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Abstract—Recently proposed Sobolev active contours introduced a new paradigm for minimizing energies defined on curves by

changing the traditional cost of perturbing a curve and thereby redefining gradients associated to these energies. Sobolev active contours

evolve more globally and are less attracted to certain intermediate local minima than traditional active contours, and it is based on a well-

structured Riemannian metric, which is important for shape analysis and shape priors. In this paper, we analyze Sobolev active contours

using scale-space analysis in order to understand their evolution across different scales. This analysis shows an extremely important and

useful behavior of Sobolev contours, namely, that they move successively from coarse to increasingly finer scale motions in a continuous

manner. This property illustrates that one justification for using the Sobolev technique is for applications where coarse-scale deformations

are preferred over fine-scale deformations. Along with other properties to be discussed, the coarse-to-fine observation reveals that

Sobolev active contours are, in particular, ideally suited for tracking algorithms that use active contours. We will also justify our assertion

that the Sobolev metric should be used over the traditional metric for active contours in tracking problems by experimentally showing how a

variety of active-contour-based tracking methods can be significantly improved merely by evolving the active contour according to the

Sobolev method.

Index Terms—Active contours, tracking, coarse-to-fine evolutions, Sobolev gradients.

Ç

1 INTRODUCTION

TRACKING objects in video sequences with active contours
has been an active research area ever since the

introduction of snakes in [2] (see [3] for a survey). This is
often a two-step procedure. The first step is detection. Here,
an initial estimate of the object boundary being tracked in a
particular image (video frame) is given, and the goal is to
evolve this initial contour toward the object of interest in
that particular frame. A wide variety of different energy-
based schemes have been proposed [2], [4], [5], [6], [7], [8],
[9], [10], [11], [12]. The second step is prediction, where the
objective is to predict the object’s boundary in the upcoming
image based on the presently detected contour, as well as
contours detected in previous images. Measured (or
assumed) dynamics are then extrapolated forward to
predict the upcoming contour. Many times, the result from
prediction is then averaged in an appropriate manner with
the result of detection on the prediction to form an estimate
of the contour (for example, see [13], [14]). A trivial
approach, which we call the naive tracker, assumes no
change in dynamics and therefore uses the contour detected
in the current frame as the prediction (initial contour) for
the next frame. More sophisticated prediction steps may be
found in [15], [13], [16], [17] for parametric snakes and,
more recently, [18], [14], [19] for geometric active contours.

The prediction step in many contour tracking algorithms is
needed because the detection step is too sensitive to initial
contour placement, thereby rendering the naive tracker
inadequate. Indeed, if we had a robust detection scheme that
could operate in real time, then the prediction step could be
eliminated,andthenaive trackerwouldsuffice.Thissensitivity
ofactivecontourmodelscomes inpartduetoa lackof inherent
smoothness in the way the active contours evolve or deform.

Typically, an object being tracked deforms rather
smoothly from frame to frame; otherwise, a prediction
would make no sense. Note that we are referring to the
smoothness of the contour deformation (along the contour),
not the contour itself. Active contour energies, through the
use of regularizers, may easily be adapted to favor
smoothness in the final detected contour. However, in
tracking, it makes sense to ensure the smoothness of the
deformation of the contour in each frame to the next,
regardless of how smooth we want the contour to be. Most
current and previous active contour algorithms allow an
initial contour to deform in very complex ways, as it flows
toward an energy minimum. Even if the final contour in
each frame has the exact same shape as the initial contour
up to translation, the intermediate contours attained during
the evolution may vary immensely from the initial and final
shapes. This nonpreferential freedom of the contour to
undergo arbitrarily complicated deformations as it flows
can attract the contour to undesirable intermediate local
minima before it reaches the desired object boundary.

It would thus be beneficial, when tracking with active
contours, to evolve the initial contour, whether or not it was
obtained by the naive tracker or by a prediction step,
toward its final configuration in a manner that mimics the
evolution behavior of the objects we wish to track. In
particular, it would be ideal if the evolution first favored
rigid motions that did not change the actual shape of the
evolving contour and then gave preferential treatment to
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coarser scale or more global deformations, resorting only at
the end to finer scale deformations when necessary.

Recently, Sobolev Active Contours [20], [21] introduced a
new paradigm for minimizing energies defined on curves
(see also [22], [23]). This yields a completely new way to
evolve active contours by exploiting the fact that the gradient
flow used to evolve a contour is influenced not only by the
energy it minimizes but also by how we measure the cost of
perturbing the curve. The works [24], [25] revealed many
undesirable properties associated with the usual cost ðH0Þ
inherent in all previous geometric active contour models.
Accordingly, the authors in [20] and [22] considered using
other norms for perturbing active contours based on Sobolev
spaces. Sobolev active contours evolve more globally and are
less attracted to certain intermediate local minima than
traditional active contours. In contrast to the usual strategy of
substituting simple energies with more complex (and costly)
energies exhibiting fewer local minima, Sobolev active
contours minimize the same energy but follow an entirely
different deformation to reach their steady-state configura-
tion, thereby avoiding many local minima that would
otherwise have been encountered along the way.

Applying Sobolev norms to variational problems has been
done in areas other than active contours to gain many of the
same advantages that are gained in active contour problems.
For example, the book [26] (see also references within)
presents the theory of Sobolev gradients and applies it to
various physical problems. The key difference between those
metrics and the ones we are considering is that we are defining
geometrized Sobolev norms; these are to be thought of as the
metrics for a (yet to be completely studied) Riemannian
manifold of curves, equivalent up to reparameterization. The
usual Sobolev norms are associated to Hilbert (or Banach)
vector spaces of parameterized curves. A recent work that uses
theSobolevgradient forboundaryreconstruction ispresented
in [27]. Geometrized Sobolev metrics have been used for
defining shape spaces for shape analysis, where the objective is
to be able to perform statistical operations on shapes, which
may be contours. For example, the authors in [28], [29], [30]
consider Sobolev metrics on the space of plane contours for
shape analysis, and other variants are considered in [31].

Although Sobolev active contours was introduced earlier
and tracking is mentioned in both [21], [23], our contribu-
tion is to expand on those ideas and give a detailed new
analysis, which among other things explains the compelling
reasons for using the Sobolev metric in tracking situations.
Indeed, we examine Sobolev active contours using a scale-
space-type analysis that shows, along with other properties
to be discussed, that these active contours are quite
naturally suited for tracking problems, performing (given
the exact same energy functional) significantly better than
the corresponding traditional active contour. This makes
the generic tracking algorithm less dependent on its
prediction step as the initial contour does not need to be
placed within as narrow an attraction basin in order to
reach the desired minimum. In fact, we will see that Sobolev
active contours often allows even the naive tracker to
perform well with simple energies that are otherwise
plagued by undesirable local minima problems. For a more
detailed discussion and analysis of the benefits of Sobolev
active contours for tracking, see Section 4.

1.1 Related Works

We now discuss previous techniques that have been
explicitly designed to obtain multiscale and global motion
properties that are naturally inherent in Sobolev active
contours and discuss the advantages of Sobolev active
contours in relation to these techniques.

Many active contour works have explicitly incorporated
information from successive scales of an image to perform a
systematic segmentation that matches image data at both
coarse and fine scales. For example, in [32], the image is
downsampled to a coarse scale, and an active contour [2] is
evolved until convergence. The resulting active contour is
upsampled to a finer scale of the image, and the process is
continued on successively finer scale representations of the
image until the active contour is evolved in the image itself.
The method in [32] makes it less likely that the active contour
becomes stuck in irrelevant local minimum of the underlying
energy caused by fine-scale features of the image. There is
also a computational advantage of these methods since the
algorithm works with downsampled images.

One problem with this method is knowing which and how
many scales of the image to use. Ideally, one would like to use
a continuum of scales that have gradually more information
added at each successive scale. However, this is practically
not possible in the framework of the work in [32]. When an
arbitrary discrete sampling of scales is chosen, there is a
greater possibility of the evolving contour becoming trapped
in artificial local minima. Choosing a large number of scales
reduces the chance of being trapped in a local minimum;
however, the computational cost increases.

One limitation of multiscale techniques like [32] is that
there is a limit to how much the domain of the image may be
coarsened whenever complicated geometrical objects are
present in the image, and it is not trivial to obtain the limit. If
the domain of the image is coarsened or downsampled
enough, the object to be segmented in the coarsened
representation of the image may have a different topology
than the same object in the original image (for example, if we
coarsen the domain of the image in Fig. 6 enough, then the
object will become two circles—a different topology than the
original object). At each instant of time of the contour
evolution, multiscale methods give a possibly different
topology of the object to be segmented (at different scales).
This is clearly not a desirable property. In general, this
problem is exhibited whenever thin structures are present in
the image. We note that Sobolev active contours have no such
limitation in that the object to be segmented stays a consistent
topology at each instant of time during the contour evolution
(even when complicated geometrical objects and thin
structures are present).

As shown in [21] (see also Section 2), Sobolev active
contours are global flows in that they incorporate image and
curve information from the entire curve in order to evolve a
single point on the curve. Typical multiscale methods that
are used for curve evolutions also use global information in
order to deform the contour, but the notion of “global” is
different than for Sobolev active contours. Indeed, in the
coarse-scale evolution of a multiscale algorithm, a point cðsÞ
of the curve uses image information from the neighborhood
fx 2 IR2 : kx� cðsÞk < Rg, where R > 0 depends on the
amount of smoothing/downsampling performed. Although
this gives some advantages over traditional active contours
including that the evolution incorporates coarse-scale
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information before finer details, the evolution of the curve is
not coarse to fine, and there is no preference to coarse-scale
deformations before finer deformations because the tradi-
tional metric is used. Our scale-space-type analysis shows
that Sobolev active contours have inherent multiscale
behavior. Indeed, the Sobolev technique is an automatic
multiscale evolution that incorporates information from all
scales of the image.

Numerous approaches have been applied to tracking,
which deal with the problem of traditional active contours
being attracted to irrelevant local features of an image
resulting from the flexibility of the contour to undergo
arbitrary deformations. The approach taken by some to avoid
unlikely deformations in tracking applications has been to
restrict the degrees of freedom of the active contour so that
more global deformations of the contour are only possible.
For example, this approach has been taken in [33], [34], [35]. In
[33], a deforming contour is represented by B-splines, and
[34], [35] uses polygons. Since there are fewer control points
for a B-spline and polygon than a typical parametric snake,
this results in more global deformations of the contour. An
advantage of the approaches used in [34], [35] over traditional
active contours is that information is integrated over adjacent
edges of the polygon in order to move the corresponding
vertex and, hence, this adds the robustness of the polygon to
noise and other local features. Other related methods use a
finite number of Fourier or wavelet coefficients to represent
the evolving contour (for example, see [32]). A disadvantage
of the approaches used in [34], [35] is that topological changes
become hard to handle (see [36]). Another disadvantage of
these approaches is that the motion of the contour is restricted
and, therefore, it becomes impossible to detect fine features of
the image when they are needed. Moreover, these methods
do not generally evolve in a coarse-to-fine fashion, which is an
advantage of Sobolev active contours.

Techniques have been designed to force a coarse-to-fine
evolution of active contours in order to avoid undesirable
local minima of energies in tracking applications. In [37],
[38], the authors propose to optimize energies that are
defined on both the set of curves and a set of global group
motions. In the simplest case, these energies are defined as
Enewðc; gÞ :¼ Eðg � cÞ, where E is an active contour energy, c
is a curve, and g is a global group action (for example, affine
motion). For tracking, it is beneficial to optimize with
respect to g first while keeping c fixed since the global
motion is the most important and then to optimize (using
the traditional metric) with respect to c to obtain fine-scale
changes of the object being tracked.

More recently, the authors of [22], [23] (see a related idea in
[39]) have proposed to optimize energies using “spatially
coherent” flows to achieve the effect of [37], [38] by
constructing norms on the space of perturbations of a curve
that favor various group motions (for example, affine
motions). These norms are equivalent (unlike Sobolev-type
norms) to the traditional H0 norm, and thus, the notion of
“locality” is the same for both H0 and “spatially coherent”
norms (see Section 2.2 for a consequence of this fact). This
approach is useful for tracking if one has a prior assumption
that the object of interest is moving according to an affine
motion. In many tracking situations (for example, see the real
sequences in Section 5), it is not necessarily the case that the
object of interest is moving according to an affine motion, but
we can generally say that the object is moving according to

“coarse” deformations with respect to its boundary that
cannot be captured with simple group motions. The
advantage of using Sobolev active contours for tracking is
the inherent coarse-to-fine behavior, which the inner pro-
ducts based on group motions do not have, and the fact that
explicit groups do not need to be chosen.

2 INTRODUCTION TO SOBOLEV ACTIVE CONTOURS

Sobolev active contours were introduced in [20], [21]. We give
a brief review of the theory. LetM denote the set of immersed
curves in IR2, which is a differentiable manifold. For a
curve c 2M, we denote by TcM the tangent space of M at c,
which is isomorphic to the set of smooth perturbations of
the form h : S1 ! IR2, where S1 denotes the circle. We denote
by E : M ! IR an energy functional on M.

Definition 2.1. Let E : M ! IR. If c 2M and h 2 TcM, then

the variation of E is dEðcÞ � h ¼ d
dt Eðcþ thÞ

��
t¼0

, where

ðcþ thÞð�Þ :¼ cð�Þ þ thð�Þ, and � 2 S1.

Assume that h�; �ic is an inner product on TcM. The

gradient of E is a vector field rEðcÞ 2 TcM that satisfies

dEðcÞ � h ¼ hh;rEðcÞic for all h 2 TcM.

One can interpret the gradient as the most efficient
perturbation; that is, the gradient maximizes the change in
energy per cost of perturbing the curve. The following
proposition justifies the previous statement.

Proposition 2.1. Let k � kc be the norm induced from the inner
product h�; �ic on TcM. Suppose that dEðcÞ 6¼ 0, and rEðcÞ
exists; then, the problem

sup
fh2TcM;khkc¼1g

dEðcÞ � h ¼ sup
fk2TcM;k 6¼0g

dEðcÞ � k
kkkc

has a unique solution up to a multiplicative constant,
k ¼ rEðcÞ 2 TcM, h ¼ k=kkk.

We review the new inner products on TcM proposed in [20],
[21], which are based on inner products in Sobolev spaces.

Definition 2.2. Let c 2M, L be the length of c, and h, k 2 TcM.
Let � > 0. We assume that h and k are parameterized by the
arc-length parameter of c:

1. hh; kiH0 :¼ 1
L

R
c hðsÞ � kðsÞds,

2. hh; kiHn :¼ hh; kiH0 þ �L2nhhðnÞ; kðnÞiH0 , and

3. hh; ki ~Hn :¼ avgðhÞ � avgðkÞ þ �L2nhhðnÞ; kðnÞiH0 ,

where avgðhÞ :¼ 1
L

R
c hðsÞds, and hðnÞ is the nth derivative of

h with respect to the arc length.

Note that the length-dependent scale factors give the above
inner products and corresponding norms invariance under
rescaling of the curve (for example, when the domain of the
curve, that is, the image domain, is scaled). Also, it should
be noted that the general definition of the Sobolev inner
product of order n contains the H0 inner product of all
lower than order n derivatives; however, as shown in [20],
[21], all these definitions are topologically equivalent to the
definitions we present, and moreover, the qualitative
behavior depends on the leading derivative. As noted in
[20], [21] (see also Section 5), for implementation purposes,
there is an algorithm for the ~Hn gradient flow that is
independent of the parameter �.
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Changing the Riemannian metric associated with the
space of curves regularizes the minimizing flows associated
with active contour energies without requiring the addition
of regularization penalties in the original active contour
energies. The change of metric does not affect the global
minima of the energy, but it completely changes the notions
of gradient and “neighborhood of a curve.” As a result of
the change of “locality,” Sobolev active contours are much
more robust to the local minima that strongly influence
standard active contours (for example, local minima due to
noise). See Section 2.2 for more details.

Sobolev gradients are related to H0 gradients by linear
ordinary differential equations (ODEs), and the solution to
these ODEs results in the following expressions:

rHnE ¼ rH0E �K�;n; and r ~HnE ¼ rH0E � ~K�;n; ð1Þ

where � denotes convolution on S1, K�;n, and ~K�;n are
appropriate kernels. It was noted that gradient flows with
respect to Hn and ~Hn norms have the same qualitative
properties and that they have similar geometric properties.
The advantage of using the ~Hn gradient is that the convolu-
tion formula need not be used;r ~HnE at all points of the curve
can be solved fromrH0E by computing a couple of integrals
around the contour. This means that the computational costs
of computing the H0 and ~Hn gradients are nearly the same;
indeed, computing both gradients have the same order of
computational complexity. If m is the number of sample
points of the curve and we assume that computing rH0E
is OðmÞ (which is typical), then to compute r ~HnE is
Oðmþ nmÞ ¼ OðmÞ, where O denotes Big-Oh notation. On
the other hand, to compute rHnE is Oðm2Þ, which is much
more expensive.

2.1 Motivation: Consistent Theory of Shape

One of the main motivations of our work on Sobolev metrics
in the space of curves is to obtain a consistent way of doing
both shape analysis (for example, computing statistics of
shapes) and shape optimization (for example, optimizing
active contour energies) in a consistent manner. To date, this is
the only work that offers such a consistent theory. Indeed, it
has recently been proven that the Riemannian metric arising
from the Sobolev metrics we consider in the space of curves
yield well-defined, that is, nonzero, distances and that the
metrics are complete with respect to Lipschitz curves [29].
Also, recently, Michor and Mumford [30] computed the
geodesic equation for theHn metric and proved the existence
of geodesics for small times and smooth initial data. In the
past, there have been many metrics proposed for doing shape
analysis (for example, [40], [41], [38], [31]), but the optimiza-
tion procedure for energies defined on the space of shapes is
inconsistent with these metrics and the geometry of the space
and, therefore, artificial.

There are many advantages of the Riemannian metric
approach for shape analysis, for example, being able to define
a principal component analysis (PCA) of a set of shapes: We
may perform a PCA in the tangent space to the mean shape on
the vectors that point in the geodesic direction of each
individual shape. A consistent approach for optimization on
the space of curves is desired for many reasons. For example,
consider the simple application of incorporating prior
information into segmentation using active contours (for
example, see [42], [40], [43], [44], [45]). In the simplest case, we
may have prior information that the object to be detected from

an image is close in the sense of our metric to the shape c0. Our
active contour energy may be the following:

EðcÞ ¼ EimageðcÞ þ dðc; c0Þ;

where c is a shape (for example, curve), d is the Riemannian
metric (shape metric) on the space of curves, and Eimage is an
image-based term. To minimize the energy, one can consider
calculating the gradient descent flow, which depends on the
metric used to define gradient. If we choose the same
Riemannian metric for d and the gradient, then the gradient
of dð�; c0Þ becomes simply the vector pointing in the direction
of the geodesic,which is quitenatural.On the otherhand, ifwe
make an inconsistent choice, then the gradient of dð�; c0Þ is the
direction that maximizes the change in dðc; c0Þ while also
minimizing the (inconsistent) cost of perturbing c, which is
quite artificial. Moreover, when minimizingEwith respect to
a different metric thand, we end up far away (in the sense ofd)
from the initial curve as we step in the gradient direction,
which may have detrimental effects for tracking applications
wherethe initial curve isusuallyquiteclose to the targetcurve.
Even when computing the average of two shapes, which is a
typical computation for shape analysis, a typical procedure is
to use a gradient descent to find the average. Although using
the same metric to define the gradient leads to a gradient
descent that is intimately tied to geodesics and, therefore, to
the geometry of the shape space, an inconsistent metric has no
such natural connection to the geometry of the space.

2.2 Motivation: Fewer Numerical Local Minimizers

A very important motivation for using Sobolev metrics to
define gradient flows is the fact that, as mentioned earlier, the
notion of “local” in the space of curves changes. Indeed, since
the Sobolev norms are not equivalent to the H0 norm, the
notion of “local” completely changes. Local minimizers for
the same energy in H0 may not be local minimizers when
considering Sobolev norms (they may change to critical
points that are not local minimizers). However, a local
minimizer with respect to Sobolev norms is a local minimizer
with respect to H0 since Sobolev norms dominate the
H0 norm (that is, khkH0 � khk

Sobolev
). Another consequence of

the change of locality in Sobolev norms is that numerically
many local minimizers of an energy due to noise vanish.
Indeed, curves that are local to a local minimizer due to noise
in H0 are “pushed” so far away from the “local” minimizer
when considering Sobolev metrics that, numerically, the local
minimum no longer exists. These previous points are not true
for the “spatially coherent” norms where rigid motions are
favored (considered in [23]) since these norms are equivalent
to the H0 norm.

To demonstrate the numerical vanishing of local minima
due to noise, we conduct the following experiment:

1. Initialize contour in a noisy image.
2. Run H0 gradient flow on the energy

EðcÞ ¼ EcvðcÞ þ LðcÞ; ð2Þ

where Ecv is the Chan-Vese energy, and L is the
length functional. Call the converged contour c0.

3. Adjust c0 at one sample point by one pixel; call
modification ĉ0 (ĉ0 is an H0 local perturbation of c0).

4. Run and compare H0, translation-favored H0, and
Sobolev gradient flows initialized with ĉ0.
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The results are given in Fig. 1. The H0 active contour flows
back to the local minimizer c0, since that is local to ĉ0 with
respect to H0. The same is true for the translation-favored
H0 flow since the corresponding norm is equivalent to the
H0 norm. On the other hand, the Sobolev active contour is not
attracted to the “local” minimizer c0 since ĉ0 is no longer local
to c0. Note that identical results are achieved for this experiment
even if the local minimum c0 is not perturbed!! This is because,
numerically, a local minimum cannot be represented exactly
due to finite precision issues, and these finite precision
perturbations are local with respect to the H0 norm but not
with respect to Sobolev norms. Therefore, numerically, this
local minimum due to noise no longer exists.

3 SCALE-SPACE TYPE ANALYSIS OF SOBOLEV

ACTIVE CONTOURS

In this section, through Fourier analysis, we show that
Sobolev active contours favor more coarse-scale motions
than regular active contours and that they generally first
undergo coarse-scale motions before resorting to fine-scale
deformations in optimizing the chosen energy.

3.1 Sobolev Norms in Frequency Domain

Notice that since any h 2 TcM is smooth on S1, it follows
that h 2 L2ðS1Þ. Thus, we may write h as a Fourier series:

hðsÞ ¼
X
l2ZZ

bhðlÞ exp
2�i

L
ls

� �
ð3Þ

with convergence in L2ðS1Þ (and in fact, pointwise since h is
smooth), where bh 2 ‘2ðZZÞ is defined by

bhðlÞ ¼ 1

L

Z
c

hðsÞ exp � 2�i

L
ls

� �
ds: ð4Þ

It should be noted that (3) decomposes the perturbation into
the orthonormal basis of exponentials. This allows us to write
Definition 2.2 in the frequency domain. By Parseval’s theoremZ L

0

hðsÞ � kðsÞds ¼ L
X
l2ZZ

bhðlÞ � bkðlÞ;
where � denotes complex conjugation. We also have thatZ L

0

hðnÞðsÞ � kðnÞðsÞds ¼ L
X
l2ZZ

2�

L
l

� �2n bhðlÞ � bkðlÞ;

therefore,

Proposition 3.1. If h, k 2 TcM, L is the length of c, and bh, bk :

ZZ! CC are defined by (4), then

hh; kiHn ¼
X
l2ZZ

ð1þ �ð2�lÞ2nÞbhðlÞ � bkðlÞ; ð5Þ

hh; ki ~Hn ¼ bhð0Þ � bkð0Þ þX
l2ZZ

�ð2�lÞ2n bhðlÞ � bkðlÞ; ð6Þ

and the corresponding norms are

khk2
Hn ¼

X
l2ZZ

ð1þ �ð2�lÞ2nÞjbhðlÞj2; ð7Þ

khk2
~Hn ¼ jbhð0Þj2 þX

l2ZZ

�ð2�lÞ2njbhðlÞj2: ð8Þ

Notice that Proposition 3.1 allows us to define the Hn and
~Hn inner products for n that is any real number greater than

zero. These inner products are defined the same way as in (5)
and(6). It iseasytoverify inthiscase toothat thedefinitionsare
indeed inner products. Unfortunately, for an n that is not an
integer, the inner products (therefore, norms) are not local,
that is, they cannot be written as integrals of derivatives of the
curves, but given r 2 IRþ, we can represent them forn integer
n> rþ1=4 as hh; ki ~Hr¼avgðhÞ � avgðkÞþ�L2nhhðnÞ; K � kðnÞiH0

for a kernelK with Fourier coefficients:

bKðlÞ ¼ 1 if l ¼ 0
ð2�lÞ2r�2n if l 6¼ 0:

�
The norms shown in (7) and (8) measure the perturbation

magnitude in terms of its Fourier coefficients, which are the
weights of its corresponding frequency components. We see
that for both Hn and ~Hn norms, high-frequency compo-
nents of the perturbation contribute increasingly to the
norm of the perturbation.

3.2 Sobolev Gradients in the Frequency Domain

We now calculate Sobolev gradients of an arbitrary
energy in the frequency domain. By Definition 2.1, if
the H0 and Hn gradients of an energy E : M ! IR exist,
then it follows that

dEðcÞ � h ¼ hrH0EðcÞ; hiH0 ¼ hrHnEðcÞ; hiHn

for all h 2 TcM. Using Parseval’s theorem, the last expres-
sion becomesX

l2ZZ

ð1þ �ð2�lÞ2nÞ drHnEðlÞ � bhðlÞ ¼X
l2ZZ

drH0EðlÞ � bhðlÞ:
Since the last expression holds for all h 2 TcM, we have

drHnEðlÞ ¼ ð1þ �ð2�lÞ2nÞ�1 drH0EðlÞ for l 2 ZZ: ð9Þ
Using a similar argument, we see that

dr ~HnEðlÞ ¼
drH0Eð0Þ l ¼ 0

ð�ð2�lÞ2nÞ�1 drH0EðlÞ l 2 ZZ n f0g:

(
It is clear from the previous expressions that high-frequency
componentsofrH0E are less pronounced in the various forms
of Sobolev gradients when compared with the H0 gradient.
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Fig. 1. Top row: H0, middle: translation-favored H0, and bottom:

Sobolev flows for (2). The initialization is a “local” minimum with respect

to the H0 of the energy (2) (this is ĉ0 as noted in the text). Noise: salt and

pepper ðdensity ¼ 0:6Þ.
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Higher order Sobolev gradients damp high-frequency com-
ponents with faster decay rates.

3.3 Coarse-to-Fine Motion of Sobolev Contours

We now discuss the implications of the results in the previous
sections. Note that the Fourier basis of the perturbations of a
curve decomposes TcM from global perturbations (low-
frequency perturbations) to increasingly more finer perturba-
tions (high-frequency perturbations). Indeed, the zero-fre-
quency perturbation is a simple translation of the curve,
which is completely global. See Fig. 2. Therefore, by (9) and
comments in the previous section, it is apparent that Sobolev
gradients yield perturbations with more pronounced global
components than the standard H0 gradient. Although
H0 gradients give equal weighting across all scales, Sobolev
gradients give less weight to finer scales. However, this does
not mean that very fine scale deformations of the curve are
restricted in Sobolev gradient flows. It just means that if there
exists a low-order perturbation (a more global motion) that
increases the given energy just as would a higher order
perturbation (a more finer deformation), then the low-order
perturbation will be preferred in the Sobolev gradient, as
shown by Proposition 2.1. Also, if no perturbations in Gm,
given by

Gm ¼
X
jlj�m

al exp
2�i

L
l�

� �
: al 2 CC; a�l ¼ al

8<:
9=;

can increase the energy E; that is, dEðcÞ � h � 0 for all

h 2 Gm, then by Definition 2.1, we must have thatdrH0EðlÞ ¼ 0 for l � m and, therefore, we can write

dr ~HnEðlÞ ¼
1

�ðmþ 1Þ2n
0; jlj � m

1
ð2�l=ðmþ1ÞÞ2n

drH0EðlÞ; jlj > m:

(
We see that since the gradient flow does not geome-

trically depend on a scale factor, the Sobolev gradient
automatically has the weights on high-order perturbations
of the gradient readjusted (so that perturbations near jlj ¼
mþ 1 become more pronounced). This means that the
Sobolev gradient flow at this particular instant of the
evolution changes the finer scale structure of the curve.
Thus, with Sobolev active contours, this implies, at least
locally, a progression from coarse-scale motion to finer scale
motion, unlike the standard H0 active contour. These
comments are illustrated in Fig. 3, which shows the tracking
of a noisy square image using both H0 and H1 active
contours. Notice that with the H0 active contour, the fine
structure of the curve is changed immediately, whereas the
H1 active contour gradually changes finer scale features of
the curve after changing coarse-scale features.

3.4 Analytic Examples of Coarse-to-Fine Motion

In this section, we give two analytic examples of Sobolev
gradient flows and show explicitly that as the artificial time
parameter of the evolution increases, the gradient generally
moves from coarse-scale to finer scale perturbations. This will
verify that the curve initially deforms in a coarse manner
before resorting to finer deformations to decrease the energy
of interest. Since geometric energies make use of the arc-
length parameterization, which lead to nonlinear equations
that are difficult to analyze analytically, we perform an
analysis on related parametric energies. However, the
parametric analysis we perform is relevant in inferring the
qualitative behaviors, particularly the coarse-to-fine proper-
ties, of the geometric Sobolev gradient flows as we shall
justify throughout this section by illustrating the similarities
between the parametric and geometric evolutions in the cases
where the geometric behavior is known through analysis
from other methods.

The inner products that we use are the parametric

equivalent of those given in Definition 2.2; that is, if h, k :

S1 ! IR2 are perturbations of a curve c : S1 ! IR2, then we

define

hh; kiH0 :¼
Z
S1

hðuÞ � kðuÞdu

hh; ki ~Hn :¼ avgðhÞ � avgðkÞ þ �
D
hðnÞ; kðnÞ

E
H0
;

where avgðhÞ :¼
R
S1 hðuÞdu, and hðnÞ is the nth derivative

with respect to the parameter u. Note that we use ~Hn

instead of Hn for simplicity, but similar conclusions hold
for the Hn inner product.

The first energy we consider is the following curve-
matching energy, Em : C1ðS1; IR2Þ ! IRþ:

EmðcÞ ¼
1

2

Z
S1

jcðuÞ � c0ðuÞj2du; ð10Þ

where c0 : S1 ! IR2 is a prespecified target curve, which is the
known data. This energy is a representative of data-based
energies, for example, possible energies that depend on
image data such as the image-based term of the Chan-Vese
energy [11].

Remark 3.1. A geometric version of the energy (10) might be
the following:
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Fig. 2. Increasingly higher frequency perturbations applied to a circle

(left to right, l ¼ 0, 2, 5, 10).

Fig. 3. Standard H0 active contour (second row) alters the fine structure
of the curve immediately; Sobolev ðH1Þ active contour (bottom) moves
from coarse to finer scale motions. Both use the same energy. Top row:
initialization, final H0 and H1 segmentations.
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EðcÞ ¼ inf
b2½0;L0�

1

2

Z
c

jcðsÞ � c0ðL0=Lc � sþ bÞj2ds;

where s is the arc-length parameter of c, L0 is the length of
c0, andLc is the length of c. An optimization of this energy
would require a joint evolution of the parameter b and the
curve c. TheH0 gradient of this energy with respect to c is

rH0EðcÞðsÞ ¼ ðcðsÞ � c0ðL0=Lc � sþ bÞÞ � N ðsÞ
� jcðsÞ � c0ðL0=Lc � sþ bÞj2cssðsÞ:

As we will see, the first term is the normal component of
the gradient descent of Em, and we will show later when
we consider the energy Es below that the second term in
the Sobolev domain has the coarse-to-fine property we
seek to show. Thus, our parametric analysis gives us a
good idea of the behavior of the geometric energy also.

Obviously, the optimum curve for (10) is c ¼ c0, which is the
global minimizer. However, we are interested in how the
curve evolves in the frequencydomain to attain the minimum.
To see this, let us note our definition of Fourier transform:

bfðkÞ ¼ Z
S1

fðuÞ expð�2�ikuÞdu;

where f : S1 ! IR. Note that

dEmðcÞ � h ¼
Z
S1

ðcðuÞ � c0ðuÞÞ � hðuÞdu

and, so, rH0EðcÞ ¼ c� c0. Note that

dr ~HnEmðlÞ ¼
drH0Emð0Þ; l ¼ 0drH0EmðlÞ

�ð2�lÞ2n ; l 2 ZZ n f0g:

8<:
Let us now consider the ~Hn gradient flow.

@tcðu; tÞ ¼ �r ~HnEmðcÞ:
We may write c as a Fourier series:

cðu; tÞ ¼
X
l2ZZ

bcðl; tÞ expð2�iluÞ

r ~HnEmðu; tÞ ¼ drH0Emð0; tÞ

þ
X

l2ZZnf0g

drH0Emðl; tÞ
�ð2�lÞ2n

expð2�iluÞ

¼bcð0; tÞ � bc0ð0Þ

þ
X

l2ZZnf0g

bcðl; tÞ � bc0ðlÞ
�ð2�lÞ2n

expð2�iluÞ:

Assuming that bcð�; tÞ is uniformly bounded by an ‘1ðZZÞ
function, the flow becomesX

l2ZZ

@tbcðl; tÞ expð2�iluÞ ¼

� ðbcð0; tÞ � bc0ð0ÞÞ �
X

l2ZZnf0g

bcðl; tÞ � bc0ðlÞ
�ð2�lÞ2n

expð2�iluÞ:

Since fexp ð2�il�Þgl2ZZ is an orthogonal basis, we have that

@tbcð0; tÞ ¼ � ðbcð0; tÞ � bc0ð0ÞÞ and

@tbcðl; tÞ ¼ � bcðl; tÞ � bc0ðlÞ
�ð2�lÞ2n

for l 2 ZZ n f0g

or

@tbcð0; tÞ þ bcð0; tÞ ¼ bc0ð0Þ and

@tbcðl; tÞ þ 1

�ð2�lÞ2n
bcðl; tÞ ¼ bc0ðlÞ

�ð2�lÞ2n
for l 2 ZZ n f0g:

Solving the previous equations yield

bcð0; tÞ ¼ expð�tÞbcð0; 0Þ þ bc0ð0Þ 1� expð�tÞ½ �

bcðl; tÞ ¼ exp � t

�ð2�lÞ2n

 !bcðl; 0Þ
þ bc0ðlÞ 1� exp � t

�ð2�lÞ2n

 !" #
:

Therefore,

dr ~HnEmð0; tÞ ¼bcð0; tÞ � bc0ð0Þ ¼ expð�tÞðbcð0; 0Þ � bc0ð0ÞÞdr ~HnEmðl; tÞ ¼
bcðl; tÞ � bc0ðlÞ
�ð2�lÞ2n

¼ 1

�ð2�lÞ2n
exp � t

�ð2�lÞ2n

 !
ðbcðl; 0Þ � bc0ðlÞÞ:

For convenience, define

gnðl; tÞ :¼ 1

�ð2�lÞ2n
exp � t

�ð2�lÞ2n

 !
:

Note that

. limt!þ1 gnðl; tÞ ¼ 0 for all l 2 ZZ, and also, the rate of
convergence to zero as jlj becomes larger is slower
(when n > 0). Thus, we find that the coarse-scale
frequency components (jlj small) of c converge to the
global minimum much faster than the fine-scale
frequencies.

. limjlj!þ1 gnðl; tÞ ¼ 0.

. We want to show that as time increases, the low-

frequency components of dr ~HnEm decrease to

zero monotonically for a gradually increasing

number of low-frequency components. Note that

k dr ~HnEmk‘1 ZZð Þ ! 0 as t! þ1. Because a common

scale factor for dr ~HnEm does not have any effect

on the geometry of the curve evolution, we scaledr ~HnEm by its maximum value in l to show the

convergence to zero of low-frequency components

relative to the rest of the components of dr ~HnEm.

Consider

~gnðl; tÞ ¼
gnðl; tÞ
1=ðetÞ ¼ etgnðl; tÞ:

Note that

@~gn
@t
¼ e

�ð2�lÞ2n
exp � t

�ð2�lÞ2n

 !
1� t

�ð2�lÞ2n

 !
is less than zero when l < 1

2� ðt=�Þ
1=ð2nÞ. Note also that

limt!þ1 ~gnðl; tÞ ¼ 0 for all l 2 ZZ. These facts verify

our assertion.
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. For a fixed time, we approximate the frequency
component that is changing the most. To do this, we
suppose that l is a real number (even though it is an
integer) and compute the derivative:

@gn
@l
¼ 2

�ð2�Þ2nl2nþ1
exp � t

�ð2�lÞ2n

 !
�1þ t

l2n

� �
and, so, l� � 	 t

1
2n is the frequency component being

changed the most at a particular time instant. In
particular, this shows a successive transition through
all possible frequencies in a coarse-to-fine manner
(see the plot in Fig. 4).

In Fig. 4, we show a plot of ~gn to visually show the
movement of dr ~HnEm from coarse to finer scale perturba-
tions. The figure shows the case when n ¼ 2; however, other
n > 0 have the same qualitative behavior. A larger n shows a
slower and more pronounced progression from coarse to
fine. Note that when n ¼ 0, ~gnðl; tÞ ¼ et

� exp� t
�, which is

constant in l for a fixed time and, so, the plot in Fig. 4 would
simply be a horizontal line for all time. The plot also shows
that the Sobolev active contour transitions through all
possible frequencies as time increases.

The evolutions (H0 and ~H2) minimizing Em are shown in
Fig. 5. Notice that the H0-evolution favors all frequency
components equally, and so, the coarse and fine features of
the target curve are both detected at the same times. On the
other hand, the Sobolev evolution changes in a coarse
manner, detecting the coarse structure of the target curve,
before finally detecting the fine “spiked” structure and
deforming in a fine-scale manner.

Remark 3.2. For real images, as long as the image data does
not undergo drastic changes with respect to movements
of the curve, the coarse-to-fine motion shown in this
example also applies to real image-based evolutions (in
particular, for many tracking applications). In the general
case, we would expect this coarse-to-fine deformation to
repeat during successive intervals of time.

The next energy we consider is the following smoothing
energy, Es : C1ðS1; IR2Þ ! IRþ:

EsðcÞ ¼
1

2

Z
S1

jcðmÞðuÞj2du; ð11Þ

where m 
 1.

Remark 3.3. The geometric equivalent to (11) is

EðcÞ ¼ 1

2

Z
c

jDm
s cðsÞj

2ds:

In the case that m ¼ 1, the energy is half of the arc length,
and in the case thatm ¼ 2, the energy is the elastic energy.
The Sobolev flows for these energies were calculated in
[20], [21]. As we progress, we will illustrate the similar
qualitative behavior between the parametric and geo-
metric energies, which justifies our use of a parametric
analysis to infer some qualitative behaviors in the
geometric case.

Note that rH0EsðcÞ ¼ ð�1Þmcð2mÞ; therefore,

� drH0EsðlÞ ¼ �ð�1Þmð2�ilÞ2mbc ¼ �ð2�lÞ2mbcðlÞ
and also

� dr ~HnEsðlÞ ¼
0 for l ¼ 0
���1ð2�lÞ2ðm�nÞbcðlÞ for l 6¼ 0:

�
We would like to compute the gradients as a function of time
in the Fourier domain. Note that @tbcðl; tÞ ¼ � dr ~HnEsðlÞ, so

858 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 5, MAY 2008

Fig. 4. Plot of ~gnð�; tÞ with n ¼ 2 for various t, which shows the coarse-to-

fine behavior and that the evolution transitions through all possible

frequencies.

Fig. 5. Minimizing Em using a “spiked circle” (which is shown on the right of each row) for c0, and the initialized curve is a circle:

cðu; 0Þ ¼ �ðcos 2�u; sin 2�uÞ, � ¼ 0:001 for u 2 S1 (left of each row, enlarged for visibility). Top: Snapshots of the H0 evolution. Bottom: Snapshots of

the ~H2 evolution. The right of each row shows that both flows converge to the desired “spiked” circle but take quite different paths.
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@tbcðl; tÞ ¼ 0 l ¼ 0
���1ð2�lÞ2ðm�nÞbcðlÞ l 6¼ 0;

�
which yields a solution of

bcðl; tÞ ¼ bcð0; 0Þ l ¼ 0

expð���1ð2�lÞ2ðm�nÞtÞbcðl; 0Þ l 6¼ 0:

�
Hence, we see

dr ~HnEsðl; tÞ ¼
0 l ¼ 0

��1ð2�lÞ2ðm�nÞ expð���1ð2�lÞ2ðm�nÞtÞbcðl; 0Þ l 6¼ 0:

�
We make the following observations:

. For n < m, the rate of convergence of dr ~HnEsðl; �Þ to
zero (alsobcðl; �Þ to zero) increases as jlj increases. Using
similar arguments as for Em, one can see that this
means that dr ~HnEs moves from fine to coarse-scale
perturbations. Note that this case includes the case
when m ¼ 1 and n ¼ 0, which is a linear heat flow.
This flow is well known to have a smoothing effect on
the curve and removes fine-scale curve information
before removing coarser scale information (that is,dr ~HnEs moves from fine to coarse). Similarly, in the
geometric case when m ¼ 1 (that is, the energy is the
length of the curve) and n ¼ 0, the evolution is a
nonlinear geometric heat flow [46], [47], which is well
known to have a fine-to-coarse smoothing effect.

. For n ¼ m, the rate of convergence of all frequency
components of dr ~HnEsðl; �Þ to zero is the same for all l.
The curve evolution is a simple rescaling of the
contour about its parametric centroid. It is also
apparent in this case that the curve evolution exists
when the gradient ascent flow is considered. Similarly,
as verified in [20], [21] through direct computations, in
the case of the geometric energy when m ¼ 1 and
n ¼ 1, the evolution is a simple rescaling of the curve
about the geometric centroid and, therefore, also stable
for the ascent.

. For n > m, the rate of convergence of dr ~HnEsðl; �Þ to
zero (also bcðl; �Þ to zero) decreases as jlj increases. As
in the case of the energy Em, we can show thatdr ~HnEs moves from coarse to finer scale motions.

. From the above statements, we see that the Sobolev
gradient flows move in a more coarse-to-fine way than
the H0 gradient flow, and as the order of the Sobolev
gradient increases, this coarse-to-fine motion is more
pronounced.

4 BENEFITS OF SOBOLEV CONTOURS FOR

TRACKING

The scale-space analysis of Sobolev active contours per-
formed in Section 3 that shows a coarse-to-fine evolution of
the contour also shows why Sobolev active contours are ideal
for tracking. The fact that H0 gradient flows change the fine
structure of the curve immediately when energetically
favorable and, hence, are easily attracted by undesirable
local minima is one reason for predicting the motion and
dynamics of the object being tracked. By predicting the
motion and dynamics of the moving object, a better estimate
of the object’s upcoming position can be attained, thereby

placing the initial guess hopefully closer to its desired final
position. Many prediction schemes apply low-dimensional
global motions to the contour. Thus, the initial global motion
followed by anH0 flow is less likely than the naive tracker to
get caught in an intermediate undesirable local minimum of
the energy. Notice that since Sobolev gradient flows naturally
move from coarse to successively finer motions, the contour is
less likely to be trapped by intermediate local minima caused
by local features of the image and is therefore likely to be less
dependent on the prediction of motion and dynamics of the
object. We also wish to emphasize that the transition from
coarse to increasingly finer motions is automatic and
continuous in comparison to other works (for example, [38])
where the global motions must be deliberately specified, and
the transition from the global motion to more local deforma-
tion is not continuous. Indeed, even discrete attempts to
deliberately graduate from more global to more local motions
are not trivial as one typically starts from translations, then
rotations, and then scale, but beyond this, it becomes less clear
and natural how to progress to finer scale deformations.

Another advantage of using Sobolev active contours for
tracking is the speed of convergence compared to standard
H0 active contours. Although computing the ~Hn gradient is
slightly more computationally costly than computing the
H0 gradient, though both have the same order of complex-
ity, we point out that without accurate prediction, the
number of iterations in typical contour tracking applications
required to update the active contour from frame to frame is
usually much smaller with Sobolev active contours. There-
fore, the total computational time for processing between
frames is significantly lower with Sobolev active contours.
The reason is that the frame-to-frame motion of the object to
be tracked is, as mentioned previously, usually dominated
by more global motions: translations, scaling, and coarse-
scale deformations. Accordingly, a Sobolev active contour
needs only a few iterations to lock onto the object in the next
frame because the Sobolev gradient moves globally at first,
preferring coarse-scale motions in the first few iterations
before proceeding to fine-scale motions in later iterations. In
contrast, standard H0 active contours requires many more
iterations since they are immediately deformed by local
motions, significantly changing their initial shape (often to
meaningless intermediate shapes), before deforming back to
only slightly deformed, translated, and scaled versions of
their initial shape and that is assuming they do not first get
trapped into intermediate local minima!

We now illustrate the advantages discussed in the
previous paragraphs with a simple synthetic image se-
quence (Fig. 6) in which we employ the naive tracker using
the energy functional for geodesic active contours [4], [5]:

EgeoðcÞ ¼
Z
c

�ðcðsÞÞds; where � ¼ 1

1þ krIk2
: ð12Þ

Fig. 6 shows the tracking for both the H0 gradient flow
and the ~H1 gradient flow. The flows are run until
convergence in each frame. Note that the H0 active contour
deforms its initial shape greatly to react to local information.
Hence, the contour changes shape and must redeform back
to its initial shape. However, the contour gets trapped in an
undesirable local minimum. The Sobolev active contour, on
the other hand, only changes shape slightly while moving in
an overall translation. This means that the number of
iterations until convergence for the H0 active contour is
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much greater than the Sobolev active contour, and therefore,
the computational time is also much greater. See Fig. 7 for a
simple quantitative analysis of computational times. In this
simulation, we segment the object shown in Fig. 6 when the
initial contour is a translated and slightly deformed version
of the object. We quantify the difference by using the set
symmetric difference (SSD) between the desired object and
the initial contour. From the graph in Fig. 7, we see that the
number of iterations and the computational time are
significantly lower for the ~H1 active contour.

5 EXPERIMENTS

We now demonstrate significant performance gains by
replacing standard H0 active contours with their Sobolev
counterparts for the exact same detection energy in a variety of
tracking scenarios on real videos, both when using the naive
tracker and when tracking with a predictor. These experi-
ments give evidence to support our claim that the Sobolev
metric rather than the traditional metric should be used in
tracking applications that make use of active contours.

In the next experiments, we use the ~H1 active contour
and the algorithm described in [21] that is independent of
the parameter � in the definition of the ~H1 inner product.
The algorithm evolves by the translation component of the
~H1 gradient until this term becomes zero followed by one

iteration of the deformation component, which is geome-
trically independent of �, and the process is iterated.

Fig. 8 shows the results for a sequence in which a man is
walking on a street. The sequence is heavily corrupted by
noise (Gaussian noise: � ¼ 0, �2 ¼ 0:3). The tracking is done
using the naive tracker (no prediction) where the detection
energy is the Chan-Vese energy [11]

EcvðcÞ ¼
Z
cin

ðI � uÞ2dAþ
Z
cout

ðI � vÞ2dAþ 	LðcÞ; ð13Þ

where u and v are mean intensities inside and outside c,
respectively, and	 
 0 specifies a penalty on the length (used
for curve regularity of theH0 active contour)Lð�Þ of the curve.
The top row shows the standard H0ð	 ¼ 5; 000Þ active
contour, and the bottom row shows the Sobolev ~H1ð	 ¼ 0Þ
active contour. Sobolev active contours favor translations. In
order to show that the translation-favoring property of
Sobolev active contours is not solely responsible for the
pleasing tracking results but, more generally, the coarse-to-
fine property, we also show the results of tracking where the
energy minimization is performed using anH0 inner product
that has a heavily favored translation component in the
middle of Fig. 8. Note that the advantages of the Sobolev
technique over such explicitly favored group motions were
discussed at the end of Section 1.1). A similar result to the
translation-favoredH0 flow is obtained for an affine-favored
H0 flow. We have used an alternating algorithm between a
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Fig. 6. Simple tracking using geodesic active contours: The standard
ðH0Þ active contour (left column) deforms the initialized contour greatly
and is stuck in local minima, and the Sobolev active contour (right
column) moves in a global manner only slightly changing shape. In each
frame, the initial contour (given by the contour detected in the previous
frame) is the thinnest contour, the intermediate contour is the next
thinnest, and the final detected contour is the thickest contour.

Fig. 7. Graph showing the total time for convergence versus the SSD of
initial region and desired object in percent. The total time (and, thus,
number of iterations) is lower for the Sobolev active contour.

Fig. 8. Tracking of a person in a noisy image sequence with a region-based (Chan-Vese) energy with H0 (top row), with H0 translation favored
(middle row), and with ~H1 (bottom row) active contours.
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translation and theH0 gradient minus the translation to avoid
picking the weight on the translation, but the result is similar
to that in Fig. 8 (middle row). The contours are evolved until
convergence between frames. After a few frames, the
H0 active contour gets stuck in noise and loses track of the
person. The translation-favored H0 contour initially does
better than the H0 active contour but soon loses track of the
person, becoming stuck in noise. Note that the translation, in
the first frames, initially pushes the contour in the vicinity of
the person, but then, the active contour immediately detects
the fine-scale noise since H0 minus the translation does not
favor coarser motions and cannot more accurately detect the
person. The Sobolev active contour, because of its more global
initial motions (translations and other coarse motions),
avoids the intermediate local minima caused by noise and
keeps tracking the person. Due to the high noise level,
however, the precise shape of the person is not captured in
any of the cases.

To quantify the robustness to noise of the Sobolev active
contour versus the traditionalH0 active contour as seen in the
previous experiment, we have conducted experiments with a
synthetically generated image sequence (so that the ground
truth is known) in which various degrees of noise are added.
The sequence is binary images in which a square is translating
(to represent motion) and changing its area slightly (to
represent deformation). In the first experiment, we use the
naive tracker and the detection energy (12). In this case, the
square is translated by three pixels, and the length of the side
is randomly changed by 	 2 pixels when compared with the
square in the previous frame. The segmentation error for
various degrees of Gaussian noise (� ¼ 0, and standard
deviation � specified) using both H0 and Sobolev ~H1 active
contours is shown in Fig. 9a. Similar experiments are done
using the energy (13), but the square is translated by 17 pixels,
and the length is adjusted by a random	 5 pixels. Results are
shown in Fig. 9b. The results for the H0 active contour are
shown for the best value of	 chosen for the given noise levels.
Note that our measure of error is half of the number of false
positive classified pixels plus false negative classified pixels
divided by the ground-truth number of pixels of the object. In

both cases of the detection energies chosen, the Sobolev active
contour does significantly better than the corresponding
H0 active contour.

In the next experiment (Fig. 10), we demonstrate that the
Sobolev active contour is useful not only for noisy situations
but also in other cases where one is trying to track an object
in a cluttered or textured environment where the object
shares some visual characteristics with the background. In
this experiment, we track a sea creature at the bottom of an
ocean using the naive tracker and the detection energy

Ecvþ�ðcÞ ¼ ð1� 
ÞEcvðcÞ �
1

2

ð�2

u � �2
vÞ

2;

where �2
u and �2

v are the average mean-square errors inside
and outside c, respectively. Since the mean values of some
regions in the background are closer to the mean value
inside the creature rather than to other regions of the
background, a first-order Chan-Vese energy is not enough
to capture the object and, thus, we incorporate second-order
information. For this experiment, we chose 
 ¼ 0:6,
although different 
’s produced similar results. In Fig. 10,
we see that the H0 active contour tracks the object for some
time, but when the object’s statistics look closer to the light
part of the background than the dark part, the contour leaks
into the background. On the other hand, because the
Sobolev active contour moves globally before gradually
changing its fine structure, the contour is able to avoid the
distracting features of the background and get a rough
approximation of the object before detecting finer features
of the object, thereby locking into a more desirable local
minimum than the H0 active contour.

In the next experiment (in Fig. 11), we show that the
Sobolev active contour can offer improvements over the
traditional metric for tracking an object through partial
occlusions. In particular, we track a car that moves under a
lamp post. The energy functional used for the active
contours is the Mumford-Shah functional [7]

Emsðc; f; gÞ ¼
Z
cin

ðI � fÞ2dAþ
Z
cout

ðI � gÞ2dA; ð14Þ
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Fig. 9. Plots of error for tracking a square that is translating and slightly changing its area with various degrees of noise (Gaussian mean 0, standard
deviation �). (a) Using geodesic active contours. (b) using the Chan-Vese model. Note the difference in the scales of each plot; in particular, the plots

show that the results of using Sobolev active contours is vastly better than the corresponding H0 active contour.
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where f and g are smooth functions defined inside
(respectively, outside) the curve. The functional is minimized
jointly in c, f , and g (see [48], [33], [49] for implementation
details). A fixed number of iterations (300) are used to evolve
the curve at each frame. The top row shows the H0 active
contour, which is thrown off as soon as the contour hits the
lamp post. This is because each point of theH0 active contour
moves in a direction independent from the other points.
Hence, the points close to the lamp post do not want to move
past the post. On the other hand, the Sobolev ~H1 flow moves
globally first and hence does not get stuck on the lamp post
and continues to track the car, although at the end, the contour
misses the outer parts of the car.

In the last experiment, we illustrate that the Sobolev active
contour can improve the traditional active contour even when
a prediction step is used to obtain the overall global motion
(indeed an affine motion is predicted). The experiment (in
Fig. 12) tries to address the problem with the previous
experiment by using a predictor and observer/estimator. We

use the detection/prediction algorithm considered in [14].
The detection step involves a simultaneous segmentation and
rigid registration (that is, affine) of three consecutive frames
using the Mumford-Shah functional (14) and a fixed (300)
number of iterations. For the prediction, a constant accelera-
tion model is assumed for the parameters of the rigid
registration. The measurements that the estimator uses to
estimate the contour and its registrations are the results of the
detection step. A Kalman gain is used to determine if more
weight is put on the measured contour versus the model
prediction. As can be seen in Fig. 12, the H0 active contour
prefers coarse-scale and fine-scale perturbations equally, and
therefore, the contour immediately becomes distracted by the
pole, which is detected by fine-scale perturbations, and the
estimator/predictor is of little help. Note that a higher
regularization penalty may be used; however, like the
previous experiments, the length penalty, in addition to
restricting the deformation into the pole, also shrinks the
curve, and a significant portion of the car is not detected. On
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Fig. 10. Tracking of a sea creature at the sea bottom using an energy that incorporates the mean intensity and variance information inside and
outside the contour. (a) Tracking using the H0 active contour. (b) Tracking using the Sobolev ð ~H1Þ active contour.

Fig. 11. Tracking of a car under an occlusion using the Mumford-Shah energy with H0 (top) and ~H1 (bottom) active contours.
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the other hand, for the Sobolev ~H1, the estimator/predictor
greatly improves the result, as the shape is more accurately
captured. Note that if the detection step is iterated for a very
large number of iterations, the Sobolev active contour will
also be distracted by the pole in this experiment. However, in
real-time tracking applications, it is often the case that the
detection is not run until convergence; therefore, it is nice to
know that with a limited number of iterations, the Sobolev
active contour detects the coarse deformations, which are
more essential than the fine deformations. In both cases (with
and without the predictor/estimator), it is clear that simply
replacing the standard H0 active contour with the Sobolev
active contour greatly improves the tracking performance.

6 CONCLUSION

We have shown that Sobolev active contours move succes-
sively from coarse to fine-scale motions in a continuous
manner through a scale-space-type analysis. This property
gives more justification for using the Sobolev framework. We
have shown that this property, along with others, makes
Sobolev active contours natural for tracking, and experiments
have shown that the Sobolev technique is beneficial over the
standard technique both when tracking with or without a
predictor. The property of coarse-to-fine motion, as we saw,
implies that Sobolev active contours take fewer iterations
(and also less time) to converge to the desired local minimum
than H0 active contours. This is important for real-time
tracking systems where a more efficient detection scheme
with better accuracy is beneficial. Note that existing tracking
algorithms, which use active contours, need not be modified,
nor does the energy functional for the active contour, just a
simple addition of a procedure to compute the Sobolev
gradient is necessary, which is straightforward to obtain from
the original gradient.

In this paper, we have analyzed Sobolev gradient flows
for curves and showed important properties of these flows,
which are quite useful for tracking applications. The next
step is to extend these ideas to surface evolutions, where
there are many applications such as tracking of the heart in
ultrasound sequences. Although the Sobolev method ex-
tends to surfaces, there are no equivalent convolution
formulas (and in particular, no simple integral solution as in
~Hn) for Sobolev gradients with respect to surfaces, and they

are computationally expensive to compute. Future work is

to formulate computationally feasible methods for comput-

ing Sobolev gradients for surfaces.

ACKNOWLEDGMENTS

Note that a preliminary version of this manuscript has
appeared as a conference proceeding [1]. This work was
supported by US NSF grant CCF-0728911.

REFERENCES

[1] G. Sundaramoorthi, J.D. Jackson, A.J. Yezzi, and A. Mennucci,
“Tracking with Sobolev Active Contours,” Proc. IEEE CS Conf.
Computer Vision and Pattern Recognition, vol. 1, pp. 674-680, 2006.

[2] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour
Models,” Int’l J. Computer Vision, vol. 1, pp. 321-331, 1987.

[3] A. Blake and M. Isard, Active Contours. Springer, 1998.
[4] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic Active Contours,”

Proc. Fifth Int’l Conf. Computer Vision, pp. 694-699, June 1995.
[5] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A.

Yezzi, “Gradient Flows and Geometric Active Contour Models,”
Proc. Fifth Int’l Conf. Computer Vision, pp. 810-815, 1995.

[6] R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky, “Fast
Geodesic Active Contours,” IEEE Trans. Image Processing, vol. 10,
no. 10, pp. 1467-1475, 2001.

[7] D. Mumford and J. Shah, “Optimal Approximations by Piecewise
Smooth Functions and Associated Variational Problems,” Comm.
Pure and Applied Math., vol. 42, pp. 577-685, 1989.

[8] S.C. Zhu, T.S. Lee, and A.L. Yuille, “Region Competition: Unifying
Snakes, Region Growing, Energy/Bayes/MDL for Multi-Band
Image Segmentation,” Proc. Fifth Int’l Conf. Computer Vision,
pp. 416-423, 1995.

[9] A. Yezzi, A. Tsai, and A. Willsky, “A Statistical Approach to
Snakes for Bimodal and Trimodal Imagery,” Proc. Int’l Conf.
Computer Vision, pp. 898-903, Oct. 1999.

[10] N. Paragios and R. Deriche, “Geodesic Active Contours and Level
Sets for the Detection and Tracking of Moving Objects,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 3,
pp. 266-280, Mar. 2000.

[11] T. Chan and L. Vese, “Active Contours without Edges,” IEEE
Trans. Image Processing, vol. 10, no. 2, pp. 266-277, Feb. 2001.

[12] N. Paragios and R. Deriche, “Geodesic Active Regions: A New
Paradigm to Deal with Frame Partition Problems in Computer
Vision,” Int’l J. Visual Comm. and Image Representation, special issue
on partial differential equations in image processing, computer
vision, and computer graphics, vol. 13, no. 2, pp. 249-268, June 2002.

[13] D. Terzopoulos and R. Szeliski, “Tracking with Kalman Snakes,”
Active Vision, MIT Press, 1992.

[14] J. Jackson, A. Yezzi, and S. Soatto, “Tracking Deformable Moving
Objects under Severe Occlusions,” Proc. 43rd IEEE Conf. Decision
and Control, Dec. 2004.

[15] A. Blake and R. Brockett, “On Snakes and Estimation Theory,”
Proc. 33rd IEEE Conf. Decision and Control, 1994.

[16] M. Isard and A. Blake, “Condensation—Conditional Density
Propagation for Visual Tracking,” Int’l J. Computer Vision, vol. 1,
no. 29, pp. 5-28, 1998.

SUNDARAMOORTHI ET AL.: COARSE-TO-FINE SEGMENTATION AND TRACKING USING SOBOLEV ACTIVE CONTOURS 863

Fig. 12. Tracking a car under an occlusion using estimation with Mumford-Shah energy functional for the detection. H0 (top) and ~H1 (bottom) active

contours.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 6, 2008 at 18:47 from IEEE Xplore.  Restrictions apply.



[17] N. Peterfreund, “Robust Tracking of Position and Velocity with
Kalman Snakes,” IEEE Trans. Pattern Analysis Machine Intelligence,
vol. 21, no. 6, pp. 564-569, June 1999.

[18] M. Niethammer and A. Tannenbaum, “Dynamic Geodesic Snakes
for Visual Tracking,” Proc. IEEE CS Conf. Computer Vision and
Pattern Recognition, vol. 1, pp. 660-667, 2004.

[19] Y. Rathi, N. Vaswani, A. Tannenbaum, and A. Yezzi, “Particle
Filtering for Geometric Active Contours and Application to
Tracking Deforming Objects,” Proc. IEEE CS Conf. Computer Vision
and Pattern Recognition, 2005.

[20] G. Sundaramoorthi, A. Yezzi, and A. Mennucci, “Sobolev Active
Contours,” Proc. Third Int’l Workshop Variational, Geometric, and
Level Set Methods in Computer Vision, pp. 109-120, 2005.

[21] G. Sundaramoorthi, A. Yezzi, and A. Mennucci, “Sobolev Active
Contours,” Int’l J. Computer Vision, vol. 73, no. 3, pp. 345-366, July
2007.

[22] G. Charpiat, R. Keriven, J.-P. Pons, and O.D. Faugeras, “Designing
Spatially Coherent Minimizing Flows for Variational Problems
Based on Active Contours,” Proc. 10th Int’l Conf. Computer Vision,
pp. 1403-1408, 2005.

[23] G. Charpiat, R. Keriven, J.-P. Pons, and O.D. Faugeras, “General-
ized Gradients: Priors on Minimization Flows,” Int’l J. Computer
Vision, vol. 73, no. 3, pp. 325-344, July 2007.

[24] P. Michor and D. Mumford, Riemannian Geometries on the Space of
Plane Curves, ESI Preprint 1425, arXiv:math.DG/0312384, Dec. 2003.

[25] A. Yezzi and A. Mennucci, Metrics in the Space of Curves, Preprint,
arXiv:math.DG/0412454, May 2005.

[26] J.W. Neuberger, “Sobolev Gradients and Differential Equations,”
Lecture Notes in Math., vol. 1670, 1997.

[27] M. Burger, “A Framework for the Construction of Level Set
Methods for Shape Optimization and Reconstruction,” Interfaces
and Free Boundaries, vol. 5, pp. 301-329, 2003.

[28] L. Younes, “Computable Elastic Distances between Shapes,”
SIAM J. Applied Math., vol. 58, no. 2, pp. 565-586, 1998.

[29] A.C.G. Mennucci, A. Yezzi, and G. Sundaramoorthi, Properties of
Sobolev-Type Metrics in the Space of Curves, Preprint, arXiv:
math.DG/0605017, Apr. 2006.

[30] P.W. Michor and D. Mumford, An Overview of the Riemannian
Metrics on Spaces of Curves Using the Hamiltonian Approach, Applied
and Computational Harmonic Analysis (ACHA), arXiv:math.DG/
0605009, 2006.

[31] W. Mio and A. Srivastava, “Elastic-String Models for Representa-
tion and Analysis of Planar Shapes,” Proc. IEEE CS Conf. Computer
Vision and Pattern Recognition, vol. 2, pp. 10-15, 2004.

[32] B. Leroy, I. Herlin, and L. Cohen, “Multi-Resolution Algorithms
for Active Contour Models,” Proc. 12th Int’l Conf. Analysis and
Optimization of Systems: Images, Wavelets and PDE’s, 1996.
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