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Abstract. Most variational active contour models are designed to find
the “desirable” local minima of data-dependent energy functionals with
the hope of avoiding undesirable configurations due to noise or com-
plex image structure. As such, there has been much research into the
design of complex region-based energy functionals that are less likely to
yield undesirable local minima. Unfortunately, most of these more “ro-
bust” region-based energy functionals are applicable to a much narrower
class of imagery due to stronger assumptions about the underlying image
data. Devising new implementation algorithms for active contours that
attempt to capture more global minimizers of already proposed image-
based energies would allow us to choose an energy that makes sense for
a particular class of energy without concern over its sensitivity to local
minima. However, sometimes the completely-global minimum is just as
undesirable as a minimum that is too local.

In this paper, we propose a novel, fast and flexible dual front imple-
mentation of active contours, motivated by minimal path techniques and
utilizing fast sweeping algorithms, which is easily manipulated to yield
minima with variable “degrees” of localness and globalness. The ability
to gracefully move from capturing minima that are more local (according
to the initial placement of the active contour/surface) to minima that
are more global makes it much easier to obtain “desirable” minimizers
(which often are neither the most local nor the most global). As the ex-
amples, we illustrate the 2D and 3D implementations of this dual-front
active contour for image segmentation from MRI imagery.

1 Introduction

Since the introduction of snakes [1], active contours have become particularly
popular for segmentation applications. Most variational active contour mod-
els [2,3,4,5] are designed to find local minima of data-dependent energy func-
tionals with the hope that reasonable initial placement of the active contour
will drive it towards a “desirable” local minimum rather than an undesirable
configuration that can occur due to the noise or complex image structure.

As such, there has been much research [6,7,8,9,10,11,12] into the design
of complex region-based energy functionals that are less likely to yield unde-
sirable local minima when compared to simpler edge-based energy function-
als whose sensitivity to noise and texture is significantly worse. Unfortunately,
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most of these more “robust” region-based energy functionals are applicable to a
much narrower class of imagery compared to typical edge-based energies due to
stronger assumptions about the underlying image data.

Devising new implementation algorithms for active contours that attempt to
capture more global minimizers of already proposed image-based energies would
allow us to choose an energy that makes sense for a particular class of energy
without concern over its sensitivity to local minima. The minimal path technique
proposed by Cohen et al. [13,14] is one such implementation. It attempts to
capture the global minimum of an active contour model’s energy between two
points. However, for this minimal path technique, the initial points should be
located exactly on the boundary to be extracted. Also, a topology-based saddle
search routine is needed when they extended this technique to closed curve
extraction. And it is not easy to expand to general 3D case [15].

Although many researchers keep their efforts on the design of robust active
contour models to find the global minima and avoid the local minma, sometimes
the completely global minimum is just as undesirable as a minimum that is too
local. In this paper, we propose a novel, fast and flexible dual front implementa-
tion of active contours, motivated by minimal path technique and utilizing fast
sweeping algorithms. In this model, the segmentation objective is achieved by
iteratively dilating the initial curve to form a narrow region and then finding the
new closest potential weighted minimal partition curve inside.

This dual-front active contour is easily manipulated to yield minima with
variable “degrees” of localness and globalness. The degree of global or local min-
ima can be controlled in a graceful manner by adjusting the width of the dilated
narrow region. This ability to gracefully move from capturing minima that are
more local (according to the initial placement of the active contour/surface) to
minima that are more global makes it much easier to obtain “desirable” mini-
mizers (which often are neither the most local nor the most global). This model
guarantees the continuity and smoothness of the evolving curve with the capa-
bility to handle topology changes. In addition, it is easy to extend to the 3D
case.

2 Dual-Front Active Contours

2.1 Background – The Minimal Path Technique

Given a potential P > 0 that takes lower values near desired boundaries, for
example, P = 1/(1 + ||∇I||2), the objective of the minimal path method [13,14]
is to look for a path (connect the pre-defined two points) along which the integral
of ˜P = P +w (w is the constant) is minimal. First, the minimal action map U0(p)
is defined as the minimal energy integrated along a path between the starting
point p0 and any point p, which is

U0(p) = inf
Ap0,p

{E(C)} = inf
Ap0,p

{
∫

Ω

˜P (C(s))ds}, (1)
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where Ap0,p is defined as the set of all paths between p0 and p. Then, if given
the minimal action maps U0 to p0 and U1 to p1, the minimal path between p0

and p1 is exactly the set of points pg which satisfy

U0(pg) + U1(pg) = inf
p
{U0(p) + U1(p)}, (2)

and this minimal path between p0 and p1 is determined by calculating U0 and
U1 and then sliding back from the saddle point p′, which is the first point that
two action maps U0 and U1 meet each other, on the action map U0 to p0 and on
the action map U1 to p1 according to the gradient descent.

Because the action map U0 has only one minimum value at the starting point
p0 and increases from the starting point outwards, it can be easily determined by
solving the Eikonal Eq. (3) using fast marching algorithm introduced by Sethian
et al. [16]. The detailed explanation is shown in [13].

||∇U0|| = ˜P with U0(p0) = 0 (3)

2.2 Principle of Dual-Front Active Contours

Now we suppose that the image has two regions R0 and R1, and we choose one
point p0 inside the region R0 and another point p1 inside the region R1. We
still define two minimal action maps U0(p) and U1(p) according to the same
definition as that in minimal path theory. The potential is also decided by the
image features, for example, the potential takes lower values on the boundary of
R0 and R1.

In the minimal path theory, the points satisfying the Eq. 2 are considered.
Contrary to that, we consider the points satisfying the equation U0(p) = U1(p).
At these points, the level sets of the minimal action map U0 meets the level sets
of the minimal action map U1. These meeting points form the Voronoi diagram
of the image, decompose the whole image into two regions containing the point
p0 and the point p1 respectively. One region containing the point p0 is called as
region R′

0, and the other region containing the point p1 is called as region R′
1.

All the points in the region R′
0 is closer to p0 than p1 in terms of the action map.

All the points in the region R′
1 is closer to p1 than p0 in terms of the action map.

Because the action maps are defined as the potential weighted distance maps,
the boundary of regions R′

0 and R′
1 is called as the potential weighted minimal

region partition related to the two points p0 and p1.
Actually the level sets of the action map U give the evolution of the front.

The velocity of the evolving front is decided by the potential. When the evolving
front arrives the boundary, the velocity is much lower, and the evolving front
almost stops at the boundary. The same situation are for the action maps U0 and
U1. When choosing the appropriate potentials for calculating the two minimal
action maps, it is possible that these two action maps will meet each other at
the actual boundary of two regions R0 and R1. In other words, we can search
the two regions’ boundary by calculating the minimal region partition related
to the two points inside the two regions respectively.
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Without loss of generality, we suppose X be a set of points (for example, a 2D
curve or a 3D surface) in the image, UX is the minimal action with potential ˜PX

and starting points {p, p ∈ X}. Clearly, UX = minp∈XUp. Then considering two
sets UXi = minp∈XiUp and UXj = minp∈Xj Up, all points satisfying UXi(p) =
UXj (p) form the boundary of the two regions related to the two point sets Xi

and Xj. Because the two action maps are the potential weighted distance maps,
this formed boundary is also the potential weighted minimal partition of the
regions related to the two point sets Xi and Xj .

Dilation Evolution

( c )( b )( a )

Rout

Rin

Rn

C C
Cin

Cout
Cnew

Replace C with Cnew for next iteration

Fig. 1. Iteration process of dual front evolution and dilation. (a): an original contour C

separating the region R to regions Rin and Rout; (b): the curve C is dilated to form the

narrow active region Rn; (c): the inner and outer boundaries Cin and Cout propagate

to form the new minimal partition curve Cnew separating the region R to two regions,

and then the curve C is replaced by the curve Cnew for processing the next iteration.

Therefore, we propose the dual front evolution based on the above analysis
to find the potential weighted minimum partition for a defined active region.
The evolution principle is shown in Fig. 1. The narrow active region Rn, which
is formed by expending the initial curve C, has the inner boundary Cin and the
outer boundary Cout. Then the minimal action maps Uin and Uout are calculated
with different potentials ˜Pin and ˜Pout respectively. When these two action maps
meet each other, both evolutions of the level sets of the action maps stop auto-
matically and a minimal partition boundary is formed in region Rn. All points
pg on this minimal partition boundary satisfy the following Eq. (4):

⎧

⎨

⎩

|∇Uin| = ˜Pin with Uin(Cin) = 0
|∇Uout| = ˜Pout with Uout(Cout) = 0
Uin(pg) = Uout(pg)

(4)

The dual front evolution is implemented by labeling the initial curves with dif-
ferent labels, than evolving the labeled curve with different potentials to the
unlabeled region until all the points are assigned an unique label. Dual front
evolution provides us a method to find the minimal partition curve within a nar-
row active region. Here this minimal partition is the potential weighted global
minima partition only inside the narrow active region, not in the whole image.
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Clearly, the degree of this globalness may be changed flexibly according to the
size of the narrow active region.

In the dual front evolution, the region-based information and the edge-based
information may be unified in the potentials for guiding the curve evolution. The
mean values uin, uout, the variance values σ2

in, σ2
out, of the inside region (Rin −

Rin ∩ Rn) and outside region (Rout − Rout ∩ Rn) are calculated. The evolution
speeds (or potentials) for the labeled points (x, y) are decided by Eq. (5).

˜Pin(x, y) = wr
in × f(|I(x, y) − µin|, σ2

in) + wb
in × g(∇I(x, y)) + win

˜Pout(x, y) = wr
out × f(|I(x, y) − µout|, σ2

out) + wb
out × g(∇I(x, y)) + wout (5)

where I(x, y) is the value of the image intensity at the examined point. g(∇I(x, y))
is a function of the image gradient. By choosing different functions f and g, and
the different weight for each component of the potentials, this model can be used
for different segmentation objectives.

Based on this dual front evolution, we propose the dual-front active contour
model. It is an iterative process including dual front evolution and morphological
dilation. First, we choose an initial curve, dilate it to form the narrow active
region, and use dual-front evolution to find the minimal partition within this
active region. Then, we expend the obtained minimal partition curve to form
a new narrow active region, and the new potentials for the boundaries of the
new active region are also calculated. We repeat this process until the difference
between the consecutive obtained minimal partition curves less than the pre-
defined threshold.

So, in dual-front active contours, the segmentation objective to find the min-
ima with variable “degrees” globalness in defined region is transferred to find the
global minimum partition curve within a narrow active region expanded from
the initial contour, and then iteratively replace the current contour with the
obtained global minimum partition curve until the final segmentation objective
is achieved.

3 The Properties of Dual-Front Active Contours

3.1 Flexible Local or Global Minima

In dual-front active contours, the degree of global or local minima can be con-
trolled in a graceful manner by adjusting the width of the narrow active region
for the dual fronts’ evolution. This ability to gracefully move from capturing
minima that are more local (according to the initial placement of the active
contour/surface) to minima that are more global makes this model much easier
to obtain “desirable” minimizers (which often are neither the most local nor the
most global).

The result of the dual front evolution is the global minimal partition curve
inside the active region. So the size and the shape of the narrow active region
will affect the final segmentation result. If the size of the active region is small, it
possible leads to the problem of local minima because of the local noise. But if the
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(a) (b) (c) (d) (e)

Fig. 2. Comparison of the different segmentation results of the interface of white mat-

ter/gray matter from different active contour models with different degrees of local

minima and global minima. The gradient information used by panel (a),(b), and (e)

is shown in Fig. 3. The top row shows the original image and the initialization for

the curve evolution, and the bottom row shows the corresponding edge segmentation

results from geodesic active contours (a), the minimal path technique (b), Chan-vese’s

method (c), Mumford-Shah’s method (d) and dual-front active contours (e).

size of the active region is too large, the actual object boundary will be missed.
The size of the active region should be selected based on the shape and the size
of the detected object, the image quality and the background information, and
so on.

In dual-front active contours, we provide very flexible method to define the
active region. In fact, the active region is a kind of restricted searching space.
The restricted space can be formed by choosing the automatic thresholding,
calculating the distance map, using the length of the initial contour’s normal,
performing the morphological dilation and so on. All these methods can be used
for defining the active region. Normally, we use the morphological dilation to
obtain the narrow active region because the size of the active region can be
controlled easily by adjusting the size of the structure element and the dilation
times for the requirement from a given segmentation, or class of images.

The size of active region also can be changed during the evolution process.
For example, when the initial curve is far from the object, we may first use the
wider active region to expend the searching scale for one iteration, speed up the
computation time and avoid the effect of the noise. When the curve, which is
obtained after a number of iterations, near the object boundary, we may use
the narrow active region for refining the accurate boundary. By the way, if the
detected object is bigger, we may use wider active region, otherwise, we should
use narrower active region.

In Fig. 2, we compare the different edge detection results by two of the edge-
based methods, geodesic active contours [2] and the minimal path technique [13],



362 H. Li and A. Yezzi

(a) (b) (c)

(d) (e) (f) (g)

Fig. 3. By choosing the different size of the narrow active region, the dual-front active

contour model achieves different minima.

(a): the original image with the initialization; (b): the corresponding gradient informa-

tion; (c)-(g): the segmentation result using 5× 5, 7× 7, 11× 11, 15× 15, 23× 23 pixels

circle structuring elements for morphological dilation after 15 iterations.

two of the region-based methods, Chan-Vese’s method [8] and Mumford-Shah
methods [17], and the dual-front active contours proposed in this paper. This
figure is the part of one 2D human brain MRI image, and the segmentation objec-
tive is to find the interface of the gray matter and the white matter. We use the
above five methods to process this image and obtain the different segmentation
result. We can see that, geodesic active contours suffer from undesirable local
minima, and the “global minima” found by the minimal path technique is also
not exactly what we want, which is effected by the location of the pre-defined
two points. Chan-Vese’s method and Mumford-Shah’s method also found the
incorrect global minima. As this figure indicates, our dual-front active contours
can control the degree of global or local minima in active contour model, find
the correct boundary, and perform better than other methods which find the
local minima or global minima.

In Fig. 3, we give another example to demonstrate that, by choosing different
narrow active regions with different sizes, the dual-front active contour model
achieves different degree’s global minima in the whole image. The potential for
each point is ˜P (x, y) = 1/(|I(x, y) − Imean| + (1 + ∇I)2/10) + 0.1.

3.2 Other Nice Properties

First, the dual front evolution provides the automatic stop criterion in each iter-
ation. The dual front evolution also guarantees the continuity and smoothness of
the curve with the capability to handle topology changes. Second, the dual-front
active contour model provides automatic stop criterion by comparing the result
from consecutive iterations. Third, the dual-front evolution combines the advan-
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tages of level-set methods and fast marching methods, avoids the disadvantages
of them, and transfers the point-to-point evolution to noncontinuous band-to-
band evolution. In this manner, the computational cost is reduced significantly.
The detailed information of these properties was shown in [18].

4 Experimental Results

In Fig. 4, we give two other examples to compare the different edge detection
results by Chan and Vese’s method [8], the Mumford shah algorithm [17], and
dual-front active contours. Because Chan’s method and Mumford’s method are
all designed for finding the global minima in the whole image, sometimes, they
cannot receive the correct boundary. But for dual-front active contour, the degree
of the global minima can be controlled by the size of narrow active region, the
model can achieve flexible global degree’s minima. In these two examples, the
potential for each point is ˜P (x, y) = 1/(|I(x, y) − Imean|) + 0.1.

In Fig. 5, we show that our model can be used for extract the object without
clearly gradient information. The panel (a) is a noisy mammogram showing a
cyst in the breast, the panel (b) is the corresponding gradient image, the panel
(c) shows the middle step of the segmentation process, the panel (d) shows
the final segmentation result. In this example, the potential for each point is
˜P (x, y) = 1/(|I(x, y)−Imean|)+0.1. The structuring element is 5×5 pixels circle
for morphological dilation. It is clear from the results that the segmentation of
the cyst is refined even with high noise level.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Comparison of different region-based active contours related to the degree of

global minima.

(a) and (e): two 2D medical images with the initializations; (b) and (f): the results

from Chan-Vese’s model suffer from undesirable global minima; (c) and (g): the results

from Mumford-Shah model also suffer from the smoothing constraints; (d) and (h):

the correct edge extractions from dual-front active contours using 7 × 7 pixels circle

structuring element for morphological dilation.
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(a) (b) (c) (d)

Fig. 5. The segmentation result on 2D cyst image without gradient informations. The

size of the dilation structure element is 5×5 pixels. Panel (a) shows the original image

with the initialization. Panel (b) shows the gradient image. Panel (c) shows the middle

step of the segmentation process after 5 iterations. Panel (d) shows the segmentation

result after 15 iterations.

We also test the dual-front active contours on the simulated MRI 3D brain
image data set and extract the interface of gray matter/white matter, as well as
applications to specific cortical studies.

Because of the properties of dual-front active contours, the whole segmenta-
tion process is considered as a hierarchical decomposition. We assume that the
normal brain includes three tissues: GM (gray matter), WM (white matter), and
CSF (cerebral spinal fluid). After skull stripping and non-brain tissue removing,
we separate the brain region and the background first. Then, we just consider
the brain region and use dual-front active contours to segment the brain into
CSF and WM+GM two regions. The third step is to restrict the WM+GM re-
gion and use dual-front active contours again to separate the WM region and
GM region.

(a) (b) (c) (d)

Fig. 6. The segmented outer and inner cortical surfaces from the MRI brain image

with our method

In Fig. 6, we present the segmented outer (CSF-GM interface) and inner
(GM-WM interface) cortical surfaces in one slice of the 3D simulated brain im-
age, and a zoom-in of extracted boundaries for this slice. We also show the
3D models of the cortical surfaces. The test image is available from the Brain-
Web [19], which is generated from the MS Lesion brain database using the T 1
modality, 1mm slice thickness, 3% noise level and 20% intensity nonuniformity
settings. The image size is 181×217×217. The initialization for the hierarchical
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segmentation is a sphere centered at (100, 100, 95), and the size is 75× 75× 150.
The potential for different point is ˜P (x, y) = 1/(|I(x, y)− Imean|)+ 0.1, and the
size of the dilation structure element is 5 × 5 × 5 pixels.

For a 3D brain image (181×217×217 voxels in total), Normally, our method
requires only 10-20 iterations for segmenting one tissue type (CSF, GM or WM).
For each iteration, the computation procedure includes one curve dilation and
one dual-front evolution, one iteration last around 15 seconds.

5 Conclusions and Future Work

In this paper, we propose a novel, fast and flexible dual front implementation
of active contours, which is easily manipulated to yield minima with variable
“degrees” of localness and globalness. This ability to gracefully move from cap-
turing minima that are more local (according to the initial placement of the
active contour/surface) to minima that are more global makes it much easier to
obtain “desirable” minimizers (which often are neither the most local nor the
most global). As the examples, we illustrate the 2D and 3D implementations of
this model for object extraction from MRI imagery.

While the underlying principle of the dual front evolution algorithm presented
here is based on the authors’ earlier work in [18], there are several novelties in the
present work which do not appear in the earlier work. Other than the extension
to the three dimensions, we have made the very important observation that the
dual-front approach may be customed tailored to capture minimizers that are
flexible in their degrees of localness and globalness.

As such, we have constructed around this basic building block and algorithm
that may be controlled and adapted in ways that other active contour models
cannot. This key point, which is not addressed at all in the earlier work [18]
greatly extends the usefulness of their model to many important applications in
computer vision, especially medical imaging, where user control and interaction
is highly desirable.

Furthermore, the 3D algorithm presented in this paper is also quite novel
in that is not a mere extension of the 2D algorithm presented in [18]. In fact,
the hierarchical decomposition procedure used in our 3D algorithm could also
be incorporated to improve even the original 2D algorithm. We believe that this
analysis and interpretation of the original algorithm will be of great service to
the computer vision community.
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