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Abstract

In this work we modify the couple d curve evolution

approach to snakes presente dby the authors in pre-

vious work for bimodal and trimodal imagery through

the intr oduction of glob al constr aints. The key idea,

as b efor e, is to derive curve evolution equations which

\pull apart" the values of one or more statistics within

the image. However, by imposing a new constraint on

the evolution of these statistics, we are able to seg-

ment a larger class of medical imagery for which our

original model would fail.

1 Introduction

In [10, 11], the authors outlined a fully global, cou-
pled curve evolution approach to image segmentation
for images consisting of a kno wnnumber of regions
distinguishable by a given set of statistics. This work,
along with the recent work in [2, 7], enjo yed thead-
van tage shared by many region-based approaches to
snakes [1, 7, 8, 12 ] of being less sensitiv e to noise
than most edge-based approaches by avoiding di�er-
ential operators to detect edges in the image. Suc h
approaches gain yet another degree of robustness by
being less local than typical edge-based approaches.

In contrast to other region-based snake algorithms,
the tec hnique in [10, 11] employs an independent set of
curves for each region-type to be captured in the im-
age. This facilitates the level set implementation (see
Osher and Sethian [6, 9] and the references therein)
used by the authors by allo wing a separate lev el set

�This work w as supported by ONR grant N00014-91-J-1004,
by subcontract GC123919NGD from Boston University under
the AF OSRMultidisciplinary Research Program on Reduced
Signature Target Recognition, and by ARO grant DAAH04-96-
1-0494 through Washington University.

function for each evolving curve.1 The separate curve
evolution equations are coupled via a common energy
functional yielding a fully global model for segmenta-
tion in which the evolution of each curve, regardless of
its pro ximity to any other curve, depends upon statis-
tics computed within every other curve and thereby
involv esev ery single pixel in the image. The basic
idea behind the original technique was to design these
curve evolution equations to maximally separate tw o
or more values of a predetermined set of statistics
within the image data.

In many medical images, mean intensity values con-
stitute an adequate statistic to distinguish one region
type from another. However, a maximal separation of
the mean intensities does not always correspond with
the desired segmentation. Even in bimodal images in-
volving a dark tissue and a light tissue, a slight inho-
mogeneity in one of the tissues could generate a par-
ticularly bright (or dark) spot within the image which
could attract an evolving curve more pow erfully than
the actual boundary betw een the tw otissues. It is
precisely this situation that motivates the work in this
paper. We add the constraint that the evolving curves
must not only separate the statistics within eac h re-
gion but must also force eac h individual statistic to
move aw ay from all other statistics.

This paper is organized as follows. We �rst de-
scribe the original curve evolution model proposed in
[10 , 11] for bimodal and trimodal images. We then
present a medical image for which the original algo-
rithm was expected to perform well but did not. The

1Note that Chan and Vese [2] and Paragios and Deriche [7]
also utilize level set implementations but only with a single level
set function.
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remainder of the paper explains the unexpected failure
of the original algorithm and outlines the implementa-
tion of a new global constraint on the evolution of the
statistics within eac h ev olving curv ewhich remedies
the poor peformance of the original algorithm on this
and other related medical images.

2 Coupled Curve Evolution Models
In this section, we present gradient 
ows designed

to segment images constisting of a known number of
regions. These 
ows will be constructed to essentially
\pull-apart" the values of a given set of statistics as
far as the data in the image will allo w. F or a more
thorough treatment, we refer the interested reader to
[10, 11].

2.1 Binary Flows

We begin by considering images which consist of
just tw oregion types. The most trivial case is that
of a binary image I(x; y) consisting of a single fore-
ground region R of in tensit yIr and a complementary
bac kground regionRc of intensit y Ic 6= Ir. We wish
to determine an ev olution that will continuously at-
tract any initial closed curve ~C tow ard the boundary
@R of R. Given that ~C will enclose some portion of R
and some portion of Rc, the a verage intensities u and
v inside and outside the curv e, respectively, will be
bounded above and below by Ir and Ic. Consequently,
using the distance betw eenu and v to measure ho w
w ell ~C has separated the foreground from the back-
ground will ensure an upper-bound of jIr� Icj that is

uniquely attained when ~C = @R. A similar stategy ,
which also assumes no previous kno wledgeof Ir or
Ic, would be to descend along the following quadratic
energy functional:

E = �
1

2
(u� v)2: (1)

Let Su =
R
Ru

IdA and Au =
R
Ru

dA, where Ru

denotes the interior of ~C. By expressing their �rst
variations as rSu = I ~N and rAu = ~N (see [10] for

details), where ~N denotes the outw ard unit normal of
~C, we compute the �rst variation of u = Su=Au as

ru =
AurSu � SurAu

A2
u

=
I � u

Au

~N: (2)

Using this expression (and a similar expression for

rv), we compute the gradient 
ow for ~C as

d~C

dt
= �rE = (u� v)(

I � u

Au

+
I � v

Av

) ~N; (3)

yielding an evolution that pulls apart the mean inten-
sities inside and outside the curve as fast as possible.

In a more general bimodal image which contains
noise, a contour may tend to weave around or encircle
extremely small regions due to noise in order to fully
separate the interior and exterior means, causing the
contour to appear fractal. To counter such e�ects, we
follo w the lead of Mumford and Shah [5] by adding to
our functional (1) a penalty on the arclength of the
curve.

E = �
1

2
(u� v)2 + �

Z
~C

ds (4)

Incorporating such a geometric constraint has the ef-
fect of regularizing the evolution through a curvature-
dependent term in the resulting gradient 
ow equation

d~C

dt
= (u� v)(

I � u

Au

+
I � v

Av

) ~N � �� ~N: (5)

This additional term exerts its strongest in
uence at
points on the contour where the magnitude of the cur-
vature is large. This discourages the contour from
wrapping around tiny pieces of noise, with the tradeo�
that sharp corners in the image data may be rounded
o� by the �nal contour.

One can, of course consider separating statistics
other than mean intensities. F urthermore, even with
just tw o regions, it is not necessary toemploy just a
single statistic at a time. We may generalize our bi-
nary model by considering the following more general
energy functional:

E = �
1

2
ku� vk2 + �

Z
~C

ds; (6)

where u = (u1; : : : ; un) and v = (v1; : : : ; vn) now de-
note vectors of statistics inside and outside the curve,
respectively. The basic idea is to determine a set of
statistics which distinguish the one region from an-
other and then utilize the follo wing curv eev olution
equation to \pull the statistics apart,"

d~C

dt
=

nX
i=1

(ui � vi)(rui �rvi)� �� ~N (7)

where rui and rvi denote the �rst variations of ui
and vi, respectively. T o accomodate a larger class of
bimodal imagery, the statistics ui and vi do not nec-
essarily have to represent mean in tensities but may
represent variances, correlations betw eenw avelet co-
eÆcients, and a variety of other statistics. However,
we have found that for a large class of medical imagery,
mean intensities work quite e�ectively.
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2.2 T ernaryFlows

We no w consider trimodal imagery (three region
types instead of just two) by assuming that the domain
of an image I(x; y) consists of tw odisjoint, simply
connected, foreground regions Ra and Rb, and a back-
ground region Rc (the complement of Ra [ Rb) with
mutually distinct intensities Ia, Ib, and Ic, respec-
tively. A closed curve ~Cu in the domain of I will gen-
erally enclose some portion of eac h region; thus, the
average intensit yu inside ~Cu can be written as a con-
vex combination of Ia, Ib, Ic (i.e. u = �Ia+�Ib+
Ic

where 0 � �; �; 
 � 1 and � + � + 
 = 1). Un-
forunately, if I takes its values inR, there is no unique
con vexcombination since any three points in R are
ob viously collinear.This poses a problem since the al-
gorithm we are about to present relies upon geometri-
cally independent2 statistics to distinguish the regions
Ra, Rb, and Rc.

T obe geometrically independent, Ia, Ib, and Ic

must belong to R
n where n � 2 as opposed to just

R. For this reason, assume that I is a vector-v alued
image with vectors in Rn (n � 2) and that Ia; Ib; Ic

are geometrically independent. We may now represent
u as a unique convex combination of these three values.
The same situation applies to the average intensit y
v 2 R

n within thein terior of a second curve ~Cv and
to the average in tensit yw 2 R

n within the mutual
exterior of ~Cu and ~Cv . Our segmentation goal is to
construct coupled 
ows that will continuously attract
~Cu tow ards one of the boundaries@Ra or @Rb (of Ra

and Rb, respectively) while simultaneously attracting
~Cv tow ards the other.
By virtue of their geometric independence, Ia, Ib,

and Ic form the vertices of a triangle Tabc. As con-
vex combinations of these three values, u, v, and w
lie within this triangle, forming another triangle Tuvw
completely contained in Tabc. This is true even if the

in teriors of ~Cu and ~Cv overlap (providing a 
exibility
to our approach that is not provided by other region-
based approaches in which ev olving regions must al-
w aysbe disjoint). As suc h, the area of the triangle
Tuvw will always be less than or equal to the area of
the triangle Tabc, with equality holding if and only if
~Cu = @Ra and ~Cv = @Rb or vice-versa. We may there-

fore attract ~Cu and ~Cv tow ard the desired boundaries
without any prior knowledge of Ia, Ib, or Ic by try-
ing to maximize the area of Tuvw using the following
expressions:

area(Tuvw) =
1

2
ku� wkkv �wk sin �

4 area2(Tuvw) = ku� wk2kv � wk2 � ((u� w) � (v � w))2

2Noncollinear in this context.

where � denotes the angle betw eenu�w and v �w.
As in Section 2.1 we also attach a pentaly on the

arclengths of ~Cu and ~Cv to regularize the ev olutions
and preven t the �nal contours from capturing small
pieces of noise. In general one may wish to penalize
the t w o lengths di�erently; here we consider an equal
penalty to obtain the following energy functional

E = �2 area2(Tuvw) + �(

Z
~Cu

ds+

Z
~Cv

ds) (8)

where � � 0. Using the previous expression tocom-
pute the variation of the �rst term yields

r(2 area2(Tuvw)) = f �w � ru+ �u � rv + �v � rwg ~N

with the following de�nitions:

ru = (ru1 � ~N; : : : ;run � ~N)

(likewise for rv and rw)

�u = ~u� ~v; ~u = û(v̂ � ŵ); û = u� v
�v = ~v � ~w; ~v = v̂(ŵ � û); v̂ = v � w
�w = ~w � ~u ; ~w = ŵ(û � v̂); ŵ = w � u:

Since r~Cu
v = r~Cv

u = 0 the gradient descent equa-
tions for E become

d ~Cu

dt
=

(
nX
i=1

�
�wi
Ii � ui

Au
� �vi(1 � �v)

Ii � wi

Aw

�
� ��u

)
~Nu (9)

d ~Cv

dt
=

(
nX
i=1

�
�ui
Ii � vi

Av
� �vi(1� �u)

Ii �wi

Aw

�
� ��v

)
~Nv (10)

where �u and �v denote the signed curvatures of ~Cu

and ~Cv , ~Nu and ~Nv denote their outw ard unit normals,
and �u and �v denote the characteristic functions over
Ru and Rv (the in teriors of~Cu and ~Cv respectively).

Note that equations (9) and (10) comprise a truly
global model for segmentation in that the evolutions of
~Cu and ~Cv are always coupled (through the statistics
u, v, and w), regardless of their proximities to one
another. As a consequence the evolution of each curve
is go vernedby the value of every single pixel in the
image at all times.

2.3 More general coupled 
ows

In general, one may wish to partition an image do-
main into m di�erent types of regions, where m is an
arbitrarily large number. By adhering to the same
philosophy of associating the preferred segmentation
with a maximal separation of some statistic over eac h
region, a vector-v alued statistic,U , with at leastm�1
components would be required. If the m distinct val-
ues, U1; : : : ; Um, of this statistic constitute a set of
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Figure 1: Original binary (top) and ternary (bottom) 
ows segmenting red blood cells and a dorsal spine.

geometrically independent points in the preferred seg-
mentation, and if the statistic is chosen such that an
arbitary segmentation yields values u1; : : : ; um, which
are convex combinations of U1; : : : ; Um (which is the
case if we are considering means of a vector-valued im-
age) then the natural energy functional will relate to
the volume of the m � 1 dimensional simplex whose
vertices are given b yu1; : : : ; um. The corresponding
gradient 
ow equations will yield a coupled evolution
of m � 1 curves which tend to maximize the volume
of this simplex, with the interiors of each curve repre-
senting m� 1 regions and their mutual exteriors rep-
resenting the m'th region.

3 Global Constraints

We begin this section by illustrating the perfor-
mance of our coupled curve evolution models on three
medical images. The two rows in Fig. 1 demonstrate
successful uses of the binary 
ow (5) and the coupled
ternary 
o ws (9) and (10) respectively to segment a
bimodal microscopic image of red blood cells and a tri-
modal CT image of the dorsal region of a spine (using
pseudocolor to generate a vector-v alued image).In the
�rst row of Fig. 2 we see a cardiac ultrasound image of
the left v en tricle which, lik e the �rst image in Fig. 1,
consists of light and dark regions and is therefore bi-
modal in nature. In this case, how ev er, the same bi-
nary 
ow fails to capture the boundary betw een these

tw oregions but captures instead the very dark spot
within the blood pool.

The undesirable behavior of the binary 
ow (5) in
Fig. 2 (�rst row) may be explained by noting that
both means (inside and outside the curve) decrease as
the curve moves past the ven tricle boundary and into
the blood pool. How ev er,the rapid decrease of the
interior mean outw eighs the slow decrease in the exte-
rior mean so that overall, the t w o means move further
apart, just as the binary model dictates. This obser-
vation suggests imposing a constraint on the evolution
of the tw omeans: Not only do w edesire the means
to move further apart, w ealso require that they al-
w ays move in opposite directions. We now develop an
implementation of this constraint to obtain a binary

ow which pulls tw o meansapart as fast as possible
without allowing them to evolv e in the same direction.

3.1 Constrained binary 
ows

Let d~C
dt

and d~C0

dt
denote two evolutions taken from

the space of all smooth ev olutions of a curv e ~C. We
may obtain the structure of a Hilbert space by de�ning
the following inner product.*

d~C

dt
;
d ~C 0

dt

+
=

I
~C

 
d~C

dt
�
d~C 0

dt

!
ds (11)

Returning to our original binary energy functional
(1), we denote its gradient (descent) 
ow (3) by �rE
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Figure 2: The constrained binary 
ow (bottom) outperforming the original binary 
ow (top).

and we denote the gradient 
ows3 for the means u and
v byru and rv respectively. Under the binary 
ow
�rE the means u and v evolve according to

u0 =


ru;�rE

�
= (u� v)

�
�(u; u)� �(u; v)

�
(12)

v0 =


rv;�rE

�
= (u� v)

�
�(v; u)� �(v; v)

�
(13)

where �(u; v) denotes the inner product hru;rvi. In
this case, since u and v denote mean intensities, w e
obtain the following expressions.

�(u; u)= 1

AuAu

H
~C
(I � u)(I � u)ds

�(u; v)= �1

AuAv

H
~C
(I � u)(I � v)ds

�(v; v)= 1

AvAv

H
~C
(I � v)(I � v)ds

The constraint that u and v must move in opposite
directions is equivalent to u0v0 < 0, which, using equa-
tions (12) and (13), leads to the following condition.

�(u; v)
�
�(u; u)+�(v; v)

�
< �(u; u)�(v; v)+�2(u; v) (14)

We enforce this constraint by using the unconstrained
binary 
ow �rE so long as (14) is satis�ed. If this
condition is not satis�ed, we modify the evolution to
keep either u or v �xed (depending upon which one
is moving in the \wrong" direction) by removing the
component along the gradient direction for that statis-
tic. We therefore choose one of the follo wing con-

3i.e. the 
ows which increase u and v most quickly, see (2)

strained binary 
ows,

d ~C

dt
=�rE+

hrE;rui

hru;rui
ru=

u�v

Av

�
(I�u)+
u(I�v)

�
~N (15)

d ~C

dt
=�rE+

hrE;rvi

hrv;rvi
rv=

u�v

Au

�
(I�v)+
v(I�u)

�
~N (16)

where 
ow (15) is used to preserve the value of u, while

ow (16) is used to preserve the v alue ofv, and where


u =

H
~C
(I � u)(I � v)ds

H
~C
(I � u)(I � u)ds

and 
v =

H
~C
(I � u)(I � v)ds

H
~C
(I � v)(I � v)ds

:

In the bottom row of Fig. 2 w esee this new con-
strained 
ow remedying the poor performance of the
original, unconstrained 
ow (5). With the constraints,
the �nal contour remains along the boundary of the
ven tricle instead of collapsing into the blood pool.

3.2 A more general constraint

For the binary 
o w,w econsidered the constraint
that the tw o statisticsu and v must move in opposite
directions. This viewpoint is diÆcult to generalize to
models, such as the ternary model, which involv e more
than tw ostatistics. How ev er,if w eview the binary
constraint in a slightly di�erent light, i.e. we want the
statistic u to ev olv ein suc h a w aythat if the other
statistic v w ere held �xed, the distance betw eenu and
v w ould still increase (and vice-versa) then we create
a perspective that carries over naturally when more
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than tw ostatistics are involved. The constraint, in
the general multimodal case involving n � 1 coupled
curve evolution equations, is that each statistic must
evolve in a direction that w ould increase thevolume
of the n � 1 dimensional simplex whose vertices are
given by the values of n statistics (see Section 2.3).
An equivalen t geometric statement is that each vertex
must move aw ay from the opposite face of the simplex.

3.3 Constrained ternary 
ows

Here w e apply the general constraint, dictated
abo ve, to our ternary model, which involves three
statistics u, v, and w. In this case, the constraint
is that u0 (the time derivative of u) must be directed
aw ayfrom the line segment connecting v and w (as
to increase the area of the triangle Tuvw if v and w
w ere held �xed).We employ similar constraints for v0

and w0 and will make these conditions more precise
shortly .First we deriv e expressions foru0, v0, and w0.

If �i denotes the i'th component of one of the n-
dimensional statistics u, v, or w, its time derivative
�0i under the coupled 
ows �r~Cu

E and �r~Cv
E given

by (9) and (10) may be computed as

�0i = �0i
u
+ �0i

v
= �



r~Cu

�i;r~Cu
E
�
�


r~Cv

�i;r~Cv
E
�

where �0i
u
and �0i

v
denote the derivativ es of�i strictly

due to the evolutions of ~Cu and ~Cv respectively. If w e
ignore the arclength terms in (8), and therefore the
corresponding curvature terms in (9) and (10),

�0i
u

=
nX
j=1



r~Cu

�i; �wjr~Cu
uj + �vjr~Cu

wj

�

�0i
v

=
nX
j=1



r~Cv

�i; �ujr~Cv
vj + �vjr~Cv

wj

�

w e obtain the following expressions,

u0u=�~Cu(u; u) �w+�~Cu(u;w)�v v0
v
=�~Cv(v; v)�u+�~Cv(v; w)�v

w0u=�~Cu(w; u) �w+�~Cu(w;w)�v w0v=�~Cv(w; v)�u+�~Cv(w; w)�v

where �~Cu and �~Cv denote matrices of inner products of

gradient 
ows, with respect to ~Cu and ~Cv respectively,
for the components of the tw o statistics passed as ar-
guments. F or example, the entry �ij~Cu

(u;w) in the i'th

row and j'th column of �~Cu(u;w) would be giv enby
hr~Cu

ui;r~Cu
wji. In the case that u, v, and w repre-

sent means of a vector-v alued imageI = (I1; : : : ; In),

�~Cu(u; u) =
1

AuAu

H
~Cu

(I � u)(I � u)T ds

�~Cu(u;w) =
�1

AuAw

H
~Cu
(I � u)(I � w)T (1� �v)ds

�~Cu(w;w)=
1

AwAw

H
~Cu
(I � w)(I � w)T (1� �v)ds

and

�~Cv(v; v) = 1

AvAv

H
~Cv
(I � v)(I � v)T ds

�~Cv(v; w) =
�1

AvAw

H
~Cv
(I � v)(I � w)T (1� �u)ds

�~Cv(w;w)=
1

AwAw

H
~Cv
(I � w)(I � w)T (1� �u)ds

(the other t w o matrices,�~Cu(w; u) and �~Cv(w; v), are
transposes of �~Cu(u;w) and �~Cv(v; w) respectively).

We now state our constraints more precisely as

u0 � hu > 0; v0 � hv > 0; w0 � hw > 0 (17)

where

u0 = u0
u
; v0 = v0

v
; w0 = w0u+ w0v

and where hu, hv, and hw denote vectors perpendicu-
lar to the edges of the triangle Tuvw opposite the ver-
tices u, v, and w (represented b y the vectors (v � w),
(w�u), and (u�v) respectively) and directed tow ard
the in terior of the triangle (when starting from any
point on the respective edges of Tuvw). The following
vectors constitute such a set.

hu=u (v̂ � v̂) + v (v̂ � ŵ)+w(v̂ � û)
hv = v(ŵ � ŵ)+w(ŵ � û)+u(ŵ � v̂)
hw=w(û � û) +u(û � v̂)+ v(û � ŵ)

(18)

We enforce these constraints as follo ws. We start
out, as we did in the binary case, by using the uncon-
strained 
ows �r~Cu

E and �r~Cu
E given by (9) and

(10) as long as the conditions in (17) are satis�ed. If
these conditions are not satis�ed, we use one or more
of the following constrained ternary 
ows which re-
strict the motion of each problematic statistic so that
its distance from the opposite edge of the triangle Tuvw
remains �xed (when ignoring the evolution of the other
tw o statistics) and therefore does not change the value
of the cost functional E (if the arclength penalties are
ignored).

d~Cu

dt
=�r~Cu

E+

�

uur~Cu

(u � hu) ; u0
u
� hu< 0


uwr~Cu
(w � hw); w0u� hw< 0

(19)

d~Cv

dt
=�r~Cv

E+

�

vvr~Cv

(v � hv) ; v0
v
� hv < 0


vwr~Cv
(w � hw); w0v� hw< 0

(20)

The following expressions pertain to (19) and (20).



u
u=



r~Cu

(u�hu);r~Cu
E
�



r~Cu

(u�hu);r~Cu
(u�hu)

�
=

hu�u0
u

hu��~Cu(u;u)h
u



u
w=



r~Cu

(w�hw);r~Cu
E
�



r~Cu

(w�hw);r~Cu
(w�hw)

�
=

hw�w0u

hw��~Cu(w;w)h
w
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v
v=



r~Cv

(v�hv);r~Cv
E
�



r~Cv

(v�hv);r~Cv
(v�hv)

�
=

hv�v0v

hv ��~Cv(v;v)h
v



v
w=



r~Cv

(w�hw);r~Cv
E
�



r~Cv

(w�hw);r~Cv
(w�hw)

�
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4 Results
We now present some additional medical images

which cannot be segmented using the original binary
or ternary 
ows but require instead the constrained
versions presented in the previous section. In each
case we start with the same initial contour and show
snapshots of both the constrained and unconstrained

ows at identical times during the evolution process.

In the bottom row of Fig. 3 w eobserve the con-
strained binary 
o w (15-16) segmenting the white
matter in a MRI brain image; while in the top row, we
see the original binary 
ow (5) capturing only a tiny
bright spot inside. In the bottom row of Fig. 4 we ob-
serve the constrained binary 
ow (15-16) segmenting
the left v entrical in a cardiac MRI image; while in the
top row, the original binary 
ow (5) once again cap-
tures only a few bright pixels inside. Finally, in Fig. 5
w e demonstrate the constrained ternary 
ows (19) and
(20) distinguishing three regions in a color image of the
skin surface on the hand of a patient with a Kaposi
Sarcoma. Both 
ows capture the bac kground region
successfully. How ever, only the constrained version
(bottom row) captures the lesion whereas the uncon-
strained version (top row) collapses inside the lesion.

5 Conclusions
In conclusion, w eha veoutlined a fully global ap-

proach to segmentation based upon curv eev olution
models designed to separate two or more v alues of a
given set of statistics. By dictating that the statis-
tics must also move \aw ay fromeac h other," w eob-
tained a global constraint which greatly improved the
performance of the original model, allowing us to seg-
ment a number of images for which the original, un-
constrained model would fail.
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Figure 3: Constrained (bottom) and unconstrained (top) binary 
ows applied to an MRI brain image.

Figure 4: Constrained (bottom) and unconstrained (top) binary 
ows applied to a cardiac MRI image.

Figure 5: Constrained (bottom) and unconstrained (top) ternary 
ows applied to a skin surface image.
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