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Abstract—This paper addresses the problem of calibrating camera parameters using variational methods. One problem addressed is

the severe lens distortion in low-cost cameras. For many computer vision algorithms aiming at reconstructing reliable representations of

3D scenes, the camera distortion effects will lead to inaccurate 3D reconstructions and geometrical measurements if not accounted for. A

second problem is the color calibration problem caused by variations in camera responses that result in different color measurements

and affects the algorithms that depend on these measurements. We also address the extrinsic camera calibration that estimates relative

poses and orientations of multiple cameras in the system and the intrinsic camera calibration that estimates focal lengths and the skew

parameters of the cameras. To address these calibration problems, we present multiview stereo techniques based on variational

methods that utilize partial and ordinary differential equations. Our approach can also be considered as a coordinated refinement of

camera calibration parameters. To reduce computational complexity of such algorithms, we utilize prior knowledge on the calibration

object, making a piecewise smooth surface assumption, and evolve the pose, orientation, and scale parameters of such a 3D model

object without requiring a 2D feature extraction from camera views. We derive the evolution equations for the distortion coefficients, the

color calibration parameters, the extrinsic and intrinsic parameters of the cameras, and present experimental results.

Index Terms—Calibration, variational methods, color calibration, lens distortion calibration, camera parameters refinement.

Ç

1 INTRODUCTION

THE problem of recovering a 3D representation of a scene

from multiple 2D images has been one of the main

research interests in computer vision. Many of the existing

stereo techniques involve preprocessing the camera images

to extract 2D features such as corners, lines, and contours of

objects in the scene. These features are then used to find

correspondences between camera views. In practice, search-

ing for features and establishing correspondences is not an

easy task due to noise and local extrema. Early variational

approaches to the 3D reconstruction problem were pioneered

by Faugeras and Keriven [1] who also relied on local feature

matching. A more recent variational approach by Yezzi and

Soatto [2], [3] proposed a joint region-based image segmenta-

tion and simultaneous 3D stereo reconstruction technique.

This paper addresses camera calibration techniques built on

this latter stereo reconstruction framework that avoids

searches for local correspondences and is versatile enough

to accommodate the new applications to be shown. A tradeoff

is achieved by making a piecewise smooth object assumption

and a constant background assumption; however, extraction

of 2D features from given camera views are not required.
Camera calibration refers to the problem of finding the

mapping between the 3D world and the camera or image
plane. For most computer vision algorithms aimed at
reconstructing reliable digital representations of 3D scenes,
accurate camera calibrations are essential. There has been a
great deal of research on the camera calibration problem as
early as the 1970s [4]. In most of the previous techniques,
some sets of features were extracted from images of a known
calibration pattern and intrinsic camera parameters as well as
camera pose and orientation (extrinsic camera parameters)
are estimated by a minimization of an overall cost functional
[5], [6], [7], [8], [9], [10], [11], [12], [13]. Many calibration
techniques use both nonlinear minimization and closed-form
solutions as in [14].

In this paper, we develop a coordinated refinement
technique for the extrinsic and intrinsic camera parameters:
lens distortion, focal lengths, skew, and estimation of camera
color calibration parameters in a coupled way within a
multiple camera system.1 For geometrical measurements, an
intrinsic camera parameter, the camera lens distortion, is an
important issue and will result in inaccurate 3D reconstruc-
tions if not taken into account. Another common problem in
multiview stereo techniques is caused by color miscalibra-
tions between cameras due to different sensor characteristics.
Extrinsic parameters of the cameras, on the other hand,
determine the relative poses and orientations of cameras and
their correct estimation is one of the first phases of a camera
calibration system.
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1.1 Relation to Previous Work and Contributions

1.1.1 Lens Distortion

The ideal pinhole camera model leads to imaging of world
lines as lines on the image plane and simplifies many
computations and considerations [6]. However, for most
real cameras with wide-angle or inexpensive lenses, this
assumption does not hold and nonlinearities introduced by
a well-known phenomenon referred to as a lens distortion
should be taken into account. The corresponding distortion
parameters should be estimated for each camera.

In many existing calibration techniques, good estimates
for extrinsic and intrinsic camera parameters are first
obtained by a pinhole camera model neglecting lens distor-
tion. Then, distortion calibration is performed while holding
the other parameters fixed [17], [18], [19]. This is possible
because the mapping from 3D world coordinates to the
2D image plane can be decomposed into a perspective
projection and a mapping that models the deviations from the
ideal pinhole camera.

A popular group of lens distortion calibration methods
in the literature, mainly under the category known as
plumb line methods, rely on the first step of extracting
edges from the images. Either a user manually selects the
image curves or there must be a way to reliably estimate
image edges that correspond to linear 3D segments in the
world. An optimization problem is set up by defining a
measure of how much each detected segment is distorted.
The curved lines in the image that do not really correspond
to 3D line segments will constitute outliers in this
optimization procedure [17], [20], [21], [22], [23]. Other
techniques such as [24] rely on point correspondences.
Given a set of 3D points, the associated epipolar and
trilinear constraints are arranged into a tensor, which is
computed with estimated distortion parameters at each step
to minimize a reprojection error in an iterative manner. In
another group of methods as in [25], [26], [27], a direct
solution strategy is employed to find camera calibration
parameters by incorporating lens distortion as well.

Our contribution is a new distortion calibration technique
that does not rely on extraction of edges and search for point
correspondences. The former may not be an easy task due to
noise and local extrema. Instead, we devise an integrated
calibration technique in which the distortion parameters of
cameras are computed in a tightly coupled framework. The
desired coupling of multiple camera views comes from
estimating a common 3D object (in this case, the calibration
object). In other words, we minimize the cost between the
reprojection of the 3D calibration object and the image
measurements by evolving the distortion parameters of the
cameras. In our distortion calibration algorithm, we use a
white bar object made from a foam core, as shown in Fig. 1 on
the left. We capture its views before a dark background with
the multiview stereo rig system, a desktop multicamera
system designed for remote multimedia collaboration,
developed by HP Labs [28]. The images of the calibration
object captured from three of the five cameras in the rig are

given in Fig. 1. Many desktop multicamera systems use wide-
angle and inexpensive cameras that produce severe distor-
tion effects as can be observed in the given images.

As we will show, with this technique, we can also
incorporate other parameters of calibration into the same
variational framework and get their locally optimal estimates
as well.

1.1.2 Color Calibration

Another common problem in multiview stereo techniques is
caused by color miscalibrations between cameras, resulting
from variations in camera responses due to different sensor
characteristics and ambient conditions like temperature,
manufacturing differences, and so on. These yield different
color measurements between cameras, and affect the
algorithms that depend on these measurements. Camera
color calibration refers to the problem of estimating the
color calibration parameters of cameras to overcome these
unwanted effects. A common approach taken toward this
problem is to calibrate each camera independently through
comparisons with known colors on a color calibration
object/environment [28], [29].

The color calibration object we use, shown in Fig. 2, is a
color cube with patches of known colors whose images are
captured from each camera. Demosaicing coefficients are
calculated independently for each camera based upon the
absolute colors of the calibration object and the measured
color responses of each camera. Slight errors and differences
that arise from this independent calibration procedure
sometimes lead to noticeable seams or discontinuities in the
texture mapping process during the transition of the texture
map between neighboring cameras. Our goal is to help even
out these discrepancies by devising a relative intercamera color
calibration technique in which the demosaicing parameters of
cameras are calculated jointly in a tightly coupled framework
rather than just one camera at a time.

Similar to our approach to lens distortion calibration, the
desired coupling of the multiple camera views comes from
estimating a common 3D shape and, in addition, a common
radiance function for the calibration object (in this case, the
color cube). We take advantage of the fact that the object
shape is known up to location and scale to simplify the
problem. Hence, we estimate the pose parameters of the
cube, the radiance function on the cube and the color
calibration coefficients for each camera.

1.1.3 Extrinsic and Intrinsic Calibration

Following the same philosophy as mentioned in the other two
calibration problems above, extrinsic and intrinsic calibration
parameters can be estimated in a variational framework using
the general stereoscopic framework of Yezzi-Soatto.

It should be noted that due to the differential nature of
the estimation equations derived, the extrinsic and intrinsic
update equations require rough initial values. This is a
well-known feature of almost all of the recent state-of-the-art
energy functionals used in segmentation (for example,
Mumford-Shah energy, geodesic energy, ...), that is, the
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Fig. 1. Three out of five camera views of the real calibration object

shown on the left. Fig. 2. Photograph of the color calibration object.
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solutions are locally optimal, hence, starting far away from
the real solution may lead to solutions that get stuck at local
extrema far from the desired solution. Nevertheless, the
usefulness of a refinement stage in extrinsic and intrinsic
camera parameters will be demonstrated via the improve-
ment in the final 3D reconstructions. A nice feature of the
methodology presented in this paper is that it can integrate
several different problems in geometric and color calibration
into an overall unified system based on the joint segmenta-
tion framework to evolve pose, color, distortion, extrinsics,
and intrinsics.

The organization of this paper is presented as follows:
We first present a variant of the Yezzi-Soatto algorithm in
which a 3D object is allowed to move with a semiaffine
motion model in Section 2. We developed this scheme for
our applications in calibration, where the 3D object shape is
roughly known (up to three scales and rigidity) to obtain
more efficient and faster algorithms. We then present a
novel technique for lens distortion calibration in Section 3
and a novel technique for relative intercamera color
calibration in Section 4. We apply the same calibration
ideas for intrinsic camera calibration in Section 5 and for
extrinsic camera calibration problem in Section 6. Conclu-
sions and discussions are given in Section 7.

2 EVOLUTION EQUATIONS OF 3D OBJECT MOTION

PARAMETERS

The Yezzi-Soatto 3D stereo reconstruction model builds a
cost on the discrepancy between the reprojection of a model
surface with a radiance f : IR3�!IR, the background
(infinitely far away) with radiance b : IR3�!IR, and the
actual measurements from multiple camera views. Let gi
denote the transformation from world coordinates to
camera coordinates: gi : X�!Xi ¼ ðXi; Yi; ZiÞT and let �
denote the perspective transformation from camera frame
to the image plane: � : Xi�!xi ¼ ðxi ¼ Xi

Zi
; yi ¼ Yi

Zi
ÞT .

On the image plane, the cost functional for the Yezzi-Soatto
model can be written as a joint segmentation problem over
regions of n camera images Ii with domain �i ¼ Ri [Rc

i (Ri

denotes the foreground region) and with three color channels
k 2 ðR;G;BÞ:

E ¼
X

k¼R;G;B

Xn
i¼1

Z
Ri

fk ð� � giÞ�1ðxiÞ
� �

� Iki ðxiÞ
h i2

d�i

þ
X

k¼R;G;B

Xn
i¼1

Z
Rc
i

bk � Iki
� �2

d�i:

ð1Þ

This energy can be lifted back onto surface S:

EðSÞ ¼
X

k¼R;G;B

Xn
i¼1

Z
S

h�
fkðXÞ � Iki ð� � giðXÞÞ

�2

� ðbk � Iki Þ
2
i
X iðXÞ�ðXiÞdA;

ð2Þ

where � is the Jacobian of the change of coordinates from the
image plane to the surface, X i is the visibility function of a
voxel on the surface, and dA is the area measure of surface S.
The deformation of the surfaceSwith respect to this energy or
data fidelity measure is then obtained by finding the partial
differential equation (PDE) that is the gradient descent flow of
the energy E. A popular class of numerical techniques, known

as Level Sets Methods [30], is utilized to evolve the surface S
via the evolution of a 3D function � : IR3�!IR. Nevertheless,
an update of the level set function is required after each
iteration of the associated PDE, and even with more efficient
narrowband schemes [31], there is a considerable amount of
computation involved. For our intended applications, in
which there is a calibration object whose shape can be roughly
known a priori, rather than deforming the surface of the
3D object, we will evolve its pose and scale parameters
instead. Next, using the energy E in (2), we will derive the
ordinary differential equations (ODEs) to update the para-
meters of the surface motion modeled by a semiaffine
transformation, which is more general than a similarity but
less general than a fully affine transformation.

Let the original rigid surface be denoted by So, then
S ¼ gsðSoÞ, or X ¼ gsðXoÞ ¼ RsXo þTs, and let � denote
parameters of the rigid motion gs of the surface So with
rotation Rs and translation Ts. Then, the gradient of the
energy E with respect to � is given by

@Eð�Þ
@�

¼
X

k¼R;G;B

Z
S

X
i

F k
i ðXÞ

�
@X

@�
;N

�
dAþ @F

k
i ðXÞ
@�

dA

¼
X

k¼R;G;B

Z
So

X
i

F k
i ðgsðXoÞÞ

�
@ðgsXoÞ
@�

;RsNo

�
dAo

þ 2ðfkðgXoÞ � Iki Þ
�
@ðgsXoÞ
@�

;rfkS
�
dAo;

ð3Þ

where Fk
i ¼½ðfkðXÞ � Iki ð� � giðXÞÞÞ

2�ðbk � Iki Þ
2�X iðXÞ�ðXiÞ

is the Mumford-Shah term from (2) (also in [2]). The
derivation follows from shape optimization tools [32] that
provide the shape derivatives in curve and surface evolution
framework. N denotes the surface normal vector. Note that
the visibility function X iðgsðXoÞÞ, included in the data
term Fk

i ð�Þ, is computed using the original visibility function
but compensated by RT

s ðCi �TsÞ), where Ci is a camera
center. The second term in (3) is the region term correspond-
ing to the foreground object, whereas the first one is the
boundary term. In our applications, the background is
modeled by a piecewise constant radiance; therefore, we
omit the background region term in the equation.

For translation parameters, we have�
@ðgsXoÞ
@�

;RsNo

�
¼ RsNo:

For rotation parameters, we have

�
@ðgsXoÞ
@�

;RsNo

�
¼
*

Rs

0 Zo �Yo
�Zo 0 Xo

Yo �Xo 0

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X̂o

;

RsNo

+
¼
�
�RsX̂o;RsNo

�
;

ð4Þ

where we utilize exponential coordinates (see [33] for details
on this representation) for the global rotation parameters of
the surface. We note that a matrix in an inner-product
expression, when operated on a vector, will incorporate each
of its row vectors in the inner product to result in a vector:
hx1;x2; . . . ;xn;yi ¼ ðhx1;yi; hx2;yi; . . . ; hxn;yiÞ.
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For further flexibility in initializing a model surface, we

add three scaling parameters along the X, Y , and Z axes.

Then, the semiaffine transformation for a point Xo on the

surface becomes: X ¼ gsðXoÞ ¼ RSXo þT, where

S ¼
sx 0 0
0 sy 0
0 0 sz

2
4

3
5:

The gradient of the energy with regard to the scaling
parameters � ¼ sj is derived similarly to the above:

X
k¼R;G;B

Z
So

X
i

F k
i ðgsðXoÞÞ

�
@ðgsXoÞ
@�

;RsNo

�
dAo;

where�
@ðgsXoÞ
@�

;RsNo

�
¼
�

Rs
@S

@�
Xo;RsNo

�
with; e:g:;

@ðgsXoÞ
@sx

¼ Rs
@S

@sx
Xo ¼ Rs

1 0 0

0 0 0

0 0 0

2
64

3
75Xo

¼ Rs

Xo:x

0

0

2
64

3
75; ðXo ¼ Xo:xÞ; then

�
@ðgsXoÞ
@�

;RsNo

�
¼
*

Rs

Xo

0

0

2
64

3
75 0

Yo

0

2
64

3
75 0

0

Zo

2
64

3
75

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
RX
s

;

RsNo

+
:

ð5Þ

The evolutions for the rigid motion parameters � are then
given by the following gradient descent equations:

@�

@t
¼ � @E

@�
¼ �

X
k¼R;G;B

Z
So

X
i

F k
i ðgsðXoÞÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Fk

RsNo dAo;

ðfor translationÞ;

ð6Þ

@�

@t
¼ � @E

@�
¼ �

X
k¼R;G;B

Z
So

Fk
	
�RsX̂o;RsNo



dAo;

ðfor rotationÞ;
ð7Þ

@�

@t
¼ � @E

@�
¼ �

X
k¼R;G;B

Z
So

Fk
	
RX
s ;RsNo



dAo;

ðfor scalingÞ:
ð8Þ

Here, note that the visibility function X iðgsðXoÞÞ is

computed using the original visibility function but com-

pensated by the S�1RT
s ðCi �TsÞ), where

S�1 ¼
1=sx 0 0

0 1=sy 0
0 0 1=sz

2
4

3
5:

Note that we can generalize this idea in a straightforward

fashion by considering S to be more general than a simple

diagonal matrix in order to accommodate a fully affine
motion of the surface.

We will use (6), (7), and (8) in updating the pose of the
surface S to estimate its correct placement in the 3D space for
the calibration applications presented in Sections 3 and 4.

3 LENS DISTORTION CALIBRATION

The lens distortion is usually modeled by a function defined
from the ideal image plane to the distorted image plane.
One approach is to decompose it into two terms: radial and
tangential distortion [17]. The radial distortion is a
deformation along the radial direction from a center of
distortion point to an image point and the tangential
distortion is a deformation in a direction perpendicular to
the radial direction and is negligible for many cameras. To
model the radial distortion effects, a commonly used
distortion function DðrÞ is given by ð1þ k1r

2 þ k2r
4 þ . . .Þ,

where r is the radius from the center of distortion to a point
on the ideal image plane. The principal point ðu0; v0Þ is often
used as the center for radial distortion [6], which we will
also adopt. Below, x̂i is the distorted image coordinates and
D is the distort function:

x̂i ¼ Dxi ¼ ð1þ ki1r2 þ ki2r4 þ . . .Þxi; ð9Þ

where r2 ¼ ðx2
i þ y2

i Þ, and kij is the jth distortion coefficient
for camera i. In (9), we assume that k0 ¼ 1, which can be
changed to an arbitrary k0 value.

3.1 Calibration of the Lens Distortion Parameters

Notation. Our notation from world coordinates X to image
coordinates ðu; vÞ is:

X �!|{z}
gi

Xi �!|{z}
�

xi ¼
Xi

Zi
¼ xi

Yi
Zi
¼ yi
1

0
@

1
A �!|{z}

Lu 0 u0

0 Lv v0

0 0 1

2
4

3
5
ðu; vÞ;

whereD is the distort function in (9) andLu andLv are the
focal lengths. The gradient of the energy (1), assuming a
single image channel over the distorted image plane, with
regard to distortion parameters kij is given by

@kij
@t
¼ � @E

@kij
¼ �

Z
ĉi

Fi ðD � � � giÞ�1x̂i

� �� @x̂i
@kij

; n̂i

�
dŝ; ð10Þ

whereFi ¼ ðf � IiÞ2 � ðb� IiÞ2, subscript i corresponds to

each camera view, and n̂i denotes the normal vector to the

occluding boundary ĉi of regionRi on the distorted image

plane. We only consider the boundary term (ŝ is the

arclength of the contour ĉi on the image plane: The

distorted or actual image coordinates), as we assume that

the foreground and background have constant radiance.

We design the lens distortion calibration object to satisfy

this assumption.

We want to lift this integral back onto occluding
boundary Ci of the surface. Note that @x̂i

@kj
are given by

@x̂i
@ki1
¼ r2xi;

@x̂i
@ki2
¼ r4xi; . . .

@x̂i
@kij
¼ r2jxi;
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hence�
@x̂i
@kij

; n̂i

�
dŝ ¼

�
r2j�ðXiÞ; J

@

@s
ðD � �ÞXi

�
ds

¼
�
r2j�ðXiÞ; JD0 � �0

@

@s
Xi

�
ds;

ð11Þ

where J denotes the 2� 2 90 degree rotation matrix,
D0 ¼ ð1þ k1r

2 þ k2r
4 þ . . .Þ, and

�0 ¼ 1

Z2
i

Zi 0 �Xi

0 Zi �Yi

� �
ð12Þ

is the Jacobian of the perspective projection �. We can
continue to simplify�

@x̂i
@kij

; n̂i

�
dŝ ¼ r2jD0

*
½�ðXiÞ�2�1;

1

Z2
i

0 1

�1 0

� �
Zi 0 �Xi

0 Zi �Yi

� �
@Xi

@s

� �
3�1

+
ds

¼ r
2jD0

Z2
i

*
Xi

Yi


 �
1

Zi
;

0 Zi �Yi
�Zi 0 Xi

� �
@Xi

@s

� �
3�1

+
ds

¼ r
2jD0

Z3
i

* 0 �Zi
Zi 0

�Yi Xi

2
64

3
75 Xi

Yi


 �
;
@Xi

@s

+
ds

¼ r
2jD0

Z3
i

* �ZiYi
ZiXi

0

0
B@

1
CA; @Xi

@s

+
ds:

Noting that

�ZiYi
ZiXi

0

0
@

1
A ¼ Xi �

Xi

Yi
0

0
@

1
A;

we have

�
@x̂i
@kj

; n̂i

�
dŝ ¼ r

2jD0

Z3
i

*
�

Xi

Yi
0

0
@

1
A�Xi;

@Xi

@s

+
ds;

and

�
@x̂i
@kij

; n̂i

�
dŝ ¼ � r

2jD0

Z3
i

*
Xi �

@Xi

@s
;

Xi

Yi

0

0
B@

1
CA
+
ds

¼ � r
2jD0

Z3
i

*
kXikNi;

Xi

Yi

0

0
B@

1
CA
+
ds:

ð13Þ

Substituting (13) into (10), we get the calibration equation

@kij
@t
¼
Z
Ci

Fi
r2jD0kXik

Z3
i

*
Ni;

Xi

Yi
0

0
@

1
A+ds ð14Þ

for the lens distortion parameters kij. Note that the
distortion calibration method we propose can handle
different models of distortion by changing the D function
and related derivatives in (14).

3.2 Using Several Poses of the Object

When camera views from multiple poses of the object are
available, we can take advantage of the existence of variously
distorted views in calibrating the lens distortion. In the first
phase, we estimate both pose and distortion coefficients from
separate experiments. To simplify the explanation, let us
assume that we want to solve for only one distortion
coefficient ki1 for each camera i. Once we obtain rough
estimates for the object pose and distortion coefficients ki1, we
can fuse a “common distortion” ~ki1 from these separate
experiments for each camera i and then jointly evolve ~ki1s as
follows:

@ ~ki1
@t
¼
XMposes

m¼1

Z
Ci;m

Fi;m
r2jD0kXi;mk

Z3
i;m

*
Ni;m;

Xi;m

Yi;m
0

0
@

1
A+ds: ð15Þ

At the same time, we evolve the pose parameters of
separate poses of the object as described in Section 2, with
the only difference being the incorporation of the new
“common distortion” in the equations. For instance, we
evolve any of them for a given pose as follows:

@�

@t
¼ �

X
i

Z
So

FiðgsðXoÞÞ
*
@ðgsXoÞ
@�

;RsNo

+
dAo; ð16Þ

where Fi includes computation of IiðD � � � giðgsðXoÞÞÞ with
the new common distortion coefficients ~ki1 in the multiplying
distortion factor D.

3.3 Experimental Results

For our calibration algorithm, we initialize a surface model of
the real calibration object, which is shown from several
vantage points in Fig. 3. After initializing the surface, the first
phase of our algorithm is to evolve its pose parameters to
position the 3D object model roughly in the correct location in
3D space. For the experiments presented here, captured via a
HP Labs’ stereo rig system, we used three different poses of
the calibration object, but we can increase the number of poses
used in the process. Example evolutions of the pose
parameters are shown in Fig. 4 for three different pose
captures of the calibration object in each column (showing
only one camera view for each pose). The distortion
coefficients are also evolved at a slower pace. That is, the
time step used in the associated ODE is small in the first
phase. In the experiments, the distortion function D in (9),
with one distortion coefficient k1 for each camera, is used.

After the separate evolutions for each of the poses have
converged, common initial distortion coefficients are com-
puted as the average of the results from phase 1. In the second
phase of the algorithm, we evolve the distortion coefficients
for each camera, again, separately but summed over different
poses. We show sample views of poses 1, 2, and 3 in row 1 of
Figs. 5, 6, and 7. As the distortion coefficients converge to true
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Fig. 3. Initialized surface model shown from three different vantage

points.
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values, the reprojection of the surfaces onto the distorted
views results in a better match to the image data and
continues to minimize the overall energy. Such images with

reprojections are shown on the second row of Figs. 5, 6, and 7.
The undistorted views are shown as well on the third row.
The straightening effect of this operation on the curved lines
can be clearly observed in these images.

4 COLOR CALIBRATION

For color calibration, the differences in absolute colors
measured in the response of each camera are modeled by
a simple multiplicative factor in each of color red, green,
blue (RGB) channel measurements and an additive offset
parameter.

The first variation of our energy functional E using this
model leads to gradient descent flows

@E

@�i;k
¼�

Z
Ri

h
fk �

�
�i;kI

k
i þ �i;k

�i
Iki d�i

�
Z
Rc
i

h
bk �

�
�i;kI

k
i þ �i;k

�i
Iki d�i

ð17Þ
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Fig. 4. Column 1: pose 1. Row 1: one camera image shown; row 2: with
projection of initialized surface (orange mask); rows 3-5: during
evolution of the pose parameters of the surface; and row 6: with
converged pose parameters. Columns 2 and 3: same as column 1 for
poses 2 and 3, respectively.

Fig. 5. Pose 1. Row 1: three out of five captured views. Row 2: projected

surface after distortion parameters have converged. Row 3: undistorted

with the obtained distortion coefficients.

Fig. 6. Pose 2. Row 1: three out of five captured views. Row 2: projected

surface after distortion parameters have converged. Row 3: undistorted

with the obtained distortion coefficients.

Fig. 7. Pose 3. Row 1: three out of five captured views. Row 2: projected

surface after distortion parameters have converged. Row 3: undistorted

with the obtained distortion coefficients.
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@E

@�i;k
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Z
Ri

h
fk �

�
�i;kI

k
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�i
d�i

�
Z
Rc
i

h
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�
�i;kI

k
i þ �i;k

�i
d�i

ð18Þ

for the color calibration parameters �i;k and �i;k for each

camera i, and k 2 fR;G;Bg, where Iki , fk, and bk are from one

of the three color channelsfR;G;Bg. Note that one can extend

this framework to RGGB images in a straightforward fashion.

In our test calibration experiments, we utilized white noise

additive offsets and multiplicative scaling coefficients to

perturb the measured images, thereby exaggerating the effect

of color miscalibrations. On a synthetically created example

in Fig. 8, where the correct geometry and radiance function

are known, we show such miscalibration effects on the

original views, and views during the evolution of �is and �is

in (17) and (18) and views after these parameters have

converged. In addition, in Fig. 9, the curves depict the true �

and� values for all nine camera views and the convergence of

the estimated parameters toward the real values.

Similarly, in Fig. 10, the color cubes with original colors

are shown from some camera views first, then shown after

their color calibration parameters are perturbed. Finally, the

convergence of the color parameters results in a corrected

set of colors as shown in the views. Also shown in Fig. 11

are the evolutions of the color calibration parameters for the

shown views. We have to note here, again, that due to

relative calibration framework among cameras, the updated

parameters may not always result in absolute values but

still provide useful outputs for the multicamera systems.
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Fig. 8. Row 1: three original views (cameras 1, 7, and 9). Row 2: the
same three views after deliberate simulated miscalibration of the
grayscales. The same three views while evolving the calibration
parameters: rows 3 and 4, intermediate stages; row 5, the views after
evolution of the calibration parameters was completed.

Fig. 9. Evolution of the parameter � for different camera views. True

� value is shown as a dotted line.

Fig. 10. Some camera views shown during the evolution of the color

calibration. Top: original views. Middle: perturbed views. Bottom: final

views after convergence. Note the color similarity in the top and bottom

rows.

Fig. 11. Evolution of the parameter � for different views for RGB

channels of the synthetic color cube. True � value is shown as a dotted

line.
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5 INTRINSIC PARAMETER CALIBRATION

We show the evolution of three of the main intrinsic camera

parameters: focal lengths, denoted byLu andLv for each of the

coordinates on the image plane, and the skew parameter a.

Inclusion of the skew parameter between the two plane

coordinates leads to an intrinsics matrix of the form

� ¼
Lu a u0

0 Lv v0

0 0 1

0
@

1
A;

then the Jacobian of the perspective transformation becomes

(compare to (12))

�0 ¼
Lu=Zi a=Zi �LuXi=Z

2
i � aYi=Z2

i

0 Lv=Zi �LvYi=Z2
i

 !

¼ 1

Z2
i

LuZi aZi �LuXi � aYi
0 LvZi �LvYi

 !
:

The derivatives of the image coordinates with respect to
each of the intrinsic parameters are computed from the
overall energy functional as before (similar to our derivations
of the lens distortion calibration parameters in Section 3):

@E

@Lj
¼

X
k¼R;G;B

Z
Ci

ðfk � Iki Þ
2 � ðbk � Iki Þ

2
h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fk

�
@xi
@Lj

;ni

�
ds:

For the focal length parameter Lu, we have

�
@xi
@Lu

;ni

�
ds

¼ @�Ci

@Lu
;
@

@s
J�0Ci

� �
ds
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1
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ð19Þ

Noting that

0
ZiXi

�YiXi

0
@

1
A ¼ Xi �

Xi

0
0

0
@

1
A;

then for the focal length parameter Lu, we obtain

�
@xi
@Lu

;ni

�
ds ¼ 1
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1
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ð20Þ

Due to the skew parameter, the equations for the second focal
length parameter Lv will be slightly different. This time,
incorporating the derivative with respect to Lv in (19), we
derive
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ds ¼ 1

Z3
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* 0 �LuZi
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Again, noting that
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then for the focal length parameter Lv, we have

�
@xi
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�
ds ¼ �kXik

Z3
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*
Ni;

�aYi
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0

0
@

1
A+ds: ð21Þ

Note that when the skew parameter a is 0, which is a widely
used convention, the above equation reduces to a sym-
metric form of (20) derived for Lu.

Finally, we derive similarly the update equations for the
skew parameter a:
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ds ¼ 1
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This time, noting that

0
ZiYi
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0
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@
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then for the skew parameter a, we have

�
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ds ¼ �LvkXik
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i

*
Ni;
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0
0

0
@

1
A+ds: ð22Þ

The final evolution equations for the three intrinsic
parameters for each camera i are then given by
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In Fig. 12, a synthetic color cube example is shown. The

intrinsic parameters, focal lengths Lu and Lv, are initialized

to perturbed values and when the intrinsic calibration

update equations have converged, both the projections of

the cube surface onto the images and the evolution of the

focal lengths are shown.

6 EXTRINSIC CAMERA CALIBRATION

We now consider the same energy functional as a function of

the extrinsic calibration parameters �i ¼ ð�i1; . . . ; �i6Þ for

each camera image Ii. Notice that the only term in our energy

functional E, which depends upon �i, is the corresponding

fidelity term in Edata (due to the dependence of ��1
i ),

assuming a constant background radiance in the scene:

Edata;iðS; f; b;�iÞ¼
X
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Z
Ri

�
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i ðx̂ÞÞ�Iki ðx̂Þ
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d�i
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�
bk � Iki ðx̂Þ

�2
d�i;

ð26Þ

where x̂ denotes image coordinates as before (for simplicity

of discussion, distortion D ¼ 1).

6.1 Initial Expression of Gradient

If we let ĉi ¼ @Ri denote the boundary of Ri, then we may

express the partial derivative of E with respect to one of the

calibration parameters �ij as follows:
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S
fk
�
��1
i ðx̂Þ

�
;
@

@�ij
��1
i ðx̂Þ

� �
d�i:

ð27Þ

In the boundary term, dŝ denotes the arclength measure of ĉi,

and n̂i denotes its outward unit normal. In the foreground

term, rS denotes the natural gradient operator on the

surface S.

6.2 Rewriting the Boundary Term

Ultimately, we will compute all quantities by integrating

along the current estimate of the surface since that is the actual

object represented by our data structures. Thus, it is more

convenient to express the contour integral around ĉiðŝÞ in the

image plane as a contour integral around CiðsÞ on the

surface S instead (where �iðCiÞ ¼ ĉi and where s is the

arclength parameter of Ci). They may be related as follows:
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Fig. 12. Top: three camera views shown during the evolution of the intrinsic parameters of an initial cube with projections from the initial surface.
Middle: final views after convergence of the intrinsic parameters of the surface. Also shown at the bottom are the evolution of the two focal length
parameters for each shown camera view (red and green curves) along with the true (blue curve) focal lengths.
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are perpendicular tangent vectors to SÞ:

Thus, the boundary term written as an integral on the
surface S (along the occluding contour Ci) has the following
form:
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which is also the update equations for the extrinsic
parameter j for camera i with a piecewise constant
assumption on the foreground and the background radiance.

6.3 Rewriting the Foreground Term

The first step in rewriting the foreground/background
integrals is to reexpress the derivative of the back-
projected 3D point X ¼ ��1

i ðx̂;�iÞ with respect to the
calibration parameter �ij in terms of the derivative of the
forward projection �iðx;�iÞ ¼ �ðgiðX;�iÞÞ, since �i has an
analytic form while ��1

i does not. We begin by fixing a
2D image point x̂ and note that
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�
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��
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Notice, though, that (29) does not uniquely specify @X=@�ij
but merely gives a necessary condition. We must supple-
ment (29) with the additional constraint that @X=@�ij must
be orthogonal to the unit normal N of S at the point X in
order to obtain a unique solution:

@X
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�N ¼ 0 or; equivalently;
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�Ni ¼ 0
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Now, combining (29) and (30), we have
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where � is the Kronecker product and I is the 3� 3 identity
matrix.

The second step proceeds in the same manner as
outlined earlier in rewriting the data fidelity terms in
Edata by noting that the measure in the image domain d�i

and the area measure on the surface dA are related by
d�i ¼ �ðxi;NiÞdA, where �ðXi;NiÞ ¼ ðXi �NiÞ=Z3

i . Then,
the foreground term in (27) is given by
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Therefore, the following foreground term will be added to
the update equation of the extrinsic parameter in (28):
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ð33Þ

In Fig. 13, several photos from a set of 32 images of a toy
skater doll are shown. When the initial extrinsic parameters
are off, as observed in the projections of the foreground
object onto the images (shown by an orange mask), a visual
hull created using the uncorrected extrinsic camera para-
meters is significantly away from the real doll surface. After
the extrinsic calibration equations (28) plus (33) are evolved
to convergence, visual hull created using the updated
extrinsic parameters demonstrates the correction and true
refinement provided by the derived equations. In Fig. 14,
we depict the extrinsic refinement stability by showing the
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uncertainty ellipsoids drawn around each camera center.

Parameters were perturbed in the x, y, and z directions

randomly several times and converged properly for varia-

tions up to 8 percent.

7 RESULTS AND CONCLUSIONS

The toy skater example shown in Fig. 15 demonstrates the

simultaneous evolution of the extrinsic and intrinsic

parameters for the 32 cameras, along with the projections

of the foreground surface. The visual hulls created with,

again, the initial set of camera parameters and the evolved

set of camera parameters display a correct refinement of the

camera parameters.
For most of the experiments, we utilized a 1283 volume and

a 140� 150� 360 volume for the Bust data set. With a

volumetric signed distance representation in our C++

implementation without any code optimization on a Pentium

2.40-GHz processor, each single iteration to compute all

calibration gradients takes on the order of 10 seconds,

depending on the number of camera views as well, and

convergence takes about 50-400 iterations, depending on the

initialization, hence, a computation time of about 8-60 min-

utes. However, a mesh representation on the object may be
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Fig. 13. Four camera views shown (top) during the evolution of the extrinsic parameters of an initial surface of a toy skater. Row 2: views shown with

projections from the initial surface. Row 3: final views after convergence of the extrinsic camera parameters. Visual hull generated using the

miscalibrated initial extrinsic parameters (row 2, right); visual hull generated using the converged extrinsic parameters (row 3, right).

Fig. 14. Uncertainty ellipsoids drawn around each camera center for the toy skater data show the extrinsic refinement stability (right: zoomed into one

camera’s perturbations).
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easier to work with since the parameter update equations we
derived are ODEs.

A common issue for any calibration procedure is that when

there are shape symmetries or constant radiance on the object,

camera pose parameter estimation is not stable; however,

these do not affect the 3D reconstruction (for example,

multiple views on a sphere do not allow estimating camera

pose, but they still allow estimating the shape of the sphere).

Regarding the radiance assumptions, because our algorithm

integrates information globally on the entire collection of

images, it is far less sensitive to this accident than algorithms

based on local statistics such as point feature correspon-

dences. Therefore, symmetries are not an obstacle since our

goal is not to obtain the absolute calibration parameters

(ground truth) but to help refine 3D reconstruction. From this

perspective, the only criterion of concern is the reprojection

error. We experimented with a full-turn head sequence using

Intel’s Van Gogh Bust data for testing the issue of shape

complexity. We utilized only 16 camera views from the

available 330 camera images for ease and speed of computa-

tions. We computed reprojection errors: a Type II error (error

of omission) and Type I error (error of commission) by counts

of voxels for several camera views used during our experi-

ments both after perturbation of the camera parameters and

after evolution of the parameters as shown in Table 1. After

the refinement stage, the Type I error dropped by 95 percent,

and the Type II error dropped by 40 percent. As remarked

above, our goal is not to obtain absolute camera parameters

but to help 3D reconstruction algorithm to obtain objects

correctly, which is achieved.
The Bust data comprise numerous views and this

facilitated the following experiment to show the practicality

of our calibration correction. For the three camera views, out

of the 16 views, we deliberately used wrong camera

calibration parameters, which belong to that of the neighbor

views in the sequence in Fig. 16. This represents a possible

perturbation in a real-life scenario, that is, the cameras are

accidentally moved a little bit after the calibration and the

views that are captured afterward are a little bit off. The

3D reconstruction of the Bust object on the top right shows the

erroneous surfaces obtained in this case. With our coordi-

nated refinement of the extrinsic parameters using (28) and

(33), the improvements in the reprojection errors and the

3D reconstruction are observed in Fig. 16.
A real color calibration experiment is carried out using

the HP Labs stereo rig system. We captured images, shown

in Fig. 17, of the color calibration object from five cameras.

Notice that the first picture is somewhat darker than the

others, second and third pictures appear lighter, and there
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Fig. 15. Row 1: four camera views during the evolution of the extrinsic plus intrinsic parameters of a toy skater with projections of the initial surface.

Row 2: final views after convergence of the camera parameters. Visual hull generated using the miscalibrated initial parameters (row 1, right); visual

hull generated using the converged parameters (row 2, right).

TABLE 1
Type I and Type II Errors in Counts of Voxels for

Several Camera Views for Bust Data (Fig. 16) after
Perturbation of Camera Parameters (Initial) and

after Evolution of Parameters (Final)
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Fig. 16. Camera views 78, 167, and 240 in the top row are used deliberately with camera calibration parameters of camera views 77, 166, and 239 of

the Van Gogh Bust data set. Top: three camera views shown with projections from the initial surface in row 2; here, note the resulting initial mismatch

in projected silhouettes. Row 3: final views after convergence of the camera parameters. Visual hull surfaces obtained by using wrong calibration

parameters for views 78, 167, and 240 on the right (top row) and surfaces with corrected calibration parameters in the bottom row.

Fig. 17. Some camera views shown during the evolution of the color calibration parameters of the HP color calibration object surface. Top: five

camera views. Row 2: final views after convergence of the extrinsic camera parameters. Row 3: same shown with projections of the converged cube.

Bottom: color calibration cube with reconstructed radiance on the surface from two different vantage points.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 6, 2008 at 19:53 from IEEE Xplore.  Restrictions apply.



is a color mismatch. A cube surface is rigidly registered

with the scene; also, the radiance function on the cube is

estimated as shown in the bottom row of Fig. 17. The second

row shows views after the evolution of color calibration

coefficients are completed. The third row shows the

projections of the model surface onto the views. It can be

visually assessed that color responses of the cameras have

achieved a balancing effect and helped to obtain a better

texture mapping as well.

Next, we demonstrate a calibration experiment using

pictures from a handheld camera with no camera calibration

information available. In this scenario, the variational

calibration techniques we presented require some rough

initial values that we obtained through a self-calibration

software currently under development. We have a set of

13 pictures taken around the Statue of Liberty, covering about

220�/360� of a circle around the statue, with a few of the views

shown in Fig. 18.2 We obtained initial camera parameters:

extrinsics and intrinsics, including the skew parameter. A

rough calibration results in the projections shown in Fig. 18.

After evolution of the camera parameters—extrinsics, in-

trinsics, including the skew parameter, and color parame-

ters—the comparison is done with the visual hulls of before

and after evolution camera parameters in Fig. 19. One can

observe the correction in the Statue of Liberty surface with a

better set of camera parameters obtained with the derived

update equations throughout the paper. We also show blow-

up regions in Fig. 20 from some of the camera views before

and after the evolution of the color camera parameters and the

colors are modified toward achieving some relative agree-

ment among the cameras, which can, however, only be

subjectively judged.

7.1 Discussions

One may argue that the requirement of some rough initial

extrinsic and intrinsic camera parameters limits the usabil-

ity of this technique. However, the refinement or correction

of camera parameters from a perturbed state of a previous

calibration is a real-world problem that constantly presents

obstacles to the usage of multiple camera systems. After a

very good initial calibration, the cameras over time may see

small changes in their parameters. For instance, extrinsic

parameters will often be changed particularly due to

unwanted accidental motion. Similarly, the intrinsics and

color parameters of the cameras may go through small

variations due to ambient conditions and wear-off. There-

fore, the presented camera calibration framework proves to

be a useful tool for multicamera systems.
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Fig. 18. Some camera views shown during the evolution of the camera calibration parameters of the Statue of Liberty surface. Top: five camera

views shown with projections from the initial surface in row 2. Row 3: final views after convergence of the camera parameters.

2. We thank our colleague Irwin Sobel at HP Labs for providing these
pictures.
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7.2 Conclusions

In this paper, we employed the 3D stereo techniques based on

variational ideas to various camera calibration refinement

problems. We have presented new multiview stereo techni-

ques to

. evolve pose parameters of a 3D model object to take
advantage of the known shape of calibration object,
and to reduce computational complexity,

. evolve distortion parameters of cameras given a
3D model shape,

. evolve color calibration parameters of cameras given
a 3D model shape,

. evolve intrinsic parameters of cameras, and

. evolve extrinsic parameters of cameras.

Pros and cons of this technique are discussed as follows:

. A nice feature of the methodology presented in this
paper is that it can integrate several small and
different problems such as distortion calibration and
color calibration into an overall unified system based
on the joint segmentation framework and simulta-
neously evolve pose, color, distortion, extrinsic, and
other parameters as well.

. We make piecewise smooth object assumption and a
constant background assumption, which may be a
limitation if the background is to be modeled as well.
However, a background model may be added to this
framework if needed.

. The presented methods eliminate the need for search

of image edges, point correspondences from images,
which can be very sensitive to pixel-level noise,

whereas our approach, being based on image

regions for comparisons, is not as sensitive to noise.

. Another advantage of our framework is that it easily
accommodates additional data. In the more classical

approaches to stereo, bringing in more data or adding

more images to the algorithm might not help all the

time; that is, if something goes wrong in the

independent segmentation phase of even one image,

it destroys the whole process of reconstructions and

geometry. On the other hand, adding more data to this

joint segmentation framework will only improve
robustness, providing more tolerance toward errors.

. For the distortion calibration method, more im-

provements may be obtained with utilizing more
poses, hence, many more camera images of the

calibration object and more than one distortion

coefficient in the model selected. One can also utilize

more general/complicated distortion models than

the simple polynomial D function.

. Currently, we have an implicit representation of the
calibration objects, that is, the cube or the rectan-
gular bar. Computing surface normals, visibility
functions for the surface occluding boundary from
this implicit representation is not perfectly exact,
and the quantities are slightly smeared. A future
direction toward more efficient algorithms, is to use
an explicit representation of the calibration object to
more accurately describe the occluding boundaries.
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Fig. 19. Visual hull surfaces with initial rough calibration parameters (top), and with refined calibration parameters (bottom), also with radiance

texture mapped onto the surfaces.

Fig. 20. Some camera views before and after the color calibration for the

Statue of Liberty.
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With this approach, 3D grids are not needed for the
data structures, resulting in increased accuracy and
speed and decreased memory requirements.

. Camera calibration is particularly suited to our
framework, since it does not have to be done in real
time, and the environmental conditions may be
allowed to vary to a degree (for example, our choice
of a constant colored foreground object before a dark
background).
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