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Abstract. We cast the problem of multiframe stereo reconstruction of a smooth surface as the global region
segmentation of a collection of images of the scene. Dually, the problem of segmenting multiple calibrated images
of an object becomes that of estimating the solid shape that gives rise to such images. We assume that the radiance
of the scene results in piecewise homogeneous image statistics. This simplifying assumption covers Lambertian
scenes with constant albedo as well as fine homogeneous textures, which are known challenges to stereo algorithms
based on local correspondence. We pose the segmentation problem within a variational framework, and use fast
level set methods to find the optimal solution numerically. Our algorithm does not work in the presence of strong
photometric features, where traditional reconstruction algorithms do. It enjoys significant robustness to noise under
the assumptions it is designed for.

Keywords: variational methods, Mumford-Shah functional, image segmentation, multi-frame stereo recons-
truction, level set methods

1. Introduction

Inferring spatial properties of a scene from one or more
images is a central problem in Computer Vision. When
more than one image of the same scene is available, the
problem is traditionally approached by first matching
points or small regions across different images (local
correspondence) and then combining the matches into
a three-dimensional model.1 Local correspondence,
however, suffers from the presence of noise and local
minima, which can cause mismatches.

The obvious antidote to the curse of noise is to
avoid local correspondence altogether by integrating
visual information over regions in each image and
seeking for their global deformation across differ-
ent images. This naturally leads to a segmentation
problem.

The dyarchy between local and region-based meth-
ods is very clear in the literature on segmentation,
where the latter are recognized as being more resistant
to noise albeit more restrictive in their assumptions on
the complexity of the scene.2 The same cannot be said
about stereo, where the vast majority of the algorithms
proposed in the literature relies on local correspon-
dence. Our goal in this paper is to formulate multiframe
stereo as a global region segmentation problem, thus
complementing existing stereo algorithms by pro-
viding tools that work when local correspondence
fails.

Assumptions: We present an algorithm for recon-
structing scene shape and radiance from a number
of calibrated images. We make the assumption that
the scene is composed by rigid objects that support
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Figure 1. Domain of operation of shape from shading, stereo and stereoscopic segmentation in a noise-texture plane: the horizontal axis
indicates increased density in the texture of the surfaces in the scene, the vertical axis indicates the intensity of noise in the image. Although
our algorithm is designed for homogeneous image statistics, in practice it performs satisfactorily even in the presence of smooth irradiance or
modest texture gradients.

radiance functions and illumination models that re-
sult in homogeneous image statistics.3 This includes
Lambertian objects with constant albedo (where lo-
cal correspondence is ill-posed) as well as densely
textured objects with isotropic statistics (where local
correspondence is prone to multiple local minima).
These conditions are admittedly restrictive. However,
they correspond to conditions that prevent traditional
stereo or shape from shading to operate. The relation
between our method and traditional stereo and shape
from shading is illustrated pictorially in Fig. 1, where
the domain of operation of each scheme is shown on a
plane that represents the amount of noise on the image
and the texture density of the surfaces populating the
scene.

1.1. Relation to Prior Work

Since it touches the broad topics of segmentation and
solid shape reconstruction, this paper relates to a vast
body of work in the Computer Vision community.
To emphasize the relations and differences with ap-
proaches based on different assumptions, we let the
reader be guided by following table.

ALBEDO RADIANCE LIGHT OUTPUT

STEREO �= const shape

CARVING �= const largest phot.
consist. shape,
radiance

SHADING const known shape

THIS WORK const smoothest phot.
consist. shape,
radiance

In local correspondence-based stereo (see Faugeras,
1993) and references therein), one makes the assump-
tion that the scene is Lambertian and the radiance is
nowhere constant in order to recover a dense model of
the three-dimensional structure of the scene.4 Faugeras
and Keriven (1996) pose the stereo reconstruction prob-
lem in a variational framework, where the cost function
corresponds to the local matching score. In a sense, this
work can be interpreted as extending the approach of
(Faugeras and Keriven, 1996) to regions. In shape carv-
ing (Kutulakos and Seitz, 1998), the same assumptions
are used to recover a representation of shape (the largest
shape that is photometrically consistent with the data)
as well as photometry. We use a different assumption,
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namely that radiance is smooth, to recover a different
representation (the smoothest shape that is photomet-
rically consistent with the data in a variational sense)
as well as photometry.

The precise mathematical sense in which “smooth-
ness” is measured is with respect to an energy func-
tional which penalizes surface area of the modeled
shape while at the same time encouraging a good fit
between projections of the modeled shape (and its mod-
eled radiance) onto the image data. Therefore, this work
could be interpreted as performing space carving in a
variational framework to minimize the effects of noise.
Note, however, that once a pixel is deleted by the carv-
ing procedure, it can not be retrieved. In this sense,
shape carving is uni-directional. Our algorithm, on the
other hand, is bidirectional, in that surfaces are allowed
to evolve inward or outward. This work also relates to
shape from shading (Horn and Brooks, 1989) in that
it can be used to recover shape from a number of im-
ages of scenes with constant albedo (although it is not
bound by this assumption). However, traditional shape
from shading operates on single images under the as-
sumption of known illumination. There is also a con-
nection to shape from texture algorithms (Rosenholtz
and Malik, 1993) in that our algorithm can be used
on scenes with dense texture, although it operates on
multiple views as opposed to just one. Finally, there
is a relationship between our reconstruction methods
and the literature on shape from silhouettes (Cipolla
and Blake, 1992; Laurentini, 1994), although the latter
is based on local correspondence between occluding
boundaries. In a sense, this work can be interpreted
as a region-based method to reconstruct shape from
silhouettes.

The material in this paper is tightly related to a
wealth of contributions in the field of region-based seg-
mentation, starting from Mumford and Shah’s pioneer-
ing work (1989), and including (Caselles et al., 1993;
Caselles et al., 1998; Cohen, 1991; Kass et al., 1987;
Kichenassamy et al., 1996; LeVeque, 1992; Tek and
Kimia, 1995; Terzopoulos and Witkin, 1988; Ronfard,
1994; Zhu et al., 1995; Zhu and Yuille, 1996). This
line of work stands to complement local contour-
based segmentation methods such as (Kass et al., 1987;
Terzopoulos and Witkin, 1988). There are also algo-
rithms that combine both features (Chakraborty and
Duncan, 1999; Chakraborty et al., 1996).

In the methods used to perform the actual recon-
struction, our work relates to the literature on level set
methods (Osher and Sethian, 1988).

Our algorithm does not work in the presence of
strong textures or boundaries on the albedo; however,
under those conditions traditional stereo algorithms
based on local correspondence or shape carving algo-
rithms do.

2. A Variational Formulation

We assume that the scene is composed by a number
of smooth surfaces supporting a Lambertian radiance
function (or a dense texture with spatially homoge-
neous statistics) and illumination that guarantees that
irradiance discontinuities (or texture discontinuities)
correspond to occluding boundaries. These assump-
tions make the segmentation problem well-posed, al-
though not general. In fact, “true” segmentation in
this context corresponds in a one-to-one fashion to the
shape of the objects in the scene.5 Therefore, we set
up a cost functional to minimize variations within each
image region, where the free parameters are not the
boundaries in the image themselves, but the shape of a
surface in space whose occluding contours happen to
project onto such boundaries.

2.1. Notation

In what follows we will indicate by x = (x, y, z) the
coordinates of the generic point in R

3, � the domain
of the image I (with area element d�) and π : R

3 →
�; x �→ x̂ an ideal perspective projection with inverse
(re-projection) π−1 : � → R

3; x̂ = (x̂, ŷ) where x̂ =
x/z, ŷ = y/z. Note that the projection map, restricted
to the visible surfaces, is invertible.6 S is a surface in
space with coordinates (u, v) and area element d A. We
describe the background (“blue sky”) as a sphere with
angular coordinates � = (θ, φ) supporting a radiance
g. The radiance of the surface S is f, and we define the
region R = π (S) ⊆ � which back-projects (via π−1)
onto the surface S and denote its complement, which
back-projects (via �) onto the background, by Rc. The
area measure d� = dx̂d ŷ is related to the area measure
d A = ‖Su × Sv‖ du dv by d� = S·N

(S·e3)3 d A, where e3

denotes the natural basis vector in the z direction and
N is the inward 7 unit normal to S.

2.2. Cost Functional

In order to infer the shape of a surface S, we impose
a cost on the discrepancy between the projection of
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a model surface and the actual measurements. Such a
cost, E , depends upon the surface S as well as upon
the radiance of the surface f and of the background
g: E = E(f, g, S). We will then adjust the model sur-
face and radiance to match the measured images. Since
the unknowns (surface S and radiances f, g) live in an
infinite-dimensional space, we need to impose regular-
ization. In particular, we can leverage on our assump-
tion that the radiance is smooth. However, this is still
not enough, for the estimated surface could converge
to a very irregular shape to match image noise and
fine details. Therefore, we impose a geometric prior on
shape (smoothness). These are the three main ingredi-
ents in our approach: a data fidelity term Edata(f, g, S)
that measures the discrepancy between measured im-
ages and images predicted by the model, a smoothness
term for the estimated radiances Esmooth(f, g) and a ge-
ometric prior Egeom(S). We consider the composite cost
functional to be the sum of these three terms:

E(f, g, S) = Edata(f, g, S) + Esmooth(f, g) + Egeom(S)

(1)

We conjecture that, like in the case of the Mumford-
Shah functional (1989), these ingredients are sufficient
to define a unique solution to the minimization prob-
lem.8

In particular, the geometric prior is given by Egeom =∫
S d A, while smoothness is imposed by a cost on

the quadratic variation Esmooth = ∫
S ‖∇f‖2d A +∫

B ‖∇g‖2d� where B denotes the background (blue
sky). Finally, the data fidelity term may be measured
in the sense of L2 by

Edata =
∫

R
(f(π−1(x̂)) − I (x̂))2d�

+
∫

Rc

(g(�(x̂)) − I (x̂))2d�. (2)

Since an analytical expression for π−1 is not available,
we would like to rewrite this integral so that π appears
in the integrand instead of π−1. Furthermore, in order
to facilitate the computation of the first variation with
respect to S, we want both integrals expressed as inte-
grals over S as opposed to �. We begin with the first
integral (over R). It is equal to

∫
π−1(R)

(f(x) − I (π (x)))2 x · N

(x · e3)3
d A

=
∫

π−1(R)
ε2(x)

x · N

(x · e3)3
d A

where ε(x) = f(x)− I (π (x))). Now consider the second
integral (over Rc). It equals

∫
Rc

ε2(x̂) d� =
∫

�

ε2(x̂) d� −
∫

R
ε2(x̂) d�

=
∫

�

ε2(x̂) d�

−
∫

π−1(R)
ε2(π (x))

x · N

(x · e3)3
d A

where ε(x̂) = g(�(x̂)) − I (x̂)). Combining these
“rewritten” integrals yields:

∫
�

ε2(x̂) d� +
∫

π−1(R)
(ε2(x) − ε2(π (x)))

x · N

(x · e3)3
d A

=
∫

�

ε2(x̂) d� +
∫

π−1(R)
ϒ(x)σ (x, N ) d A

where ϒ(x) = ε2(x) − ε2(π (x)) and σ (x, N ) = x·N
(x·e3)3 .

Note that the first integral in the above is independent
of the surface S (and its radiance function f) and that
the second integral is taken over only a subset of the
surface. We may rewrite this integral as one over the
entire surface S and remove the last “remnant” of π−1

by introducing a characteristic function χ (x) ∈ {0, 1}
into the integrand where χ (x) = 1 for points on S that
are visible and χ (x) = 0 otherwise:

Edata =
∫

�

ε2(x̂) d� +
∫

S
χ (x)ϒ(x)σ (x, N ) d A (3)

The global cost functional is obtained by adding the
smoothness prior and geometric prior as follows

E(f, g, S) =
∫

�

ε2(x̂) d� +
∫

S
χ (x)ϒ(x)σ (x, N ) d A

+
∫

S
d A +

∫
S
‖∇f‖2d A +

∫
B

‖∇g‖2d�

(4)

2.3. Evolution Equation

In order to find the surface S and the radiances f, g
that minimize the functional (1) we set up an iterative
procedure where we start from an initial radiance f, g
and update S by a gradient flow equation based on the
first variation with respect to S. While the variation of
Esmooth does not, to a first approximation, 9 depend on
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S, the variation of Egeom is given by κ N . The varia-
tion of Edata requires some attention. In fact, the data
fidelity term in (3) involves an explicit model of occlu-
sions10 via a characteristic function. Discontinuities
in the kernel cause major problems, for they can result
in variations that are zero almost everywhere (e.g. for
the case of constant radiance). One easy solution is to
mollify the integrand. This can be done in a mathemat-
ically sound way by interpolating a smooth force field
on the surface in space. Or, alternatively, the integrand
in data fidelity term can be mollified thereby removing
the need to extend cost functional onto the surface. We
discuss this issue in Appendix A.

In order to arrive to an evolution equation, let us first
consider the data fidelity term in Eq. (3), which we
write in the following concise form

∫
E

G(X ) · N d A. (5)

It can be shown that zeroing the first variation leads to
the following evolution equation

d S

dt
= −(∇ · G)N (6)

In (3) we are considering a particular case of (5) for
which

G(X ) = χ (X )
ϒ(X )

(X · e3)3
X (7)

We now compute the divergence of G:

∇ · G = 1

z3
(χ∇ϒ + ϒ∇χ ) · X (8)

and substitute −ϒ = (f − g)[(I − f) + (I − g)] and
−∇ϒ = 2[(f − g)∇ I + (I − f)∇f − (I − g)∇g] which
leads, after simplifications, to the following gradient
flow:

d S

dt
= 1

z3
((f − g)[(I − f) + (I − g)](∇χ · S)

+ 2χ (I − f)(∇f · S))N + κ N . (9)

Notice that this flow depends only upon the image val-
ues, not the image gradient, which makes it more robust
to image noise when compared to other variational app-
roaches to stereo (i.e. less prone to become “trapped”
in local minima).

2.4. Estimating Scene Radiance

Once an estimate of the surface S is available, the ra-
diances f, g must be updated. This is immediate for the
case of piecewise constant images (images with piece-
wise constant irradiance statistics), since ∇f = 0 and
∇g = 0 and therefore the best radiances are given,
from Eq. (2), by the sample average of I in the regions
R and Rc. This is what we do in the experimental
section that follows. In this respect, our segmentation
scheme reflects the piecewise constant model used by
Chan and Vese (1999). However, rather than utiliz-
ing individual active contours to segment each im-
age directly as in Chan and Vese (1999), we couple
the segmentations of each image through the evolution
of a single 3D surface rather than separate 2D active
contours.

If the radiances are smooth, one can set up an op-
timization problem for f on the manifold S and g on
the manifold B; this is solved by a Poisson equation
on the manifold, where the Laplace-Beltrami operator
takes the place of the standard Laplacian. Since the im-
ages we tested were well approximated by piecewise
constant statistics, we do not pursue this approach fur-
ther at this stage. Implementation details of the full
piecewise smooth case may be found in Jin et al.
(2003).

3. Experiments

In Fig. 2 we show 4 of 22 calibrated views of a scene
meant to illustrate the domain of applicability of our
algorithm. The scene contains three objects: two shak-
ers and the background. The shakers exhibit very little
texture (making local correspondence ill-posed), while
the background exhibits very dense texture (making lo-
cal correspondence prone to local minima). In addition,
the shakers have a dark but shiny surface, that reflects
highlights that move relative to the camera since the
scene is rotated while the light is kept stationary. In
Fig. 3 we show the surface evolving from a large ellipse
that neither contains nor is contained in the shape of
the scene, to a final solid model. Notice that the parts of
the initial surface evolve outwards, while parts evolve
inwards in order to converge to the final shape. This
bi-directionality is a feature of our algorithm. In Fig. 4
we show the final result from various vantage points.
In Fig. 5 we show the final segmentation in some of
the original views (Top). We also show the segmented
foreground superimposed to the original images. Two
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Figure 2. Original “salt and pepper” sequence (4 of 22 views).

of the 22 views were poorly calibrated, as it can be seen
from the large reprojection error. However, this does
not significantly impact the final reconstruction, for
there is an averaging effect by integrating data from all
views.

In Fig. 6 we show the results of first segmenting each
of the camera images separately and independently and
then intersecting the projected cones of these segmen-
tations in space to “carve out” an estimate of the shape.
This procedure is suboptimal for a number of rea-
sons. First, the smoothness constraints are placed on

Figure 3. (Top) Rendered surface during evolution (6 of 800 steps). Notice that the initial surface is neither contained nor contains the actual
scene. (Bottom) segmented image during the evolution from two different viewpoints.

the boundaries of the segmenting curves within each
image, rather than on the reconstructed shape itself.
As clearly seen in the figure, smooth projections of
a shape do not guarantee a smooth reconstruction of
the shape itself when such carving procedures are em-
ployed (unless an infinite number of projections are
available). Second, this approach is extremely sensi-
tive to calibration errors. Many of the images in this
experiment contained small calibration errors which
cumulatively cause a noticeable portion of the true
shape to be “eaten away” near its boundary under this
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Figure 4. Final estimated surface, seen from several viewpoints.
Notice that the bottoms of the salt and pepper shakers are flat, even
though no data was available. This is due to the geometric prior, which
in the absence of data results in a minimal surface being computed.

Figure 5. (Top) image segmentation for the salt and pepper sequence. (Bottom) Segmented foreground superimposed to the original sequence.
The calibration in two of the 22 images was dramatically wrong. However, the effect is mitigated by the global integration, and the overall shape
is only marginally affected by the calibration errors.

carving procedure. Thus, even if the portions of the re-
construction that appear “reasonable”, the fine details
captured by our more integrated and coupled model
are completely missed. More severe effects however
are seen from two significantly miscalibrated images
which cause very large “chunks” of the true shape to
be removed from the reconstruction. Clearly, coupling
the segmentation of each image by directly estimating
the object we are trying to reconstruct yields better
results.

In order to quantify the improvement of our tech-
nique over volume carving techniques, we have com-
puted the reprojection error between the two mod-
els. In each case we have endowed the reconstructed
shape and the background with two different radiances
equal to the respective overall means of the segmented
foreground and background image intensities. The re-
projection error is computed as the root mean square
brightness error, normalized with respect to the image
size and to the average brightness of the 22 original
images. The final reprojection error using the carving
procedure was 9.849 × 10−2% per pixel, whereas the
reconstruction using our algorithm yielded an error of
8.809 × 10−2%) obtained using our variational app-
roach. In our algorithm, most of the error is con-
centrated on the two miscalibrated images, whereas
most views contain significant reprojection errors in
the carving results. More than the reprojection error,
however, the improvement of our algorithm over carv-
ing techniques is visible in the reconstruction (compare
Fig. 4 with Fig. 6).
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Figure 6. Reconstruction obtained by carving techniques. Individ-
ual images are first segmented, and then visibility cones are carved to
yield the reconstruction seen above. Even though individual images
are segmented successfully, calibration errors cause uni-directional
carving techniques to miss important details and to cut holes into the
reconstruction.

Figure 7. The “watering can” sequence and the initial surface. Notice that the initial surface is not simply connected and does not include and
is not included by the shape. In order to capture a hole it is necessary that it intersects the initial surface. One way to guarantee this is to start
with a number of small surfaces.

In Fig. 7 we show an image from a sequence
of views of a watering can, together with the ini-
tial surface. The estimated shape is shown in Fig. 8.
The results shown were obtained using a C++ im-
plementation running on a 700 MHz laptop. For
22 640 × 480 images and a cubic grid of 128 ×
128 × 128 the algorithm takes about 20 minutes
to converge (tested by threshold on the iteration
residual).

4. Discussion

We have presented an algorithm to reconstruct solid
shape and radiance from a number of calibrated views
of a scene with smooth shape and homogeneous ra-
diance statistics. It enjoys significant resistance to
noise since it does not rely on local correspondence,
and its domain of operation complements existing
stereo reconstruction algorithms. In particular, our as-
sumptions demand that the scene radiance results in
piecewise homogeneous image statistics (e.g. the re-
sponse of a filter bank). While restrictive, the algo-
rithm is robust enough to operate despite gross vi-
olations of the assumptions. For instance, we have
shown experiments where the image irradiance had
some specularity and regions were well separated,
but not strictly constant. Our experiments show that
the algorithm can tolerate errors in camera calibra-
tion. The computational complexity depends on the
size of the grid where the PDE evolves, and not on
the complexity of the scene. Therefore, although the
algorithm is far from operating in real time, it can
infer scenes with complex geometry and topology
effortlessly.



Stereoscopic Segmentation 39

Figure 8. Final estimated shape for the watering can. The two initial surfaces have merged. and the topology and geometry of the watering can
has been correctly captured. The evolution is shown in Fig. 9.
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Figure 9. (Top) Rendered surface during evolution for the watering can.

Appendix A: Computing the Gradient of χ

Now we will address the term ∇χ · S, where ∇χ must
be defined in the distributional sense because the char-
acteristic function χ is discontinuous. In the case of a
convex surface χ (S) = 1 when S·N > 0, and χ (S) = 0
when S · N < 0, or

χ (S) = H(S · N (S))

where H denotes the standard Heaviside (unit step)
function. This expression, however, is only defined for
points on the surface S. We may obtain an expression
valid everywhere if we extend the vector field of unit
inward normals N from the surface S to the surround-
ing embedding space. Let us call this extension Ñ .
We will soon see that the particular choice of exten-
sion will not affect the final gradient flow. We now
write

χ (X ) = H(X · Ñ (X )) where Ñ (S) = N (S),

and express the gradient as

∇χ (X ) = (
Ñ + Ñ T

X X
)
δ(X · Ñ )

which, at a point S on the surface, has the following
form

∇χ = (
N + Ñ T

X S
)
δ(S · N ).

To perform the computation of Ñ T
X S, we note that

it is possible to express the spatial coordinates X =
(x, y, z) in a neighborhood of any point S0 on the sur-
face S where S0 · N0 = 0 (the only points for which the
above expression is nonzero) in terms of local curvi-
linear coordinates U = (u, v, w) where (u, v) are co-
ordinates for S which are related to each other and to
w as follows:

1. X (U ) = (x(u, v, w), y(u, v, w), z(u, v, w))
2. X (u, v, 0) = S(u, v) and therefore Xu(u, v, 0) =

Su(u, v), Xv(u, v, 0) = Sv(u, v)
3. Xw(u, v, 0) = N (u, v)

4. Su × Sv = N , Sv × N = Su , N × Su = Sv (E = 1,
F = 0, G = 1)

5. S(0, 0) = S0

6. Su(0, 0) = S0/‖S0‖ (possible since S0 · N0 = 0)

We may now obtain an expression for Ñ X by noting
that ÑU = Ñ X XU and so

Ñ X = ÑU X−1
U

= [Ñ u Ñ v Ñw][Xu Xv Xw]−1

= [Ñ u Ñ v Ñw]

× [Xv × Xw Xw × Xu Xu × Xv]T

(Xu × Xv) · Xw

.

When evaluated at the surface point S0, we may use the
relations above to obtain

Ñ X = [Nu Nv Ñw]

× [Sv × N N × Su Su × Sv]T

(Su × Sv) · N

Ñ T
X S0 = [Su Sv N ]

N · N




Nu · S0

Nv · S0

Ñw · S0




= (Nu · S0)Su + (Nv · S0)Sv + (Ñw · S0)N .

We now use the fact that Su, Sv, N are orthonormal and
that S0 = Su‖S0‖ to obtain

(
Ñ T

X S0
) · S0 = ‖S0‖(Nu · S0) = ‖S0‖2(Nu · Su)

= −‖S0‖2(N · Suu) = −κu‖S0‖2

yielding

∇χ · S = −κu‖S‖2δ(S · N ) (10)

where κu denotes the normal curvature of S in the u-
direction (the direction S when S · N = 0).
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If we approximate the surface radiance by a constant
f then ∇f = 0, causing the second term in (9) to vanish.

d S

dt
= 1

z3
(f − g)[(I − f) + (I − g)](∇χ · S)N

= −κu‖S‖2

z3
(f − g)[(I − f) + (I − g)]δ(S · N )N

Appendix B: Projecting ε-Neighborhoods
of the Tangent Plane

Given a point X0 ∈ S and a normal vector N at that
point (does not have to be unit normal and can be either
inward or outward) we may express the tangent plane
to X0 through the following equation,

N · X = N · X0 (11)

‖X (u, v) − X0‖2 = X (u, v) · X (u, v) − 2X0 · X (u, v) + X0 · X0

= (N · X0)2

(N · X0 + z0 N · �)2

(
X0 · X0 + 2z0 X0 · � + z2

0� · �
)

− 2N · X0

N · X0 + z0 N · �
(X0 · X0 + z0 X0 · �) + X0 · X0

= z2
0

(N · X0)2(� · �) − 2(N · X0)(N · �)(X0 · �) + (N · �)2(X0 · X0)

(N · X0 + z0 N · �)2
.

where X = (x, y, z) ∈ R
3 and (x0, y0, z0) = X0. We

assume that a point X projects to a point (u, v) = π (X )
in a given image as follows (where Lu and Lv de-
note separate focal lengths for the u and v axes of the
image).

u = Lu
x

z
and v = Lv

y

z
(12)

The tangent plane may be parameterized via the image
coordinates (u, v) by combining (11) and (12).

N

(
zu

Lu
,

zv

Lv

, z

)
= N · X0 −→ z = N · X0

N
(

u
Lu

, v
Lv

, 1
)

−→ X (u, v) = N · X0

N
(

u
Lu

, v
Lv

, 1
)
(

u

Lu
,

v

Lv

, 1

)

If we denote π (X0) by (u0, v0), i.e. X (u0, v0) = X0,
then we may write

(
u0

Lu
,

v0

Lv

, 1

)
= X0

z0
−→

(
u

Lu
,

v

Lv

, 1

)
= X0

z0
+ �

where � = ( u−u0
Lu

, v−v0
Lv

, 0) which, when plugged into
(13), gives the following expression for the tangent
plane in terms of �.

X (u, v) = N · X0

N (X0 + z0�)
(X0 + z0�) (13)

Now, based upon this local approximation of S by its
tangent plane through X0, we may test whether an im-
age pixel (u, v) in a neighborhood of π (X0) = (u0, v0)
back-projects onto S within an ε-neighborhood of
X0 (which will be used to approximate a discrete
grid voxel) by checking if ‖X (u, v) − X0‖ < ε. To
do so, we will make use of the following expres-
sion.
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Notes

1. Since point-to-point matching is not possible due to the aperture
problem, points are typically supported by small photometric
patches that are matched using correlation methods or other cost
functions based on a local deformation model. Sometime local
correspondence and stereo reconstruction are combined into a
single step, for instance in the variational approach to stereo
championed by Faugeras and Keriven (1996).

2. Local methods involve computing derivatives, and are therefore
sensitive to noise. Region-based methods involve computing in-
tegrals, and suffer noise less.

3. The term statistics is used here as an arbitrary function of an
image realization. For instance, the image itself, its gradient, or
the output of a bank of filters are image statistics.
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4. An anonymous reviewer pointed out that (Szeliski and
Scharstein, 2002), which appeared after this manuscript was sub-
mitted for review, is also representative of this line of work.

5. We consider the background to be yet another object that happens
to occupy the entire field of view (the “blue sky” assumption).

6. Naive visibility computation is straightforward. For an efficient
computation of visibility in the level set framework, the reader
can refer to Tsai (2002).

7. While there is no explicit assumption of an orientable surface in
our mathematical model, we have assigned an orientation to N so
that the corresponding level set implementations of the resulting
flows may be written down immediately. Level set techniques,
which we have used in our experiments, require an orientable
surface even though our cost functional does not.

8. An anonymous reviewer has pointed out that it is dangerous to
conjecture uniqueness for functionals of this type.

9. Technically, the variation Esmooth does depend upon the surface
S since it affects the intrinsic gradient operator ∇S . We compute
this variation and discuss its behavior in detail in a technical re-
port (Jin et al., 2003). Our experiments have shown, however, that
it is not critical in the final reconstruction to model the explicit de-
pendence of Esmooth during the gradient descent procedure since
smoothness in the surface itself is more directly modeled through
the term Egeom. The more important variation of Esmooth is with
respect to the radiance function f since only this term affects its
smoothness.

10. The geometric term and the smoothness constraints are indepen-
dent of occlusions.
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