented by level set methods (Osher and Sethian,
1988). Thereafter, Kichenassamy et al. (1995) and
Caselles et al. (1995) considered minimizing a geo-
metric energy, which is a generalization of Euclidean
arclength, defined on curves for the edge-detection
problem. The authors derived the gradient descent
flow in order to minimize the geometric energy.
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In the works of Siddiqi et al. (1998) and Xu and
Prince (1998), the authors build on the active contour
edge-detection approach to segmentation.

In contrast to the edge-based approaches for active
contours (mentioned above), region-based energies
(Ronfard, 1994; Zhu et al., 1995; Yezzi et al., 1999;
Chan and Vese, 2001) for active contours have provided
many desirable features; for example, they provide less
sensitivity to noise, better ability to capture concav-
ities of objects, more dependence on global features
of the image, and less sensitivity to the initial contour
placement. In these approaches, an energy is designed
to be minimized when the curve partitions the image
into statistically distinct regions. In Mumford and Shah
(1985) and Mumford and Shah (1989), the authors in-
troduce and rigorously study a region-based energy that
is designed to both extract the boundary of distinct re-
gions while also smoothing the image within these re-
gions. Subsequently, Tsai et al. (2001a) and Vese and
Chan (2002) gave a curve evolution implementation of
minimizing the energy functional considered by Mum-
ford and Shah (1985) and Mumford and Shah (1989) in
a level set framework (Osher and Sethian, 1988). An-
other work that makes use of a region-based energy is
Paragios and Deriche (2002a, b), which also combines
edge-based information. Like the edge-based methods,
the gradient descent flows are calculated to minimize
these energies.

More recent works that use active contours for seg-
mentation are not only based on information from the
image to be segmented (edge-based or region-based),
but also a-priori information known about the shape
of the desired object to be segmented. The work of
Leventon et al. (2000) showed how to incorporate prior
information into the active contour paradigm. Subse-
quently, there have been a number of works, for exam-
ple Tsai et al. (2001b), Rousson and Paragios (2002),
Chen et al. (2002), Cremers and Soatto (2003) and
Raviv et al. (2004), which design energy functionals
that incorporate prior shape information of the desired
object. In these works, the main idea is designing a
prior term of the energy that is small when the curve
is close, in some sense, to a pre-specified shape. The
need for this type of prior term arose from several fac-
tors including the fact that some images contain limited
information, the energies considered previously could
not incorporate complex information, the energies had
too many extraneous local minima, and the gradient
flows to minimize these energies allowed for arbitrary
deformations that gave rise to unlikely shapes.

Works on incorporating prior shape knowledge into
active contours have led to a fundamental question on
how to define distance between two curves or shapes.
Many works, for example, Younes (1998), Soatto and
Yezzi (2002), Mio and Srivastava (2004), Charpiat
et al. (2005a), Michor and Mumford (2003) and Yezzi
and Mennucci (2005a), in the shape analysis literature
have proposed different ways of defining this distance.
However, Michor and Mumford, Yezzi and Mennucci
(2003, 2005b) observed that all previous works on ge-
ometric active contours that derive gradient flows to
minimize energies, which were described earlier, im-
ply a natural notion of distance induced by a Rieman-
nian structure. Indeed, the notion of gradient of such
energies relies on an inner product defined the set of
perturbations of a curve. All of these previous works
on geometric active contours use the same geometric
L2-type inner product, which we refer to as H 0, to de-
fine gradient. However, Michor and Mumford, Yezzi
and Mennucci (2003, 2005a) have shown a surprising
property: the Riemannian metric on the space of curves
induced by the H 0 inner product is pathological, i.e.,
the “distance” between any two curves is zero.

In addition to the pathologies of the Riemannian
structure induced by H 0, there are also undesirable fea-
tures of H 0 gradient flows as we will demonstrate in
this paper. Some of these features are listed below.

1. There are no regularity terms in the definition of
the H 0 inner product. That is, there is nothing in
the definition of H 0 that discourages flows that are
not smooth in the space of curves. By smooth in the
spaces of curves, we mean that the surface formed
by plotting the evolving curve as a function of time
is smooth. Thus, when energies are designed to
depend on the image that is to be segmented, the H 0

gradient is very sensitive to noise in the image. As
a result, the curve becomes non-smooth instantly.
Therefore, in geometric active contours models, a
penalty on the curve’s length is added to keep the
curve smooth in addition to producing a variational
problem that is well-posed. However, this changes
the energy that is being optimized. Moreover, as we
shall demonstrate, the length penalty is sometimes
insufficient, and leads to other problems.

2. H 0 gradients, evaluated at a particular point on the
curve, depend locally on derivatives of the curve.
Therefore, as the curve becomes non-smooth,
as mentioned above, the derivative estimates
become inaccurate, and thus, the curve evolution
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becomes inaccurate. Moreover, for region-based
and edge-based active contours, the H 0 gradient at
a particular point on the curve depends locally on
image data at the particular point. Although region-
based energies may depend on global statistics,
such as mean values of regions, the H 0 gradient still
depends on local image data. These facts imply that
the H 0 active contour is sensitive to noise and local
features.

3. The H 0 norm gives non-preferential treatment to
arbitrary deformations regardless of whether the de-
formations are global motions (not changing the
shape of the curve) such as translations, rotations
and scales or whether they are more local deforma-
tions. This implies, as we shall show, that the H 0-
gradient of image dependent energies “encourages”
points on the evolving curve to move “indepen-
dently” to decrease energy rather than encouraging
the points to move more collectively. This restricts
the gradient at a particular point from “seeing” infor-
mation located at other points of the curve. There-
fore, the curve evolving according to the H 0 gradi-
ent flow is susceptible to local minima of the energy.

4. Many geometric active contours (such as edge
and region-based active contours) require that
the unit normal to the evolving curve be defined.
As such, the evolution does not make sense for
polygons. Moreover, since in general, an H 0 active
contour does not remain smooth, one needs special
numerical schemes based on viscosity theory in a
level set framework to define the flow.

5. If the energy depends on n derivatives of the
curve, then the H 0 gradient has 2n derivatives
of the curve. Since the corresponding level set
flows with higher than two derivatives are not
known to have a maximum principle, level set
methods (Osher and Sethian, 1988) are difficult
to use for the numerical implementation (Chopp
and Sethian, 1999). Therefore, one may try to use
particle methods to implement the flow. However,
flows with higher than two derivatives are gener-
ally difficult to implement because of numerical
artifacts.

6. Lastly, as a specific example, the H 0 gradient ascent
for arclength, i.e., backward heat flow, is ill-posed.
This is quite odd in an intuitive manner because
there is nothing in the definition of length itself that
indicates that a flow to increase length should be
ill-posed. We shall see that this ill-posedness is a
property of H 0 not just the energy itself.

In this paper, we consider using inner products aris-
ing from Sobolev spaces to define gradients. Unlike
the research done in active contours for the past 20
years, which has focused on finding various new en-
ergies to deal with local minima and other problems,
we present a new way of doing active contours by giv-
ing an alternative way of minimizing active contour
energies.

By changing the Riemannian metric associated with
the space of curves, we are able to regularize the min-
imizing flows associated with active contour energies
without requiring the addition of regularization penal-
ties in the aforementioned energies. Indeed, the change
of metric does not affect the global minima of the en-
ergy, but it changes the notion of gradient, and the
notion of “neighborhood of a curve”. While previ-
ous local minimizers continue to be local minimizers
(or at least critical points) in the Sobolev metrics, the
definition of locality is completely different. As a re-
sult, Sobolev active contours are much more robust
to the local minima which strongly influence previ-
ous, standard, active contours. Moreover, any existing
active contour method can get the added benefits of
this new approach with minimal changes to its exist-
ing implementation and with little extra computational
time.

We would like to point out that Sobolev gradient
methods have been used in the past; for example the
book (Neuberger, 1997) (see also references within)
presents the Sobolev gradient and applies it to the nu-
merical solution of various physical problems. More
recently, Burger (2003) has examined using various
Sobolev gradients (especially fractional Sobolev gra-
dients) to various inverse problems of boundary recon-
struction, and examined rates of convergence among
the various gradients considered. We Sundaramoorthi
et al. (2005) and (independently) Charpiat et al. (2005b)
have introduced the Sobolev method to active contour
problems. Charpiat et al. (2005b) also go on to consider
other “coherent” motions resulting from various inner
products (see also the work of Mansouri et al. (2004)
for a related idea).

2. General Theory

In the next sections, we begin by using principles from
Riemannian geometry (do Carmo, 1992; Lang, 1999)
and show how they fit into the framework of geomet-
ric active contours, which is essential to construct the
Sobolev active contour.
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2.1. Structure on the Space of Curves

Let M denote the set of smooth immersed curves in Rd ,
where d ≥ 2. We show how to make M a differentiable
manifold. Let us give a precise definition of M :

M := {c ∈ C∞(S1, Rd ) : c′(θ ) �= 0 ∀ θ ∈ S1},

where S1 denotes the circle. Denote by F the Fréchet
space C∞(S1, Rd ) of smooth vector fields on S1 whose
topology is defined by the following seminorms:

pn(h) = sup
θ∈S1

|h(n)(θ )|, n = 0, 1, . . .

where h ∈ F . We now show

Proposition 2.1. M is a differentiable manifold
whose model space is the infinite dimensional space,
F.

Proof:

1. We first define charts from M to F . Let c ∈ M , then
denote by �−1

c : Ũc ⊂ F → Uc ⊂ M a chart at
c ∈ M defined by �−1

c (h) = c + h. We must define
the neighborhood Ũc, and show that c + h ∈ M
where h ∈ Ũc. Choose

0 < ε < inf
θ∈S1

|c′(θ )|.

Note the choice of ε is possible since |c′(θ )| �= 0
(c ∈ M), and the infimum cannot be zero since |c′|
is continuous on the compact set S1. Now define
Ũc := {h ∈ F : p1(h) < ε}, which by definition of
F is open. It is now clear that c+h ∈ M for h ∈ Ũc.
It is also clear that �c is a bijection.

2. We now show that the charts defined above are com-
patible. Let c, c̃ ∈ M , c �= c̃ and Uc ∩ Uc̃ �= ∅.
First note that �c(Uc ∩ Uc̃) = {h ∈ F : p1(h) <

εc, p1(h − (c̃ − c)) < εc̃}, which is clearly open.
Next, we see that �c̃ ◦ �−1

c : �c(Uc ∩ Uc̃) →
�c̃(Uc ∩ Uc̃) is given by(

�c̃ ◦ �−1
c

)
(h) = (c − c̃) + h,

which is clearly a C∞ diffeomorphism.

Remark 2.1. Note, we may consider M = {c ∈
C1(S1, Rd ) : c′(θ ) �= 0 ∀θ ∈ S1} and F to be the

Banach space C1(S1, Rd ) with topology defined by the
norm ‖h‖ = supθ∈S1 (|h(θ )| + |h′(θ )|). In this case, M
is also a differentiable manifold. However, the tangent
to the curve, c′ is no longer in the model space. See
Mennucci et al. (2006) for more details.

Remark 2.2. Let Diff(S1) be the set of smooth auto-
morphisms of S1. Note that in our definition of the man-
ifold M , the space of immersed curves, two different
parameterizations of a curve (i.e., c1, c2 ∈ M such that
c1 = c2 ◦ φ where φ �= idS1 is in Diff(S1)) are consid-
ered two distinct elements of M . For computer vision
applications one should consider the quotient space

B := M/Diff(S1);

this quotient models the space of geometrical curves,
which are “curves up to a choice of parametrization”.
This space, however, is not a manifold (Michor and
Mumford, 2003); but a slightly smaller quotient space

B f := Imm f /Diff(S1)

of the freely immersed curves is a manifold. In
our work, we will use M . The results we obtain,
however, are geometric in that they do not depend on
a particular parameterization of a curve; so they may
be “projected” to B f .

For c ∈ M , we denote by Tc M the tangent space of M
at c (i.e., the space of valid perturbations of c). Since M
is an open subspace of C∞(S1, Rd ), the tangent space
may be identified with C∞(S1, Rd ) itself. It is easy to
see that this identification satisfies all standard require-
ments and/or different choices of definitions for Tc M .

2.2. Inner Products on Tc M

We now define inner products on Tc M .

Definition 2.1. Let c ∈ M , L be the length of c, and
h, k ∈ Tc M . Let λ > 0, and n ∈ N. We assume h and
k are parameterized by the arclength parameter of c.

1. 〈h, k〉H 0 := 1

L

∫
c

h(s) · k(s) ds

2. 〈h, k〉H n := 〈h, k〉H 0 + λL2n
〈
h(n), k(n)

〉
H 0

3. 〈h, k〉H̃ n := avg(h) · avg(k) + λL2n
〈
h(n), k(n)

〉
H 0
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where
∫ · ds is the integral w.r.t the arclength param-

eter, avg(h) := 1

L

∫
c

h(s) ds, and h(n) denotes the nth

derivative of h with respect to arclength.

It is easy to verify that the above definitions are inner
products. Note that we have introduced length depen-
dent scale factors so that the above inner products (and
the corresponding norms) are independent of curve
rescaling (we do not want a rescaling of the curve to
change the inner product).

Remark 2.3. The most general scale invariant defini-
tion of H n is

〈h, k〉H n = 〈h, k〉H 0 +
n∑

j=1

λ j L2 j
〈
h( j), k( j)

〉
H 0 (1)

where λ j ≥ 0 for j = 1, . . . , n − 1, and λn > 0. We
will see in Section 2.4 that it is unnecessary for our
purposes to use this general definition.

Remark 2.4. Other definitions of H n and H̃ n are pos-
sible (Yezzi and Mennucci, 2005a). We illustrate the
ideas on planar curves (d = 2). We recall from Re-
mark 2.2 that one main goal of the present theory is to
be geometric; that is, any result may be projected to the
space B f of geometrical curves. A possible choice for
representing the tangent Tc B f is Tc M/ ∼ where h ∼ k
iff h ·N = k ·N whereN is the inward normal of c. The
other definitions are as follows: Let α, β : S1 → R be
the normal components of two perturbations h, k (i.e.,
α = h · N and β = k · N ) then

〈[h], [k]〉H 1∗ := 1

L

∫
c

[
α(s)β(s) + λL2α′(s)β ′(s)

]
ds

(2)

〈[h], [k]〉H 1+ := 1

L

∫
c

[
α(s)β(s) + λL2(α(s)N (s))′

· (β(s)N (s))′
]

ds. (3)

The inner product in (3) can be simplified as follows

〈[h], [k]〉H 1+ = 1

L

∫
c

[
(1 + λL2κ2(s))α(s)β(s)

+ λL2α′(s)β ′(s)
]

ds. (4)

Ignoring the α′β ′ term and the length factors, (4) be-
comes the same inner product considered in (Michor
and Mumford, 2003) for shape analysis.

One of the important consequences of defining an in-
ner product on Tc M is that, with some other smoothness
and compatibility conditions, it produces a Riemannian
structure on M . This means that specifying an inner
product on Tc M induces a distance between points on
M . The authors in Michor and Mumford (2003) and
Yezzi and Mennucci (2005a) consider the Riemannian
structure induced from the H 0 inner product and show
that it is pathological; they also propose alternative in-
ner products to achieve a non-trivial Riemannian dis-
tance. We explore this idea in Mennucci et al. (2006)
(see also Younes (1998)).

2.3. Gradient of Functionals on M

We now define the notion of gradient of a functional
E : M → R.

Definition 2.2. Let E : M → R.

1. If c ∈ M and h ∈ Tc M , then the variation of E in
the direction h is

dE(c) · h = d

dt
E(c + th)

∣∣∣∣
t=0

,

where (c + th)(θ ) := c(θ )+ th(θ ) and θ ∈ S1. Note
dE(c) ∈ T ∗

c M is a linear operator on Tc M , dE(c)
is called the differential at c.

2. Assume 〈, 〉c is an inner product on Tc M . The gradi-
ent of E is a vector field ∇E(c) ∈ Tc M that satisfies

dE(c) · h = 〈h, ∇E(c)〉c

for all h ∈ Tc M .

We now give an intuitive interpretation of the gradient,
which tells us the significance of this perturbation. We
show that the gradient is the most efficient perturbation;
that is, the gradient maximizes the change in energy per
“cost” of perturbing the curve.

Proposition 2.2. Let ‖ · ‖c be the norm induced from
the inner product 〈·, ·〉c on Tc M. Suppose dE(c) �= 0,
and the gradient with respect to 〈·, ·〉c exists; then the
problem

sup
{h∈Tc M,‖h‖c=1}

dE(c) · h = sup
{k∈Tc M,k �=0}

dE(c) · k

‖k‖c

(5)

has a unique solution, k = ∇E(c) ∈ Tc M, h = k/‖k‖.
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Proof: Note dE(c)·h = 〈∇E(c), h〉c ≤ {‖∇E(c)‖c}
‖h‖c by the Cauchy-Schwartz inequality; moreover,
dE(c) · (∇E(c)) = ‖∇E(c)‖2

c .

If the gradient of E exists, then by the proposition
above, we have that k = ∇E(c) attains the supremum
on the right hand side of (5). Note for λ → +∞, trans-
lations have negligible norm with respect to other di-
rections in the tangent space, that is, if h is a translation
(i.e., it is constant w.r.t. s) and k is not a translation, then
limλ→+∞ ‖h‖/‖k‖ = 0 , both when ‖ · ‖ is the norm
induced by H n and when it comes from H̃ n . In light
of the interpretation of the gradient as the perturbation
that attains the supremum in (5), it follows that trans-
lations are favored for gradients in H n and H̃ n when λ

is large (if they reduce energy).

Remark 2.5 (Comment on H n for n ≥ 2). Trans-
lations are favored for H n and H̃ n gradients when
λ → +∞. This can be quite important for tracking
applications where the object to be tracked is usually
translating. One may wonder whether using higher or-
der Sobolev inner products, H n and H̃ n for n ≥ 2,
will favor higher order polynomial motions of degree
n. Note however, that any polynomial perturbation de-
fined on S1, the circle, must be constant to conform to
periodic boundary conditions. Thus, higher than order
n = 1 Sobolev gradients also favor just translations.
In this sense, there is not an advantage, with respect to
gaining higher dimensional preferred motions, in using
higher order Sobolev gradients. However, one gains
added regularity of the gradient flow in using higher
order Sobolev gradients.

Remark 2.6. For the inner product on Tc M/ ∼ de-
fined in (2), it follows that dilations (i.e., perturbations
of the form h = ±N ) are favored for gradients when
λ is large.

2.4. Relation Between H n and H̃ n

We show that the norms associated with the inner prod-
ucts H n and H̃ n , i.e.,

‖h‖H n =
√∫ L

0

1

L
|h(s)|2 + λL2n−1|h(n)(s)|2 ds (6)

‖h‖H̃ n =
√

|avg(h)|2 + λL2n−1

∫ L

0

|h(n)(s)|2 ds (7)

are equivalent.

Proposition 2.3 (Equivalence of H n and H̃ n). The
norms defined by (6) and (7) on Tc M are topologically
equivalent; that is,

α‖h‖H̃ n ≤ ‖h‖H n ≤ β‖h‖H̃ n

for all h ∈ Tc M, and α, β > 0 are not a function of
c ∈ M and h ∈ Tc M.

Proof: We first derive a simple Poincaré inequality.
For convenience, we will replace h : S1 → Rd with its
periodic extension h : R → Rd . We have

h(u) − h(0) =
∫ u

0

h′(s) ds = −
∫ L

u
h′(s) ds,

since h is periodic. Now,

h(u) − h(0) = 1

2

( ∫ u

0

h′(s) ds −
∫ L

u
h′(s) ds

)
⇒

avg(h) − h(0) = 1

2L

∫ L

0

( ∫ u

0

h′(s) ds

−
∫ L

u
h′(s) ds

)
du ⇒

|avg(h) − h(0)| ≤ 1

2L

∫ L

0

( ∫ u

0

|h′(s)| ds

+
∫ L

u
|h′(s)| ds

)
du

= 1

2L

∫ L

0

(∫ L

0

|h′(s)| ds

)
du

= 1

2

∫ L

0

|h′(s)| ds

so that by replacing 0 with an arbitrary point, we have

sup
u

|h(u) − avg(h)| ≤ 1

2

∫ L

0

|h′(s)| ds. (8)

Now, using (8) and Hölder’s inequality, we see√∫ L

0

|h(s) − avg(h)|2 ds ≤ 1

2

√
L sup

u
|h(u) − avg(h)|

≤
√

L
∫ L

0

|h′(s)| ds

≤ L

√∫ L

0

|h′(s)|2 ds,

which is the Poincaré inequality.
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We now prove the equivalence of the two norms. By
Hölder’s inequality, we have that

|avg(h)|2 ≤ 1

L

∫ L

0

|h(s)|2 ds

so that ‖h‖H̃ 1 ≤ ‖h‖H 1 . On the other hand, note that

1

L

∫ L

0

|h(s) − avg(h)|2 ds

= 1

L

∫ L

0

|h(s)|2 ds − |avg(h)|2,

so that

‖h‖2
H 1 =

∫ L

0

1

L
|h(s)|2 + λL|h′(s)|2 ds

= 1

L

∫ L

0

|h(s) − avg(h)|2 ds

+
∫ L

0

λL|h′(s)|2 ds + |avg(h)|2

≤ |avg(h)|2 + L(1 + λ)

∫ L

0

|h′(s)|2 ds

≤ ((1 + λ)/λ)‖h‖2
H̃ 1

One can iterate Poincaré’s inequality to demonstrate
the equivalence of H n and H̃ n .

The use of the Poincaré inequality can also be used to
show the equivalence between the generic H n norm (1)
and the H n norm we consider (6).

Note that we have not established any relation be-
tween the geometry of the inner products H n and H̃ n;
however, in the next sections, we show that the gradi-
ents with respect to H n and H̃ n have similar properties.

3. H1 and H̃1 gradients

In this section, we describe how to compute first order
Sobolev gradients from the H 0 gradient. Denote by
f = ∇H 0 E(c) the gradient of E with respect to the H 0

inner product at c. We would like to compute first the
H 1 gradient at c. Assuming g = ∇H 1 E(c) exists, we
have for all h ∈ Tc M ,

dE(c) · h = 〈h, g〉H 0 + λL2〈h′, g′〉H 0

= 〈h, g − λL2g′′〉H 0

where we have integrated by parts and noted that we
have periodic boundary conditions. Since gradients are

unique (if they exist), we must have that

f (s) = g(s) − λL2g′′(s) where s ∈ [0, L]. (9)

Note that this is an ODE defined on [0, L] with periodic
boundary conditions, that is, all derivatives match on
the boundary of [0, L].

Now we take a similar approach to compute the H̃ 1

gradient. Assuming g = ∇H̃ 1 E(c) exists, we have

dE(c) · h = avg(h) · avg(g) + λL2〈h′, g′〉H 0

= 〈h, avg(g) − λL2g′′〉H 0 .

Again by uniqueness, we have that f = avg(g) −
λL2g′′. Noting periodic boundary conditions, we have
that avg(g) = avg( f ), so

f (s) = avg( f ) − λL2g′′(s) where s ∈ [0, L]

(10)

and we have periodic boundary conditions.

3.1. Solving the ODEs

We want to first solve the ODE (9) for g. It suffices
to solve (9) with the boundary conditions g(0) =
g(L) and g′(0) = g′(L). One can show that g(s) =∫ L

0
kλ(s, ŝ) f (ŝ) dŝ, where kλ : [0, L] × [0, L] → R

satisfies the following conditions for all s, ŝ ∈ (0, L)

kλ(s, ŝ) − λL2 ∂2kλ

∂s2
(s, ŝ) = δ(s − ŝ) (11a)

kλ(0, ŝ) = kλ(L , ŝ); ∂skλ(0, ŝ) = ∂skλ(L , ŝ) (11b)

and δ denotes the Dirac distribution. It can be shown
that the solution to the previous system is kλ(s, ŝ) =
Kλ(|s − ŝ|), where Kλ : R → R is given by

Kλ(s) =
cosh

(
s− L

2√
λL

)
2L

√
λ sinh

(
1

2
√

λ

) , for s ∈ [0, L],

(12)

and Kλ is periodically extended to all of R. We may
write

∇H 1 E(s) =
∫

c
Kλ(ŝ − s)∇H 0 E(ŝ) dŝ = (Kλ ∗ ∇H 0 E)(s)

(13)
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where the integral over c denotes any range of ŝ that
corresponds to one full period around the curve c (e.g.
[0,L], [–L ,0], [–L/2,L/2], etc.).

We now solve the second ODE (10). It suffices to
solve (10) with the boundary conditions g(0) = g(L),
g′(0) = g′(L), and the relation avg( f ) = avg(g). Inte-
grating (10) twice yields

g(s) = g(0) + sg′(0) − 1

λL2

×
∫ s

0

(s − ŝ)( f (ŝ) − avg( f )) dŝ.

(14)

Using (14), applying the boundary conditions, and not-
ing that avg(g) = avg( f ), after some manipulation,
yields

g′(0) = − 1

λL3

∫ L

0

s( f (s) − avg( f )) ds and

g(0) =
∫ L

0

f (s)K̃λ(s) ds (15)

where the formula for K̃λ is in (16).

Remark 2.6. We want to remark that the above yields
a solution to the ODE (10) without resorting to a convo-
lution; the same is true for the similar equation for the
H̃ n gradients. So, H̃ n gradients may be computed from
H 0 gradients in O(N ) time, where N is the number of
sample points of the curve.

The Eq. (10) may be nonetheless solved using a con-
volution, where the kernel function K̃λ is given by

K̃λ(s) = 1

L

(
1 + (s/L)2 − (s/L) + 1/6

2λ

)
, s ∈ [0, L].

(16)

and it is (unsurprisingly) the same kernel that is used
in (15). Note that K̃λ(0) = K̃λ(L) and thus we may
periodically extend K̃λ as before. In this case, we may
rewrite, g(0) = ∫

c f (ŝ)K̃λ(ŝ) dŝ, where, again, the in-
tegral over c denotes any range of ŝ that corresponds
to one full period over c. Therefore,

∇H̃ 1 E(s) =
∫

c
K̃λ(ŝ − s)∇H 0 E(ŝ) dŝ = (K̃λ ∗ ∇H 0 E)(s).

(17)

3.2. Properties of the Kernels

Note the following formal properties of Kλ and K̃λ:

K ′′
λ (s) = 1

λL2
(Kλ − δ(s)) and

K̃ ′′
λ (s) = 1

λL2

(
1

L
− δ(s)

)
, s ∈ [0, L). (18)

The first property is just the relation in (11a), and the
second is obtained through differentiation of K̃λ. Using
these relations, it is easy to see that Kλ ∗ f and K̃λ ∗ f
formally solve (9) and (10), respectively. Next, note
that ∫

c
Kλ(ŝ) dŝ = 1 and

∫
c

K̃λ(ŝ) dŝ = 1 (19)

for all λ > 0. Also observe that Kλ ≥ 0 for all λ > 0,
and that K̃λ ≥ 0 only when λ ≥ 1/24. Finally, it is easy
to verify that as λ → +∞, Kλ → 1/L and K̃λ → 1/L .
See Fig. 1 for plots of Kλ and K̃λ.

3.3. Properties of Sobolev Gradients

First note, from formulas (13) and (17), that the H 1

and H̃ 1 gradients are geometric, i.e., they do not de-
pend on a particular parameterization chosen for the
curve. This is also evident from the definition of these
inner products. The formulas (13) and (17) show that
there may be a tangential component of the gradients;
but these tangential components may be ignored when
considering gradient flows. This is different from H 0

where if the energy is geometric, then the gradient will
have only a normal component.

Because H 1 and H̃ 1 gradients are given by integrals
of the H 0 gradient, given in formulas (13) and (17),
integration by parts and the relations in (18) imply that
two derivatives of the curve can be moved to derivatives
on the kernels. This means that H 1 and H̃ 1 gradients
involve two fewer derivatives of the curve than H 0 gra-
dients involve. Note that H 0 gradients have twice the
number of derivatives of the curve as is defined in the
energy E to be optimized. Thus, fourth order evolution
equations of curves in H 0 may reduce to second order
equations in H 1 and H̃ 1. A similar remark can be made
for H n and H̃ n gradients; these gradients require 2n less
derivatives of the curve than the H 0 gradient requires.

The property that the integral of both the kernels is
unity (19) implies that the H 1 gradient can be inter-
preted as a weighted average of the H 0 gradient; the
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Figure 1. Plots of Kλ (left) and K̃λ (right) for various λ with L = 1. The plots show the kernels over one period.

same interpretation holds for H̃ 1 when λ > 1/24. In
light of this weighted average interpretation, we see that
Sobolev gradients are less sensitive to noise and local
features in the image than H 0 gradients are. Moreover,
the property that the kernels approach 1/L as λ → +∞
shows that, in this case, the H 1 and H̃ 1 gradients ap-
proach pure translations equal to the average value of
the H 0 gradient, as expected from the interpretation of
gradient noted in Section 2.1.

While local minimizers in the H 0 metric continue
to be local minimizers in the H 1 metric (but not vice-
versa), the definition of locality is completely different.
As a result, Sobolev active contours are much more
robust to the local minima which strongly influence
H 0 active contours. This property arises due to the fact
that Sobolev active contours are able to exploit much
more relevant information contained in the initial
contour about the shape of the desired contour. This is
because the Sobolev active contour is more resistant
to changing the local structure of the initial curve
since local perturbations induce high derivatives in
the flow field compared to more global motions which
are smoother. Thus, if one starts with a contour that is
smooth on a local scale, the cost to perturb the initially
smooth contour into a “noisy” version of the same
contour is enormous. This renders a very large dis-
tance between a smooth and non-smooth contour even
though the two contours may be very close in other
senses, such as in the Hausdorff distance. As such,
local minimizers due to noise are no longer “local” to
the initial contour if the initial contour is smooth and
the local minimizer is not. Switching to the Sobolev

metric has the effect of pushing many undesirable
minimizers so far away from the initial contour that
they are no longer able to influence the gradient flow,
which moves towards a more desirable minimizer that
is now much closer to the initial contour.

Remark 3.2. One may wonder whether any smooth-
ing kernel can used to smooth out the H 0-gradient to
form a smoother perturbation, which is robust to noise.
The answer may be yes, but it is not guaranteed to re-
duce the energy in question. The fact that the kernels
we’ve derived come directly from a gradient means that
the energy is guaranteed to be reduced.

The previous comment also relates to various nu-
merical methods for energy descent algorithms where
the H 0 gradient is modified by an operator known as
a pre-conditioner to yield a better descent direction for
faster convergence to a solution. For example, the New-
ton method uses the inverse Hessian of the energy as
the pre-conditioner (see for example, Hintermüller and
Ring (2004) and Burger and Osher (2005) for appli-
cations to active contours). The disadvantage of this
approach is that one has to be careful to make sure the
resulting algorithm reduces the energy; even for the
Newton algorithm, the inverse Hessian pre-conditioner
is not guaranteed to reduce the energy, in general.

3.4. Advantages of H̃ 1 over H 1

There is a computational advantage of using the H̃ 1

gradient as opposed to the H 1 gradient as mentioned in
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Remark 2.6. Another advantage of H̃ 1 over H 1 is that
we can eliminate the dependence on the parameter λ

when implementing H̃ 1 gradient flows. Observe from
the kernel definition in (16) that K̃λ is a sum of two
terms: one that depends on λ and another that does not.
Thus, the H̃ 1 gradient is a sum of two components: one
that depends on λ by a simple scale factor, and another
that is independent of λ. The component that does not
depend on λ is avg(∇H 0 E), which is a just a translation.
The other component is a complex deformation. An
algorithm to implement an approximate version of the
H̃ 1 gradient flow is to first evolve the curve by the
translation component until this component becomes
zero, then to evolve the curve by the deformation com-
ponent, and the process is repeated until convergence.
Note that λ does not need to be chosen for evolving the
deformation component because λ only changes the
speed of the curve, not the geometry. Therefore, this
algorithm also gives a way of separating the (rigid)
motion of the curve from the deformation. Separating
the motion from deformation has particular importance
in tracking applications (Soatto and Yezzi, 2002).
Note that this algorithm is equivalent to optimizing
the energy first according to the H̃ 1 inner product as
λ → +∞, and then according to H̃ 1 with any λ (as
there is no dependence on λ after the first step).

4. Some Sobolev Gradient Flows

In this section, we simplify the formulas (13) and
(17) for some common geometric energies defined
on curves in the plane (c : S1 → R2), note some
interesting properties, and compare these with the
usual H 0 gradients. A question that arises when
considering these gradient flows is whether an initial
curve c ∈ M in the manifold of curves, stays in the
manifold of curves (this also relates to existence of a
solution for the PDE). The manifold of curves consists
of curves being immersed and regular. Since the flows
we consider are geometric and we represent the curve
by arclength parameterization, the curves always
remain immersed by representation if their derivative
is defined. The question of regularity is a difficult one
in general, and we do not address it in this paper (but
for a simple result in Proposition 4.1).

In what follows, we use K to denote either the kernel
(12) or (16), and ∇1 will denote either the H 1 or H̃ 1

gradient; when the distinction is needed, we will use
the subscript λ on the kernels, and write H 1 or H̃ 1.

4.1. Length and Weighted Length

We consider the geodesic active contour model
(Caselles et al., 1995; Kichenassamy et al., 1995). The
energy is

E(c) =
∫

c
φ(c(s)) ds

where φ : R2 → R+. Then the gradient with respect
to H 0 is

∇H 0 E = L(∇φ(c) · N )N − Lφ(c)κN

where N is the unit inward normal, and κ is the curva-
ture. We omit the argument in φ(c), for simplicity, and
write c′ for arc parameter derivative. Let us first note
that ∇H 0 E = L∇φ − L(φc′)′. Integrating by parts we
find that

1

L
∇1 E = ∇φ ∗ K − (φc′)′ ∗ K

= ∇φ ∗ K − (φsc) ∗ K ′ − (φc) ∗ K ′′,

where φs := (φ ◦ c)′. Using the relations in (18), we
find that

∇H̃ 1 E = φc − avg(φc)

λL
− L(φsc) ∗ K̃ ′

λ + L∇φ ∗ K̃λ.

(20)

The above does not require that the curve be twice
differentiable, and thus we may prove that

Proposition 4.1. Suppose that φ ∈ C1, φ > 0; then
the gradient flow

dc

dt
= −∇H̃ 1 E(c)

exists for small (positive) times; if lim infx→∞ φ(x)
|x | > 0, then it exists for all (positive) times.

Proof: The proof is based on the inequality

|∇H̃ 1 E(s)| ≤ Mr (1 + r )
1

λ
+ L Mrr

1

2λ
+ L Mr ∀s

where the ball of radius r centered at 0 contains c, and

1

Mr
E(c) ≤ L ≤ 1

mr
E(c)
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where

Mr := sup
|x |<r

(max{φ(x), |∇φ(x)|}) and

mr := inf
|x |<r

φ(x);

the above (by using the Euler method) implies exis-
tence, in the class of curve evolutions c(θ, t) that are
Lipschitz in both variables.

Details will be available in a forthcoming paper.

Of particular interest is when φ = 1, that is E = L ,
the length of the curve. We see that

∇H̃ 1 L = c − avg(c)

λL
.

It is interesting to notice that the H 1 and H̃ 1 gradient
flows are stable for both ascent and descent while the
H 0 gradient flow is only stable for descent. Note that
the H̃ 1 gradient flow constitutes a simple rescaling of
the curve about its centroid. While the H 0 gradient
descent smooths the curve, the H̃ 1 gradient descent (or
ascent) has neither a beneficial nor a detrimental effect
on the regularity of the curve.

4.2. Area and Weighted Area

We consider region-based active contour models; for
example, Yezzi et al. (1999) and Chan and Vese (2001).
The energy is

E(c) =
∫

cin

φ dA,

where cin denotes the region enclosed by the closed
curve c, φ : R2 → R and dA is the area form; this en-
ergy is defined only for embedded curves. The gradient
with respect to H 0 is

∇H 0 E = −LφN = −Lφ Jc′

where J is a rotation by 90o matrix. Integrating by parts
we find that

1

L
∇1 E= − (φ Jc′) ∗ K = (φs Jc) ∗ K+(φ Jc) ∗ K ′.

(21)

For the H̃ 1 gradient, this simplifies to

∇H̃ 1 E = J

λL2

∫ L

0

(φc(· + ŝ)−avg(φc))ŝ dŝ

+(φs Jc) ∗ K̃λ. (22)

Of particular interest is when φ = 1, that is E = A,
the area enclosed by the curve. We see that ∇1 A =
(Jc)∗K ′. This simplifies to the gradient ascent/descent

Ct (s) = ± J

λL2

∫ L

0

(C(s + ŝ) − avg(C))ŝ dŝ

(23)

in the H̃ 1 gradient case.

4.3. Elastic Energy

Consider the elastic energy defined by

E(c) =
∫

c
κ2(s) ds,

where L is the length of c, and κ is the signed curva-
ture. This may serve as a regularizer that does not favor
smaller length curves, unlike the standard curve short-
ening term. It is also the term that is commonly omitted
in the original snakes model of Kass et al. since it leads
to a fourth order gradient flow.

We now derive the H̃ 1 flow by first calculating the
H 0- gradient. Let us write a family of curves as C :
R+ × S1 → R2, then we may write

E(t) =
∫

C
Css · Css ds.

Let us first compute some intermediate formulas. Let
f : R+ × S1 → R, then

∂

∂t

∂

∂s
f = ∂

∂t

1

‖C p‖
∂

∂p
f

= −Ctp · C p

‖C p‖3

∂

∂p
f + 1

‖C p‖
∂

∂p

∂

∂t
f

= −Cts · Cs
∂

∂s
f + ∂

∂s

∂

∂t
f,

or more conveniently,

fst = fts − (Cts · Cs) fs . (24)
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We now compute

∂

∂t
(Css · Css) = 2Csst · Css,

but using (24) twice, we see

Csst = Csts − (Cts · Cs)Css

= ∂

∂s
(Cts − (Cts · Cs)Cs) − (Cts · Cs)Css

= Ctss − (Ctss · Cs + Cts · Css)Cs

−(Cts · Cs)Css − (Cts · Cs)Css

= Ctss −(Ctss · Cs + Cts · Css)Cs − 2(Cts · Cs)Css,

and since Cs · Css = 0, we have

∂

∂t
(Css · Css) = 2(Ctss · Css)−4(Cts · Cs)(Css · Css).

(25)

Now,

E ′(t) = d

dt

∫ 1

0

Css · Css‖C p‖ dp

=
∫ 1

0

∂

∂t
(‖C p‖)Css · Css dp

+
∫

C

∂

∂t
(Css · Css) ds.

By substituting (25), we have

E ′(t) =
∫

C
(Cts · Cs)(Css · Css) ds

+ 2

∫
C

(Ctss · Css) − 2(Cts · Cs)(Css · Css) ds

= −
∫

C
3(Cts · Cs)(Css · Css) ds

+ 2

∫
C

(Ctss · Css) ds

=
∫

C
(2(Ctss · Css) − 3(Cts · Cs)(Css · Css)) ds.

Integrating by parts, we find

E ′(t) = 1

L

∫
C

Ct · (2L∂ss(Css)

+ 3L∂s((Css · Css)Cs)) ds.

Hence,

∇H 0 E(c) = 2Lcssss + 3L∂s((css · css)cs). (26)

Computing the Sobolev gradient from (26), we have

∇H̃ 1 E = K ∗ ∇H 0 E

= 2L K ′′ ∗ (css) − 3L K ′ ∗ ((css · css)cs)

Hence, for the K̃λ kernel we have

∇H̃ 1 E = − 2

λL
κN − 3L K ′ ∗ (κ2T ) (27)

since avg(κN ) = 0, and T is the unit tangent to c. No-
tice that the corresponding H̃ 1 gradient flow is second
order, although it is an integral-PDE.

4.4. Comparison of H 0 and H 1, H̃ 1

We notice several advantages of the gradients flows
for H 1 and H̃ 1 gradients as compared with H 0 gradi-
ents. First note that both the expressions for edge-based
and region-based active contour gradients with respect
to H 1 and H̃ 1 (20), (21) do not involve any deriva-
tives of the curve. This is in contrast to H 0, which
requires two derivatives for geodesic active contours
and one derivative for region-based active contours.
Hence, these Sobolev flows are defined for non-smooth
curves, e.g., polygons, without the need to resort to nu-
merical techniques based on viscosity solutions of the
corresponding level set equations. Moreover, Proposi-
tion 4.1 shows that we do not need viscosity theory to
define the H̃ 1 flow at least for the weighted length en-
ergy. Note that the expression in (20) does not require
any more derivatives of φ than the expression for H 0

does. This is not the case for (21), which requires a
derivative of φ. However, since φs is contained within
a convolution, the possible noise generated by φs is
mitigated. Alternatively, the original expressions (13)
and (17) may be used if a derivative of φ is not desired
to be computed.

Notice the expressions of Sobolev gradients for the
elastic energy (27) only require two derivatives of the
curve; this is in contrast to the H 0 gradient, which re-
quires four derivatives of the curve. Since there is no
maximum principle for fourth order equations, the H 0

gradient descent of the elastic energy is difficult to im-
plement using level set methods (Chopp and Sethian,
1999; Droske and Rumpf, 2004). A particle method can
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be used; however, this is prone to numerical problems.
Note that the integral-PDE (27) may not have a max-
imum principle, but in our numerical implementation
with level set methods (see Section 5.2), we bypass this
issue for the following reason. The local term certainly
has a maximum principle, and for the global term, we
perform extensions of this quantity from the zero level
set, which is done, for example, in image-based evolu-
tions. Therefore, we expect that level sets do not collide,
that the level set function gradient doesn’t become ill-
defined, and that the level set evolution is modeling the
curve evolution. These are issues that need to be dealt
with for the H 0 gradient flow using a level set method.

5. Numerical Implementation

In this section, we describe the numerical scheme used
to simulate Sobolev active contours defined in the
plane. Sobolev active contours are naturally suited for
a parametric or a marker particle based implementa-
tion. This is because computing Sobolev gradients re-
quires computing an integral around the curve, which
is straightforward to compute if one has an ordered set
of sample points of the curve.

5.1. Multiple Curves Evolution

In this section, we consider evolving multiple curves
according to gradient flows for the metrics defined in
Section 2.2. We consider defining the flows for curves
that undergo topological changes. Consider a family
of embedded curves c = (ci ) in the plane and of dis-
placements h = (hi ), where ci , hi : S1 → Rd and
i = 1, . . . , N = N (c). We may define a metric on
multiple curves 〈, 〉c using a choice of some metric 〈, 〉ci

that was defined for a single curve in Section 2.2. We
define the inner product on multiple curves to be

〈h, k〉c :=
∑

i

〈h, k〉ci .

Consider an energy, E , on multiple curves defined
by

E(c) :=
N (c)∑
i=0

E(ci ),

then, the variation of E for several embedded curves is

dE(c) · h =
N (c)∑
i=0

〈∇E(ci ), hi 〉ci
,

Figure 2. Some illustrations of topological changes.

for some given inner product. Thus, we consider evolv-
ing the curves according to the curve evolution

∂t ci = −∇E(ci ) i = 1, . . . , N (c). (28)

Clearly, if the curves are moved according to the above
equation, and the curves do not undergo topological
changes then the evolution reduces the energy, E .

We now consider the possibility of topological
changes of c, that is merging and splitting of curves
in c. Two ways of topological changes are pictorially
shown in Fig. 2. On the left, the curves develop kinks;
on the right, they develop cusps. Note that other topo-
logical changes may be possible.

We consider whether the evolution of (28) reduces
the energy, E of the curve c, even when topology
changes occur. First, we note a problem for actually
defining the evolution in (28) for Sobolev metrics. Note
that during the instant in which the curve undergoes a
topology change an ambiguity arises in how to parame-
terize the curve at the instant of self-intersection. Since
the Sobolev inner product depends upon the arclength
parameterization of the curve this leads to an ambiguity
in defining the gradient and the resulting curve evo-
lution. For example, on the right side of Fig. 2, at the
instant of topology change, there is an ambiguity over
whether to treat c as a single curve or as two separate
curves. In the case of the H 0 gradient, this ambiguity
is not important since in both cases the H 0 gradient
is the same at all points of the curve except the point
of self-intersection as the H 0 does not depend upon
the curve globally as does the Sobolev gradient. Since
gradient descent flows are designed to minimize their
corresponding energy functional as quickly as possi-
ble, there is a very natural solution to the ambiguity that
arises in the case of the Sobolev gradient at the moment
a topological change occurs. In theory, one may simply
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compute the derivative of the energy corresponding to
either interpretation of the curve (each of which results
in a different gradient under the Sobolev metric) and
choose the one with the larger derivative as it will
lead to a faster instantaneous descent of the energy. In
practice, though, an even simpler numerical procedure
may be employed based on the same essential idea. We
will outline the procedure below for the case of level set
methods.

When employing level set methods for Sobolev ac-
tive contours (as described in Section 5.2), the contour
extracted at any discrete moment in time from the dis-
crete spatial grid always exhibits the simple topology
of an embedded curve(s), which bypasses the ambigu-
ity discussed above. Thus a topological change occurs
more abruptly after one discrete evolution step in which
the curve passes from one topology to another, never
passing through the ambiguous intermediate configu-
ration in which the curve no longer remains embedded.
Thus, there is never a need to resolve the Sobolev gradi-
ent of the curve in such configurations. Instead, noting
that there is typically a discontinuity in the Sobolev gra-
dient flow before and after topology change, we may
simply verify that the energy has decreased after the
topological change. If E is continuous, there is no rea-
son to expect repeated oscillations in the topology of
the curve even though the Sobolev gradient flow may
exhibit a discontinuity across the topology change. The
weighted length and area energies defined in Section 4
satisfy this continuity condition (since these function-
als remain unambiguous through a topology change
even though their Sobolev gradients do not). Indeed on
the right-hand side of Fig. 2, these energies remain con-
stant for the curve just before and just after the topology
change. On the other hand, energies that depend on lo-
cal derivatives of the curve such as the elastic energy
defined in Section 4 may not be continuous through the
topology change. As such there is no guarantee that the
energy E decreases after an evolution step that creates
a topological change. If the energy decreases, it makes
sense to continue evolving. If instead an increase is
detected, then one should stop evolving the curve and
restore its prior configuration. Otherwise, oscillations
may occur.

While the elastic energy pose a potential problem
for Sobolev metrics (and indeed even the H 0 metric) in
the event of certain types of topological changes (those
for which the elastic energy increases), they pose an
even greater problem for the standard H 0 metric as
discussed in Section 4.4.

5.2. Level Set Method

We first describe a straightforward numerical method to
extend curve evolutions that depend on integrals around
the curve to level set evolutions, introduced in Osher
and Sethian (1988). The algorithm for updating the
level set function, � : R2 × R → R, for most Sobolev
active contours is

1. Compute polygon(s) estimate of zero level set of �

from the narrowband, Un , a small thickening of the
zero level set.

2. Calculate and interpolate H 0-gradient to polygon(s)
estimate.

3. Compute Sobolev gradient on polygon(s) estimate
by using one of the formulas for the H 1 or H̃ 1-
gradients in terms of the H 0-gradient shown in Sec-
tion 3.1.

4. Extend polygon(s) forces to narrowband band of
level set function domain.

5. Evolve � by the transport equation �t = −∇� · �F ,
where �F : Un ⊂ R2 → R is the extended Sobolev
gradient to the narrowband region, Un .

The computational complexity of the entire algorithm
for extracting the polygon(s), and computing the ex-
tensions is linear in the size of the narrowband, Un .

In most of the cases of various energy functionals,
the H 0 gradient of the energy must be computed on the
narrowband Un in the usual fashion; or in our case, we
directly compute the H 0-gradient to the polygon esti-
mate of {� = 0}. In other cases (such as for the elastic
energy), the H 0 gradient does not need to be computed,
but only certain expressions that do not involve the con-
volutions. For example, in the elastic energy, the term
κ2T should be computed at every point of the polygon
estimate. Note that in computing quantities such as the
normal vector, and curvature of {� = 0}, we compute
them directly from � using standard formulas and in-
terpolate them to the polygon estimate. The Sobolev
gradient is then computed using a convolution or sim-
ple integral with the formulas in Section 3.1. Note that
we must compute separate convolutions or integrals on
each polygon extracted from � (or connected compo-
nent of �). We use a standard Riemann sum to compute
the curve integrals, and the polygon estimate is used to
determine the arclength measure, ds. After the Sobolev
gradient is computed on the polygon estimate, it can be
extended to Un . We call the extended Sobolev gradi-
ent �F . Note that we are extending the gradient so that
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∇� · ∇Fi = 0 where i = 1, 2 and �F = (F1, F2). That
is, we assume that all the level sets of � are moving
by the same speed function, which means that the level
sets of � do not collide. Now the level set evolution
can be computed by

�t (x) = −∇�(x) · �F(x).

5.3. Level Set Method Without Polygon Extraction

In this section, we describe an approach where we can
directly compute (without polygon extraction) an ap-
proximation to the Sobolev gradient from the H 0 gra-
dient that is defined on the narrowband, Un , of the level
set function. This may be of use since the polygon ex-
traction step is cumbersome.

Our approach is to approximate the convolution in-
tegrals (13) and (17) with region integrals evaluated
within the narrowband Un . The arc-distance between
points on the curve (i.e., s − ŝ) that is required by the
formulas (13) and (17) can be approximated by the
use of the eikonal equation (Rouy and Tourin, 1992).
Consider an embedded curve, c ∈ C2(S1, R2), and the
function F : R2 → R+ defined as

F(x) =
{

+∞ for x /∈ {c}
1 for x ∈ {c}

where {c} = {c(θ ) : θ ∈ S1}. Define u : R2 → R+ by

u(c(s)) := inf
γ∈�

∫ 1

0

F(γ (θ ))‖γ ′(θ )‖ dθ,

where � := {γ : [0, 1] → R2, γ (0) = c(ŝ), γ (1) =
c(s)}; then clearly, we see that u(c(s)) equals the min-
imum distance between the points c(s) and c(ŝ) along
the curve c. Because of the symmetry of the kernels in
(12) and (16), it suffices to use the quantity u(c(s)) as
a substitute for s − ŝ in the convolutions formulas (13)
and (17). As in Rouy and Tourin (1992), we may solve
for the viscosity solution of the eikonal equation

‖∇u(x)‖ = F(x), u(c(ŝ)) = 0 (29)

to obtain the desired solution of u at all points along
the curve, c. As we will solve this equation numerically
on a grid, we consider the following approximation to
(29):

‖∇u(x)‖ = 1 + |�(x)|/ε, u(c(ŝ)) = 0 (30)

where ε > 0 is chosen small enough, and � is the level
set function with �(c(s)) = 0 for all s.

Next, note the co-area formula for a Borel measur-
able function f : R2 → R, a Borel set A ⊂ R2 such
that ∇�(x) �= 0 for x ∈ A:

∫
A

f (x)‖∇�(x)‖ dx =
∫

�(A)

∫
�−1(t)

f (x) d�1(x) dt

where d�1 is the one-dimensional Hausdorff measure,
that is, arc-length measure. We use this formula to con-
vert the contours integrals of interest to integrals over
the domain of the level set (or the narrowband region).
Thus, we find by the co-area formula and the Lebesgue
differentiation theorem,

∫
c

H (c(s))K (ŝ − s) ds

≈
∫

A
H (x)K (u(x))δa(�(x))‖∇�(x)‖ dx

where δa : R → R is a smooth approximation to the
Dirac distribution, H : R2 → R is some function, u is
the solution to (30), and A ⊂ R2, such that {c} ⊂ Ao,
the interior of A. According to the previous comments,
we propose the following theorem:

Theorem 5.1. Suppose that c : S1 → R2 is a C2

curve embedded in the plane, � is zero only on the
image of c, and ∇�(c(θ )) �= 0 for θ ∈ S1; then,

lim
ε→0

1

2ε

∫
A
|∇�(x)|Z (|�(x)|/ε) dx

= length of the curve (31)

where Z : R+ → R+ is a positive continuous
decreasing functions s.t. Z (0) = ∫ ∞

0
Z = 1 and

limx→∞ x Z (x) = 0 (for example Z (x) = exp(−x));
the integral on the left hand side is on a compact set A
such that the curve is contained in Å, the interior of A.

Fix a continuous H : R2 → R, a kernel K : R+ →
R, and suppose that limx→∞ K (x)/x = 1. Let ε > 0,
and c(s̄) be a point in the curve and let u : R2 → R be
the viscosity solution of

|∇u(x)| − (1 + |�(x)|/ε) = 0, u(c(ŝ)) = 0

(32)
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then

lim
ε→0

1

2ε2

∫
A
|∇�(x)| H (x) K (u(x)) Z (|�(x)|/ε2) dx

=
∫

c
H (c(s)) K (|s − ŝ|) ds (33)

where |s − ŝ| is the shortest arclength distance between
c(s) and c(ŝ) along c.

To solve the eikonal equation in (32) numerically,
we use the fast marching method (Adalsteinsson and
Sethian, 1995). We discretize on a N × N grid, then the
integrals above are numerically substituted by a sum;
if ε → 0 while N is kept constant, then clearly the
numerical versions of (31) and (33) would converge to
zero rather than to the desired result; so we propose the
following numerical scheme for the approximation of
(31):

1

2εN 2

N∑
i, j

|∇�(xi, j )|Z (|�(xi, j )|/ε)

≈ length of the curve (34)

where xi, j are points of the discretization of the domain
of � to an N × N grid, and ε → 0, N → +∞ and
Nε → +∞. Similarly, we use the method by Adal-
steinsson and Sethian (1995) to solve for a numerical
approximation uN

i, j to (32); then (33) becomes

1

2ε2 N 2

N∑
i, j

|∇�(xi, j )|H (xi, j )K
(

uN
i, j

)
Z (|�(xi, j )|/ε2) dx

≈
∫

c
H (c(s)) K (|s − s̄|) ds. (35)

6. Experiments

In this section, we show some simulations of Sobolev
active contours used for segmentation of static images
and some simple image sequences.

We tried both the method of Section 5.2 and 5.3; the
latter is simpler to implement, but is difficult to tune
w.r.t. the choice of ε and N . The following numerical
experiments use the polygon(s) estimate of the zero
level set, as in Section 5.2.

In all the simulations done below, the results for the
Sobolev active contours are done with the H̃ 1 inner

product (λ = 10 unless stated otherwise, although a
wide range of λ gives similar results). Using the H 1

inner product gives visually similar results as to what
are shown. We consider two energies to illustrate the
advantages of Sobolev active contours over H 0 active
contours. The edge-based energy we consider is

Ee(c) =
∫

c
φ(c(s)) ds, where φ = 1

1 + ‖∇ I‖2
,

(36)

which was proposed by Caselles et al., Kichenassamy
et al. (1995, 1995). The region-based energy we con-
sider is

Er (c) =
∫

cin

(I − u)2 dA +
∫

cout

(I − v)2 dA + αL(c),

(37)

where

u =
∫

cin
I dA∫

cin
dA

, and v =
∫

cout
I dA∫

cout
dA

,

and α ≥ 0 specifies a penalty on the length, L(·), of the
curve. This is the piecewise-constant model of Mum-
ford and Shah (1989) (see also Chan and Vese (2001)).
The use of the length penalty is partly to keep the evolv-
ing H 0 contour smooth, and avoid undesirable local
minimum of the first terms caused by noise. This term
has a smoothing effect since the H 0 gradient flow of
L is curvature flow, which has smoothing properties.
As we saw in Section 4.1, the length penalty for the
Sobolev flow is futile in terms of giving smoothness to
the contour.

6.1. Merging and Splitting

In Fig. 3, we demonstrate the experimental evidence for
the ideas presented in Section 5.1. In this experiment,
we segment an image using the region-based energy
(37), and a Sobolev active contour. We see that the ac-
tive contour can change topology to achieve the global
minimum.

6.2. Noisy Square Segmentation

In Fig. 4, we show the results of an experiment in which
we segment a noisy square image with the region-based
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Figure 3. Segmentation of various shapes using a Sobolev active contour for a region-based energy (37). This illustrates the ability of Sobolev

active contours to cope with topological changes: merging and splitting.

Figure 4. Segmentation of square binary image with salt and pepper noise of various densities. The experiment shows the results with H0 (of

various degrees of regularization, α), and the Sobolev active contour.

energy (37). We added salt and pepper noise with den-
sities of ρ = 0.5, 0.6, 0.7 to the binary image. In this
experiment, we compare the results obtained from us-
ing the usual H 0 active contour with the result obtained
from using a Sobolev active contour.

First, we explore the effects of various weights, α,
on the length penalty in (37) for the H 0 active contour.
In Fig. 4, we see that with using a small α, the contour
becomes stuck in the noise, at an intermediate local
minimum of Er (37). The image second from the right
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Figure 5. Segmentation of a cardiac image using the edge-based energy in (36) (two different initializations).

in each row is the result of the H 0-active contour with
a minimum α just high enough so that the contour is
not stuck in noise at a local minimum. In Fig. 4(a), we
see that with relatively low noise, the result of the H 0-
active contour with just high enough α to overcome the
local minimum captures the desired square accurately.
As the noise increases, a higher α is needed to over-
come local minima; however, because of such a high
length penalty and therefore higher smoothness, the ac-
tive contour is unable to capture the fine-scale structure
of the desired object. In Fig. 4(c), we see that using the
minimal α to overcome the noise results in the con-
tour failing to capture the corners of the desired square
object.

Notice that for each of the noise levels, the Sobolev
active contour without any length penalty (α = 0) or
additional regularization terms in the energy moves
in such a way as to avoid any local minimum of
the energy, Er , as it moves in a global fashion first

before resorting to finer scale deformations (the final
segmentation of the square images are the last image in
each row of Fig. 4). The end result captures the square
accurately and looks to be the global minimum of the
region-based energy. The result is independent of λ, the
weighting on the derivative component of the H̃ 1 inner
product since translations do not optimize the energy.
Notice that the converged Sobolev contour becomes
more rugged as the noise increases. This is because the
image is corrupted by the noise, and the original bound-
ary of the square is no longer the global minimum of
energy. We should point out that the Sobolev active
contour gives smoothness in the contour flow; it does
not guarantee smoothness in the final contour, which
is determined by the energy that is being minimized.

Besides obtaining a more accurate segmentation, the
Sobolev active contour converges much faster than the
H 0 active contour with just high enough length penalty,
α, to get passed local minima. The reason for this is
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Figure 6. Segmentation of an ultrasound image using the region-based energy (37).

because of the small step size needed for stability of
the curvature term arising from the length penalty in
the level set implementation. A crude estimate for the
Sobolev active contour shows that the step size is less
than 0.5/2552 = 130 050−1, whereas for the H 0-active
contour with α = 300 000, as in Fig. 4(c), a step size of
less than min{0.5/300 000 = 600 000−1, 0.5/2552 =
130 050−1} = 600 000−1 is needed. This is a factor of
about 5 for this crude estimate.

6.3. Segmentation of Real Images

We illustrate the advantages of using Sobolev active
contours over H 0 with the same energy on real medical
images in Figs. 5, 6, and 7.

In Fig. 5, we use the edge-based energy, Ee (36)
to segment a cardiac image. We show the results with
two different initializations using both H 0 and Sobolev
active contours. Because of the complicated texture of
the image, the edge-based energy is riddled with local
minima. Because the Sobolev active contour moves
more globally, it is less likely than the H 0 active contour
to become stuck in local minima, as shown in Fig. 5.

In Fig. 6, we segment an ultrasound image using
the region-based energy (37). In Fig. 6(a), the results
are shown using an H 0 active contour with two dif-

ferent weightings, α, on the length penalty. In both
cases, extraneous features of the image are detected.
In Fig. 6(b), we see that the Sobolev contour moves
initially according to global motions (translation and
dilation), and finally detects the more fine features of
the image when more global motions cannot optimize
the energy. Thus, the contour is able to avoid irrelevant
local features that disturbs the H 0 active contour.

In Fig. 7, we segment a vessel image using a the
region-based energy (37). As we see, the Sobolev
active contour is less affected by local features, which
causes the H 0 active contour to leak into an irrelevant
region of the image.

6.4. Segmentation of Simple Image Sequences

We now illustrate the robustness of the Sobolev ac-
tive contour for segmenting simple synthetic image
sequences (Figs. 8 and 9). The image sequences are
simply formed by translating a square object. We suc-
cessively segment frames of the image by an active
contour whose initialization in the current frame is the
final segmentation in the previous frame. In the ex-
periment shown in Fig. 8, we employ the edge-based
energy (36). In the experiment in Fig. 9, we use the
region-based energy (37). The segmentation evolutions



364 Sundaramoorthi, Yezzi and Mennucci

Figure 7. Segmentation of a vessel image using the region-based energy (37) with both the H0 active contour and the Sobolev active contour.

The Sobolev active contour is able to avoid distracting fine features of the image and therefore does not leak into an irrelevant region of the

image.

Figure 8. Left to right, top to bottom: Tracking a moving square in a noisy environment (Gaussian noise, μ = 0, σ 2 = 0.01) using H0 active

contour (white) and Sobolev active contour (black). The edge-based energy (36) is used.

are run until convergence of both contours (H 0 in white
and Sobolev in black). Notice the H 0 active contours
becomes stuck in a undesirable local minima after the
initial movement of the object and soon lose track of
the object. The Sobolev active contour does not have
this problem and it successfully tracks the object by
mostly translating and deforming only slightly.

7. Conclusion

In summary, we have observed that much of the lit-
erature on active contours uses the concept of gradi-
ent flow to minimize energies, but it has always been
assumed (knowingly or unknowingly) that the inner
product on curve perturbations, on which the gradient
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Figure 9. Left to right, top to bottom: Tracking a moving square in a noisy environment (Gaussian noise, μ = 0, σ 2 = 0.3) using the

region-based energy (37) and the H0 active contour (white) with α = 10000 and Sobolev active contour (black) using no regularization

(α = 0).

depends, is the H 0 inner product. We have introduced
using Sobolev inner products on the set of perturba-
tions of a curve. We have demonstrated the general
methodology for computing Sobolev gradients, which
requires integrating the H 0 gradient. The procedure
requires very little extra computational time and little
change of existing computer code when compared with
the H 0 gradient flow, in particular for the H̃ n family
of norms, as remarked in 3.1. It was demonstrated by
theory and experiments that Sobolev gradient flows are
global flows, in which a single point on the curve de-
pends on all other points of the curve, and the flows
deform locally after global motions (e.g., translations)
can no longer optimize the energy. This particular prop-
erty shows that the Sobolev method gives a smooth
flow (not necessarily a smooth contour), which in many
cases helps avoid certain undesirable local minimum
of active contour energies that disturb the (local) H 0

flows. Explicit formulas for Sobolev gradient flows of
typical energies found in the active contour literature,
which were derived, showed many interesting prop-
erties of Sobolev active contours. One of the notable
properties that these explicit formulas shows is that
the Sobolev method regularizes the corresponding H 0

gradient flow by reducing the order of the PDE. In par-
ticular, derivatives of the curve need not be defined for
region-based and edge-based energies, and the elastic
energy, which results in a fourth order H 0 flow is re-
duced to a second order flow using a first order Sobolev
flow.
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