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A Geometric Approach to Joint 2D Region-Based Segmentation and 3D Pose
Estimation Using a 3D Shape Prior∗
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Abstract. In this work, we present an approach to jointly segment a rigid object in a two-dimensional (2D) im-
age and estimate its three-dimensional (3D) pose, using the knowledge of a 3D model. We naturally
couple the two processes together into a shape optimization problem and minimize a unique energy
functional through a variational approach. Our methodology differs from the standard monocular
3D pose estimation algorithms since it does not rely on local image features. Instead, we use global
image statistics to drive the pose estimation process. This confers a satisfying level of robustness
to noise and initialization for our algorithm and bypasses the need to establish correspondences
between image and object features. Moreover, our methodology possesses the typical qualities of
region-based active contour techniques with shape priors, such as robustness to occlusions or miss-
ing information, without the need to evolve an infinite dimensional curve. Another novelty of the
proposed contribution is to use a unique 3D model surface of the object, instead of learning a large
collection of 2D shapes to accommodate the diverse aspects that a 3D object can take when imaged
by a camera. Experimental results on both synthetic and real images are provided, which highlight
the robust performance of the technique in challenging tracking and segmentation applications.
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1. Motivation and related work. Two-dimensional (2D) image segmentation and 2D-3D
pose estimation are key tasks for numerous computer vision applications and have received a
great deal of attention in the past few years. These two fundamental techniques are usually
studied separately in the literature. In this work, we combine both approaches in a single
variational framework. To appreciate the contribution of this work, we recall some of the
results and specifics of both fields.

2D-3D pose estimation aims at determining the pose of a 3D object relative to a calibrated
camera from a single or a collection of 2D images. By knowing the mapping between the world
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coordinates and image coordinates from the camera calibration matrix, and after establishing
correspondences between 2D features in the image and their 3D counterparts on the model,
it is then possible to solve for the pose transformation parameters (from a set of equations
that express these correspondences). The literature concerned with 3D pose estimation is very
large, and a complete survey is beyond the scope of this paper. However, most methods can
be distinguished by the type of local image features used to establish correspondences, such as
points [1], lines or segments [2, 3], multipart curve segments [4], or complete contours [5, 6].
Segmentation consists of separating an object from the background in an image. The geometric
active contour (GAC) framework, in which a curve is evolved continuously to capture the
boundaries of an object, has proved to be quite successful at performing this task. Originally,
the method focused on extracting local image features such as edges to perform segmentation;
see [7, 8] and the references therein. However, edge-based techniques can suffer from the typical
drawbacks that arise from using local image features: high sensitivity to noise or missing
information, and a multitude of local minima that result in poor segmentations. Region-based
approaches, which use global image statistics inside and outside the contour, were shown to
drastically improve the robustness of segmentation results [9, 10, 11, 12]. These techniques
are able to deal with various statistics of the object and background such as distinct mean
intensities [10], Gaussian distributions [11, 12], or intensity histograms [13, 14, 15], as well
as a wide variety of photometric descriptors such as grayscale values, color, or texture [16].
Further improvement of the GAC approach consists of learning the shape of objects and
constraining the contour evolution to adopt familiar shapes to make up for poor segmentation
results obtained in the presence of noise, clutter, or occlusion or when the statistics of the
object and background are difficult to distinguish (see, e.g., [17, 18, 19, 20]).

1.1. Motivation/contribution. Our goal is to combine the strengths of both techniques
(and to try to avoid some of their typical weaknesses) in order to both robustly segment 2D
images and estimate the pose of an arbitrary 3D object whose shape is known.

In particular, we use a region-based approach to continuously drive the pose estimation
process. This global approach avoids using local image features and, hence, addresses two
shortcomings that typically arise from doing so in many 2D-3D pose estimation algorithms.
First, finding the correspondence between local features in the image and on the model is a
nontrivial task, due, for instance, to their viewpoint dependency—no local correspondences
need to be found in our global approach. Second, local image features may not even exist
or can be difficult to detect in a reliable and robust fashion in the presence of noise clutter
or occlusion. Furthermore, simplifying assumptions usually need to be made on the class of
shapes that a 2D-3D pose estimation technique can handle. Many approaches are limited to
relatively simple shapes that can be described using geometric primitives such as corners, lines,
circles, or cylinders. Recent work focused on free-form objects, which admit a manageable
parametric description as in [5]. However, even this type of algebraic approach can become
unmanageable for objects of arbitrary and complex shape. Our approach can deal with rigid
objects of arbitrary shape, represented by a 3D level set [21] or a 3D cloud of points (see
Figure 1).

Next, a major shortcoming of the GAC framework using shape priors is that 2D shapes
are usually learned to segment 2D images. Hence, a large collection of 2D shapes needs to
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Figure 1. Different views of the 3D models used in this paper (rendered surfaces or cloud of points).

be learned in order to represent the wide variation in aspect that most natural 3D objects
take when projected onto the 2D image plane. Our region-based approach benefits from the
knowledge of the object shape that is compactly described by a unique 3D model. Acquisition
of 3D models can be readily accomplished using range scans [22] or structure from motion
approaches [23]. In addition, and in contrast to the GAC framework, the proposed method
does not involve the evolution of an infinite dimensional contour to perform segmentation
but only solves for the finite dimensional pose parameters (as is common for 2D-3D pose
estimation approaches). This results in a much simplified framework that avoids dealing with
problems such as infinite dimensional curve representation, evolution, and regularization.

1.2. Relation to previous work. In this paper, we expand the method presented in [24].
Our technique exploits many ideas from recent variational approaches that address the prob-
lem of structure from motion and stereo reconstruction from multiple cameras [25, 26, 23].
Originally, the authors in [26, 23] presented a method for reconstructing the 3D shape of an
object from multiple 2D views obtained from calibrated cameras. The present contribution
aims at performing a somewhat opposite task: given the 3D model of an object, perform the
segmentation of 2D images and recover the 3D pose of the object relative to a single camera.
To the best of our knowledge, this is the first time that the framework of [26, 23] has been
adapted and employed in the specific context of segmenting 2D images from a single camera,
using the knowledge of a 3D model. The framework in [23] has also recently been extended
in [27] to address the problem of multiple camera calibration. In the present work, the camera
is assumed to be calibrated. However, this assumption could easily be dropped by also solving
for the optimal camera calibration parameters as presented in [27].

We note that, although the use of 3D shape knowledge to perform the 2D segmentation
of regions presents obvious advantages, the literature dealing with this type of approach is
strikingly thin. An early attempt to solve the problem of viewpoint dependency of the aspect
of 3D objects can be found in [28]. In these papers, a region-based active contour approach
is proposed that uses a unique shape prior. The prior shape is represented by a generalized
cone based on one reference view of an object. The unlevel sections of the cone correspond
to possible instances of the segmenting contour. Although the method performs well in the
presence of variations in aspect of the object due to projective transformations, the method
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cannot cope with images involving a view of the object that is radically different from the
reference view. The closest piece of work to our proposed contribution is probably [29],
which has been extended in [30]. In [29], the authors evolve an (infinite dimensional) active
contour as well as 3D pose parameters to minimize a joint energy functional encoding both
image information and 3D shape knowledge. Our method differs from the aforementioned
approach in many crucial aspects. For example, we optimize a single energy functional, which
allows us to circumvent the need to determine ICP-like1 correspondences and to perform
costly backprojections between the segmenting contour and the shape model at each iteration.
Also, we perform optimization only in the finite dimensional space of the Euclidean pose
parameters. In addition to being computationally efficient, this allows our technique to be
less likely to be trapped in local minima, resulting in robust performances as demonstrated in
the experimental part. In [30], the method of [29] is successfully simplified by eliminating the
need to evolve an active contour and by performing energy minimization only in the space of
3D pose parameters. Thus, the method of [30] and our contribution present some similarities,
notably in the use of the classical region-based energy functional introduced in [10] and [11].
However, the approaches to energy minimization and the resulting algorithms are radically
different: In [30], an algebraic approach is used that involves establishing correspondences and
backprojections between the 3D and 2D worlds, as well as linearizing the resulting system of
equations. Consequently, important information about the geometry of the 3D model is
lost through the algebraic approach. In contrast, our approach relies on surface differential
geometry (see e.g., [31]) to link geometric properties of the model surface and its projection
in the image domain. This allows us to derive the partial differential equations necessary
to perform energy optimization. The resulting variational approach offers a complete and
novel understanding of the problem of 3D pose estimation from 2D images. In addition, the
knowledge of the 3D object is exploited to its full extent within our framework. In [32] the
authors also successfully performed simultaneous 2D segmentation and 3D pose estimation
using an entirely different approach. In their work, a cost function based on a Markov random
field (MRF) was optimized using a dynamic graph cut approach (see [33] and the references
therein). Also, and in contrast to our work, the 3D knowledge of the shape of an object was
encoded via an articulated stick model instead of a 3D surface.

Our technique uses a 3D shape prior in a region-based framework and can thereby be
expected to be robust to noise or occlusion. Hence, an obvious application of the proposed
approach is the robust tracking of 3D rigid objects in 2D image sequences. Thus, our approach
is also related to a wealth of methods concerned with the problem of model-based monocular
tracking, one crucial difference being that most such approaches use local features in images
(see [34] for a recent survey). In particular, in [35] a geometric approach to the 3D pose
estimation problem is proposed: The authors use the knowledge of the occluding curve (i.e.,
the curve delimiting the visible part of the object from the camera) to search for edges in
images and convincingly improve tracking performances. Similarly, the occluding curve plays
a cornerstone role in our methodology.

This paper is organized as follows: In section 2, we detail our methodology by describing
our choice of notation and energy functional, as well as by deriving the energy gradient to

1This refers to the Iterative Closest Point Algorithm.
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solve the problem at hand. Then, we present experimental results for segmentation and
tracking tasks that highlight the robustness of our technique to noise, clutter, occlusion, or
poor initializations. Finally, we present our conclusions and future work.

2. Proposed approach. We suppose that we have at our disposal the 3D surface model
of an object. Our goal is to find the 3D (Euclidean) transformation that needs to be applied
to the model so that it coincides with the object of interest in the referential attached to a
calibrated camera. To this end, we solve a typical shape optimization problem, in which we
seek to segment the object in the 2D image plane with the 2D shape given by the projection
of the 3D model for a given 3D transformation. The 3D transformation of the 3D model
that results in an optimal segmentation of the object in the 2D image plane is expected to
describe the actual position of the 3D object with respect to the camera. Therefore, the
shape space (over which segmentation is performed) is the set of all 2D shapes determined by
projection from the 3D model. This is a manifold, in which variational segmentation on the
3D transformation parameters can be performed. An overview of the method can be found
in Figure 2. We now describe the proposed approach in detail, starting with our choice of
notation.

2.1. Notation. Let X = [X,Y,Z]T denote the coordinates of a point in R3, measured
with respect to a referential attached to the imaging camera. We denote by I the image, by
Ω ⊂ R2 the image domain, and by dΩ its area element. We assume the camera is modeled
as an ideal perspective projection:2 π : R3 �→ Ω; X �→ x, where x = [x, y]T = [X/Z, Y/Z]T

denotes coordinates in Ω.

Let S be the smooth surface in R3 defining the shape of the object of interest. The
(outward) unit normal to S at each point X ∈ S will be denoted by N = [N1, N2, N3]

T . To
determine the pose of S with respect to the camera, we define the identical reference surface
S0, whose pose is known.3 Denoting by X0 the coordinates of points on S0, one can locate S
in the camera referential via the transformation g ∈ SE(3), such that S = g(S0), or, written
pointwise, X = g(X0) = RX0+T, with R ∈ SO(3) and T ∈ R3. The parameters of the rigid
motion g will be denoted by λ = [λ1, . . . , λ6]

T = [tx, ty, tz, ω1, ω2, ω3]
T (where rotations are

represented using exponential coordinates; see [38]).

Let R = π(S) ⊂ Ω be the region of the image on which the surface S projects (i.e., the
region of Ω corresponding to imaging S). Let Rc = Ω \R and ĉ = ∂R denote the complement
and the boundary of R, respectively (Figure 2). The curve ĉ ⊂ Ω is the projection of the curve
C ⊂ S that delineates the visible part of S from the camera: ĉ = π(C). The 2D curve ĉ and
3D curve C will be referred to, respectively, as the “silhouette” and the “occluding curve.”
The silhouette ĉ will be parameterized by its arc-length ŝ. A point belonging to the silhouette
will be denoted y = y(ŝ) ∈ ĉ. The (outward) normal to the curve ĉ at y will be denoted
n̂ = n̂(y). The occluding curve C will be parameterized by its arc-length s.

2More general models of cameras (see [36, 37]) can be straightforwardly handled. We make this assumption
here to simplify the presentation.

3One can assume that the center of gravity of S0 coincides with the camera center and that the rotation is
known.
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Figure 2. Schema summarizing our segmentation/pose estimation approach from a 3D model. Left: First,
the 3D model is transformed (X = g(X0)) and projected onto the 2D image plane (x = π(X)). The resulting
yellow curve is the “silhouette,” i.e., the projection of the visible boundary of the 3D object onto the image
plane. Right: Then, the gradient (for each parameter) is computed from the statistics inside (Region R) and
outside (Region Rc) the silhouette ĉ.

2.2. Energy functional. In [23], the authors employed an image formation approach to
define a cost functional measuring the discrepancy between the photometric properties of the
surface S (as well as the 3D background) and the pixel intensities of multiple images. The
resulting energy involved backprojections to the surface S to guarantee the coherence between
the measurements obtained from multiple cameras.

In the present work, we are interested in segmenting a unique image and we adopt a
shape optimization approach, directly inspired from region-based active contours techniques
[10, 11, 12, 13, 14]. Many segmentation approaches assume that the pixels corresponding
to the object of interest or the background are distinct with respect to a certain grouping
criterion. Within the GAC framework, region-based techniques perform segmentation by
evolving a closed curve to increase the discrepancy between the statistics of the pixels located
in the interior and exterior of the curve. Most region-based algorithms can be distinguished
along three typical choices that are combined to separate the object from the background: The
choice of the photometric variable (grayscale intensity, color, or texture vector), the choice
of the statistical model for the photometric variables (probability density function), and the
choice of the measure of similarity among distributions. These techniques minimize energies
of the following form:

(2.1) E =

∫
R
rin
(
I(x), ĉ

)
dΩ+

∫
Rc

rout
(
I(x), ĉ

)
dΩ,

where rin : Z,Ω �→ R and rout : Z,Ω �→ R are two monotonically decreasing functions
measuring the matching quality of the image pixels with a statistical model over the regions
R and Rc, respectively. The space Z corresponds to the photometric variable chosen to
perform segmentation. Hence, depending on the choices for rin, rout, and Z, a larger class of
images than the ones fitting the specific hypotheses made in [23] can be dealt with.

The energy E measures the discrepancy between the statistical properties of the pixels
located inside and outside the silhouette (curve ĉ) and does not involve any backprojections.
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Although many measures of statistical similarity (e.g., Bhattacharyya distance as in [13] or
mutual information as in [14]) could be chosen to define E, we use the log-likelihood function
in this paper for simplicity.4 Accordingly, one has

(2.2) rin = log(Pin) and rout = log(Pout),

where Pin and Pout are the probability density functions (PDFs) of the pixels inside and outside
the segmenting curve. We now detail possible choices of PDFs to model pixel statistics.

2.2.1. Gaussian assumption—identical variances. In [10], a method is proposed to seg-
ment images composed of regions of different mean intensities, using GACs. The resulting
flow can be shown to be equivalent to comparing the log-likelihood of the Gaussian densities

(2.3) Pin(I, ĉ) =
1√
2πΣ0

e
− (I−μin)2

2Σ0 and Pout(I, ĉ) =
1√
2πΣ0

e
− (I−μout)

2

2Σ0 ,

where the intensity averages of the pixels located inside and outside the curve ĉ are denoted
by μin and μout, respectively,

5 and Σ0 = 1
2 . The averages μin and μout are computed at each

step of the curve evolution as

(2.4) μin(ĉ) =

∫
R I(x) dΩ

Ain
and μout(ĉ) =

∫
Rc I(x) dΩ

Aout

with Ain(ĉ) =
∫
R dΩ and Aout(ĉ) =

∫
Rc dΩ the areas inside and outside the curve, respectively.

With the above notation and our particular choice of similarity measure and simplifying
constant terms, the energy E can be defined as

(2.5) rin = −(I(x) − μin)
2 and rout = −(I(x)− μout)

2.

2.2.2. Gaussian assumption—different variances. In [11, 39], a method is proposed to
segment images composed of regions with distinct Gaussian densities, using the estimates

(2.6) Pin(I, ĉ) =
1√

2πΣin
e
− (I−μin)2

2Σin and Pout(I, ĉ) =
1√

2πΣout
e
− (I−μout)

2

2Σout ,

where the variances of the pixels located inside and outside the curve ĉ are denoted by Σin and
Σout, respectively.

6 The variances Σin and Σout are supposed to be distinct.7 The intensity
averages μin and μout are computed as above, and the variances Σin and Σout are computed
at each step of the curve evolution as

(2.7) Σin(ĉ) =

∫
R

(
I(x)− μin

)2
dΩ

Ain
and Σout(ĉ) =

∫
Rc

(
I − μout

)2
dΩ

Aout
.

4Moreover, intrinsic behaviors due to a particular choice of similarity measure that can be observed in the
GAC framework, where an infinite dimensional curve is evolved, are likely to be less prominent in our particular
framework where the shape of the segmenting curve can only be possible silhouettes of the 3D object.

5For grayscale images, μO/B are scalars. For color images, μO/B ∈ R
3.

6For grayscale images, ΣO/B is a scalar. For color images, ΣO/B ∈ R
3×3. Texture can also be used; see [16].

7The case where Σin = Σout is treated as above.
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In this case, with our particular choice of similarity measure and simplifying constant
terms, the energy E can be defined as

(2.8) rin = − log(Σin)− (I(x)− μin)
2

Σin
and rout = − log(Σout)− (I(x) − μout)

2

Σout
.

2.2.3. Using generalized distributions. The Gaussian models alluded to above can be too
simplistic to accurately separate the object from the background. One solution is to use less
constrained models of the distributions of the object and background, e.g., Parzen estimators
and generalized histograms. This has been investigated in [13, 14] within the GAC framework,
as well as in [15] within a model-based segmentation approach that also aimed at estimating
the pose parameters of medical structures. In a similar manner, the PDFs Pin and Pout are
computed from the silhouette as

(2.9) Pin(z, ĉ) =

∫
R K(I(x) − z)dΩ

Ain
and Pout(z, ĉ) =

∫
Rc K(I(x)− z)dΩ

Aout

with K(χ) typically being a smooth version of the Dirac function, e.g., K(χ) = 1√
2πσ2

e−
χ2

2σ2

for a sufficiently small value of σ.

2.3. Gradient flow. Following the region-based segmentation paradigm, the energy E is
expected to be minimal when R and Rc correspond to the object and background in I, re-
spectively. Most region-based approaches evolve an infinite dimensional curve, which amounts
to exploring unconstrained shapes of the segmenting contour. Since we assume that the 3D
shape of the rigid object is known, we want to minimize E by exploring only the possible
regions R and Rc that result from projecting the surface S onto the image plane. For a
calibrated camera, these regions are functions of the transformation g only. Solving for the
transformation that minimizes E can be undertaken via gradient descent over the parameters
λ, as described below.

The partial differentials of E with respect to the pose parameters λi’s can be computed
using the chain rule:

dE

dλi
=

∫
ĉ

(
rin
(
I(x)

) − rout
(
I(x)

))〈 ∂ĉ

∂λi
, n̂

〉
dŝ

+

∫
R

〈
∂rin
∂ĉ

,
∂ĉ

∂λi

〉
dΩ+

∫
Rc

〈
∂rout
∂ĉ

,
∂ĉ

∂λi

〉
dΩ.

(2.10)

The gradient in (2.10) involves the computation of the shape derivative ∂ĉ
∂λi

, which de-
scribes the directions of deformation of the 2D curve (under projection) with respect to the
3D pose parameter. The gradient is composed of three terms. The first is the dot product of
a typical 2D region-based gradient (i.e., (rin − rout).n̂ ; see e.g., Chan and Vese’s model [10])
with the shape derivative: for each point on the 2D curve, the deformation direction is com-
pared to the normal,

〈
∂ĉ
∂λi

, n̂
〉
, and weights the statistical comparison term, rin − rout. The

average over each point of the curve determines the optimal direction of variation of the pose
parameter λi (i.e., the sign of the derivative dE

dλi
). The two last terms simply measure the

variation of the statistical measures rin and rout with the variation in pose.
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In the remainder of this section, we first detail each of the three terms in (2.10) for the
different statistical models presented above. Then we present further computations to express
the gradient as a function of the known terms. Finally, we conclude the section by presenting
remarks concerning the gradient and its implementation.

2.3.1. Gaussian assumption—identical variances (again). When the regions inside and
outside the silhouette are modeled by Gaussian PDFs as in subsection 2.2.1, the second term
in (2.10) may be calculated using the chain rule as∫

R

〈
∂rin
∂ĉ

,
∂ĉ

∂λi

〉
dΩ =

∫
R

〈
2
(
I(x)− μin

)∂μin

∂ĉ
,
∂ĉ

∂λi

〉
dΩ

= 2

〈
∂μin

∂ĉ
,
∂ĉ

∂λi

〉∫
R
(I(x) − μin)dΩ

= 2

〈
∂μin

∂ĉ
,
∂ĉ

∂λi

〉[
μin.Ain − μin.Ain

]
= 0.

(2.11)

Similarly, the third term in (2.10) can also be shown to collapse. Hence, the partial
derivative of (2.10) is simply

(2.12)
dE

dλi
=

∫
ĉ

(
(I(y) − μout)

2 − (I(y) − μin)
2
)〈 ∂ĉ

∂λi
, n̂

〉
dŝ.

2.3.2. Gaussian assumption—different variances (again). When the regions inside and
outside the silhouette are modeled by Gaussian PDFs as in subsection 2.2.2, the second term
in (2.10) may be computed using the chain rule as∫

R

〈
∂rin
∂ĉ

,
∂ĉ

∂λi

〉
dΩ =

∫
R

〈
2

(
I(x) − μin

Σin

)
∂μin

∂ĉ
,
∂ĉ

∂λi

〉
dΩ︸ ︷︷ ︸

=0 (see above)

−
∫
R

〈(
Σin − (I(x, y) − μin)

2

Σ2
in

)
∂Σin

∂ĉ
,
∂ĉ

∂λi

〉
dΩ

=− 1

Σ2
in

〈
∂Σin

∂ĉ
,
∂ĉ

∂λi

〉∫
R

(
Σin − (I(x, y) − μin)

2
)
dΩ

=− 1

Σ2
in

〈
∂Σin

∂ĉ
,
∂ĉ

∂λi

〉
(AinΣin −AinΣin) = 0.

(2.13)

Similarly, the third term in (2.10) can also be shown to collapse. Hence, the partial
derivative of (2.10) is simply

(2.14)
dE

dλi
=

∫
ĉ

(
log

(
Σout

Σin

)
+

(I(y) − μout)
2

Σout
− (I(y) − μin)

2

Σin

)〈
∂ĉ

∂λi
, n̂

〉
dŝ.

2.3.3. Using generalized distributions (again). For generalized histograms as computed
in (2.9) and using the chain rule, one can compute the second term of (2.10) as

(2.15)

∫
R

〈
∂rin
∂ĉ

,
∂ĉ

∂λi

〉
dΩ =

∫
R

〈
1

Pin(I(x))

∂Pin

∂ĉ
,
∂ĉ

∂λi

〉
dΩ.
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Using the calculus of variations, one may derive that at a particular point y ∈ ĉ

∂Pin

∂ĉ
(z, ĉ) =

K(I(y) − z)− Pin(z, ĉ)

Ain
n̂(y).

Plugging this into (2.15), one gets

(2.16)

∫
R

〈
∂rin
∂ĉ

,
∂ĉ

∂λi

〉
dΩ =

∫
R

(∫
ĉ

K(I(y) − I(x))− Pin(I(x))

Pin(I(x)).Ain

〈
n̂(y),

∂ĉ

∂λi
(y)

〉
dŝ

)
dΩ,

where we expressed the fact that the scalar product 〈., .〉 in the left-hand side is a line integral
on ĉ (since ∂rin

∂ĉ and ∂ĉ
∂λi

are vector fields on ĉ). Swapping integrals (all integrations being done
on compact sets), one can write

(2.17)

∫
R

〈
∂rin
∂ĉ

,
∂ĉ

∂λi

〉
dΩ =

∫
ĉ
Rin (I(y))

〈
n̂,

∂ĉ

∂λi

〉
dŝ

with

(2.18) Rin

(
z
)
=

∫
R

K(z − I(x))− Pin(I(x))

Ain.Pin(I(x))
dΩ =

1

Ain

∫
R

K(z − I(x))

Pin(I(x))
dΩ− 1.

The third term of (2.10) can be computed in a similar fashion, yielding

(2.19)

∫
Rc

〈
∂rout
∂ĉ

,
∂ĉ

∂λi

〉
dΩ =

∫
ĉ
Rout (I(y))

〈
n̂,

∂ĉ

∂λi

〉
dŝ

with

(2.20) Rout

(
z
)
= 1− 1

Aout

∫
Rc

K(z − I(x))

Pout(I(x))
dΩ.

Hence, the partial derivative of (2.10) is simply

(2.21)
dE

dλi
=

∫
ĉ
{rin − rout +Rin +Rout} (I(y))

〈
∂ĉ

∂λi
, n̂

〉
dŝ.

Note that when the Dirac function is used as the kernel K to compute Pin and Pout in (2.9),
one can show that the terms Rin and Rout collapse (this is done using the sifting property of
the Dirac function in (2.18) and (2.20)).

2.3.4. Making the gradient term “computable.” As can be seen from (2.12), (2.14),
and (2.21), for each statistical model the partial derivatives dE

dλi
are of the form

(2.22)
dE

dλi
=

∫
ĉ
R (I(y))

〈
∂ĉ

∂λi
, n̂

〉
dŝ

with R : Z �→ R, a function depending on the choice of statistical model.
This line integral and in particular the term

〈
∂ĉ
∂λi

, n̂
〉
are difficult to compute since the

parameter λi acts on 3D coordinates, while ĉ and n̂ live in the 2D image plane. To facilitate
computations, we now express (2.22) in the 3D world.
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Figure 3. Schema visualizing the occluding curve of a 3D object (dashed line) from the viewpoint of the
camera and our notation in the 3D world.

Using the arc-length s of C and the π
2 -rotation matrix J =

[
0 1−1 0

]
(ensuring that the

normal vector n̂ points outwards), one has
(2.23)〈

∂ĉ

∂λi
, n̂

〉
dŝ =

〈
∂ĉ

∂λi
, J

∂ĉ

∂ŝ

〉
dŝ =

〈
∂π(C)

∂λi
, J

∂π(C)

∂s

ds

dŝ

〉
dŝ =

〈
∂π(C)

∂λi
, J

∂π(C)

∂s

〉
ds.

Letting J denote the Jacobian of π(X) with respect to the spatial coordinates, we have
that

J =
1

Z2

[
Z 0 −X
0 Z −Y

]
.

From (2.23), one gets〈
∂ĉ

∂λi
, n̂

〉
dŝ =

〈
J ∂X

∂λi
, JJ ∂X

∂s

〉
ds =

〈
∂X

∂λi
,J TJJ ∂X

∂s

〉
ds

=
1

Z3

〈
∂X

∂λi
,

⎡⎣ 0 Z −Y
−Z 0 X
Y −X 0

⎤⎦ ∂X

∂s

〉
ds =

1

Z3

〈
∂X

∂λi
,
∂X

∂s
×X

〉
ds.

(2.24)

In (2.24), the point X belongs to the occluding curve C. A necessary condition for a point
X to belong to the occluding curve is that 〈X,N〉 = 0 (since the associated vector X, with
origin at the center of the camera, corresponds to the projection/viewing direction and is
tangent to the surface S at X; see Figure 3). The vector t = ∂X

∂s is the tangent to the curve
C at the point X. Since the vectors t and X belong to the tangent plane to S at X, one has
∂X
∂s ×X = ‖X‖N sin(θ), with θ = (t̂,X) the angle between t and X. For X ∈ C, we have that

(2.25)
∂

∂s
〈X,N〉 = 0 =

〈
∂X

∂s
,N

〉
︸ ︷︷ ︸

=0

+

〈
∂N

∂s
,X

〉
= 〈dN(t),X〉 = II(t,X).

Since the second fundamental form II(t,X) = 0, the vectors t and X are conjugate
(see [31]). Hence, using the Euler formula, one can show that K sin2 θ = κXκt, where K



GEOMETRIC SEGMENTATION AND 3D POSE ESTIMATION 121

is the Gaussian curvature, and κX and κt denote the normal curvatures in the directions X
and t at X ∈ S, respectively. Plugging this into (2.24), one gets

(2.26)

〈
∂ĉ

∂λi
, n̂

〉
dŝ =

‖X‖
Z3

√
κXκt
K

〈
∂X

∂λi
,N

〉
ds.

Thus, the flow becomes a simple line integral on C:

(2.27)
dE

dλi
=

∫
C
R (I (π(X)))

‖X‖
Z3

√
κXκt
K

〈
∂X

∂λi
,N

〉
ds.

We now compute the term
〈
∂X
∂λi

,N
〉
when λi is a translation or rotation parameter:

• For i = 1, 2, 3 (i.e., λi is a translation parameter) and T =

[
tx
ty
tz

]
=

[
λ1
λ2
λ3

]
, one has

〈
∂X

∂λi
,N

〉
=

〈
∂RX0 +T

∂λi
,N

〉
=

〈
∂T

∂λi
,N

〉
=

〈⎡⎢⎣ ∂λ1
∂λi
∂λ2
∂λi
∂λ3
∂λi

⎤⎥⎦ ,N
〉

=

〈⎡⎣ δ1,i
δ2,i
δ3,i

⎤⎦ ,N
〉

= Ni,

(2.28)

where the Kronecker symbol δi,j was used (δi,j = 1 if i = j and 0 otherwise).
• For i = 4, 5, 6 (i.e., λi is a rotation parameter), and using the expression of the rotation

matrix written in exponential coordinates,

R = exp

⎛⎝⎡⎣ 0 −λ6 λ5

λ6 0 −λ4

−λ5 λ4 0

⎤⎦⎞⎠ ,

one has

(2.29)

〈
∂X

∂λi
,N

〉
=

〈
∂RX0

∂λi
,N

〉
=

〈
R

⎡⎣ 0 −δ3,i δ2,j
δ3,i 0 −δ1,i
−δ2,i δ1,i 0

⎤⎦X0,N

〉
.

2.4. Remarks concerning the gradient term and its implementation. In (2.27), the
computation of the gradients involves the explicit determination of the occluding curve C.
Intuitively, this curve allows us to understand and take into account the dependency of the
aspect of the object with respect to the point of view. From the definition, one can compute

(2.30) C = {X ∈ V+ ∩ V− such that π(X) ∈ ĉ},

where V+ = {X ∈ S, so that (s.t.) 〈X,N〉 ≥ 0} and V− = {X ∈ S, s.t. 〈X,N〉 ≤ 0}.
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(a) (b) (c) (d)

Figure 4. Understanding the occluding curve. (a) Projection of the 3D object in the 2D image plane. (b)
Candidates for the occluding curve (points belonging to V+ ∩ V−) that need to be filtered with the condition
“π(X) ∈ ĉ.” (c)–(d) Visualization of the occluding curve (after filtering) corresponding to the camera image
on the left from different points of view in the 3D world. Note: The occluding curve is in general not a closed
curve for nonconvex objects.

In practice, the two sets V+ and V− can be easily computed from the available data X and
N and by using a small value of ε1 instead of 0 in the definitions of V+ and V− to ensure the
intersection comprises a sufficient number of points:8 V+

ε1 = {X ∈ S, s.t. 〈X,N〉 ≥ −ε1} and
V−
ε1 = {X ∈ S, s.t. 〈X,N〉 ≤ ε1}. In the general case of nonconvex shapes, the intersection

of the two sets comprises points that project inside the 2D projection R of the 3D model
(e.g., image(b) in Figure 4) and must be filtered by ensuring that the necessary and sufficient
condition to belong to C, π(X) ∈ ĉ, is fulfilled. This can be implemented by selecting only
points such as ‖π(X)− ĉ‖ ≤ ε2, with ε2 a chosen (small) parameter. One can obtain ĉ by using
morphological operations on R: ĉ  R \ E(R), with E denoting the erosion operation for a
chosen kernel [40]. Figure 4 presents different visualizations of an occluding curve computed in
this fashion. One can also note that the set V (respectively, V c = S \V ) of points X ∈ S that
are visible (respectively, not visible) from the camera center is such that V ⊂ V+ (respectively,
V c ⊃ V−).

The term
√

κXκt
K can be computed at each iteration of the algorithm using the principal

curvatures and principal directions for each point X ∈ S, and the Euler formula (see [31]; N.B.:
the principal directions and curvatures can be precomputed). To save computational time,
and noting that

√
κXκt

K ≥ 0, we used the approximation
√

κXκt

K  1 in our implementation
of (2.27), which still decreased the energy E. Note that this approximation is poorer when
θ  0. However, the condition θ = 0 implies that the viewing direction X and the tangent
to the occluding curve are identical. This occurs only for a finite number of points on the
occluding curve for regular surfaces and, thus, can be expected to have little impact on the
sign of the derivative ∂E

∂λi
(which is a sum over an infinite number of points of the curve C). By

contradiction, let us suppose that two neighboring points X1 and X2 of the occluding curve

(as such X1 and X2 must be visible points) verify the condition θ = 0 (e.g., θ1 = (t̂,X1)). We

thus have t =
−−−→
X1X2 = X1 = X2, which contradicts the fact that both X1 and X2 are visible

(either X1 occludes X2 or X2 occludes X1).

3. Experiments. We now report experimental results obtained for both synthetic and real
datasets. Different 3D models of rigid objects (see Figure 1) were used to perform segmentation

8We refer to the condition 〈X,N〉 = 0, which is rarely exactly met in practice due to the sampling of the
3D surface.
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Figure 5. Robustness to initialization—segmentation of a synthetic color image. Left: initialization.
Middle: intermediate steps of the evolution. Right: final result.

(a1) (b1) (a2) (b2) (a3) (b3)

Figure 6. Robustness to initialization—segmentation of natural color images. (an)’s: challenging initializa-
tions (e.g., large error in translation or angular positions (green curve)). (bn)’s: final results with the proposed
approach (green curve).

and tracking tasks that highlight the robustness of our technique to initialization, noise, and
missing or imperfect information. The shapes of the objects, notably the horse, the elephant,
and the Van Gogh bust, cannot readily be described in terms of geometric primitives (lines,
ellipses, etc.) or even algebraically, and thus they do not satisfy the working hypotheses of
standard pose estimation techniques [2, 3, 5, 6].

3.1. Robustness to initialization. Figure 5 shows segmentation results (and 3D coor-
dinate recoveries) obtained using our approach for a synthetic color image. Results were
obtained running (2.14) until convergence. Figure 6 shows results for diverse natural color
images, obtained using (2.21). Despite initializations that are quite far from the truth (e.g.,
large errors in translation or angular position), accurate segmentations are obtained. Figure 7
shows tracking results obtained for a real sequence, using the flow of (2.12). The sequence is
composed of 32 images of a rigid toy horse. The images were taken from discrete positions
of a calibrated camera that underwent a complete rotation around the object. The camera
“jumps” between successive images, creating large changes in the pose of the object that needs
to be recovered (e.g., changes in the angular position of the camera can exceed 15◦ between
frames). Tracking this sequence would be challenging for many 3D pose estimation techniques
available in the literature: A number of techniques using local features such as points or edges
(e.g., [1, 3]) are likely to be thrown off by the textured/noisy background (false features) and
get trapped in local minima. The sequence was tracked with our technique, using a very
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Frame #1 Frame #4 Frame #6 Frame #9

Frame #10 Frame #19 Frame #26 Frame #29

Figure 7. Robustness to initialization—tracking a natural sequence. Yellow contours: final results after
convergence. Red contours: initializations from the result of the preceding image (see text for our tracking
scheme). The aspect of the object changes drastically throughout the sequence. The position of the object
undergoes large changes between successive images. This sequence would pose a challenge to most 3D pose
estimation algorithms that are based on local information due to the “noisy” background (false features).

simple scheme: For each image, initialization was performed using the pose parameters corre-
sponding to the minimum of the energy obtained for the preceding image, and our approach
was run until convergence. Despite the difficulties described above, very satisfying tracking
performances were observed. This highlights the robustness of the technique to initialization
since the large camera jumps are accommodated and the method is not trapped in local min-
ima. We note that to save computational time, a down-sampled and smoothed version of
the 3D model obtained in [23] was used, explaining that some finer details (e.g., with high
curvature such as the ears of the horse) are not captured by the segmentation. This highlights
another robustness aspect of the methodology: The 3D model does not need to be perfect to
lead to satisfying results. Also, it can be noticed that region-based active contour techniques,
such as [10], would lead to reasonably accurate segmentations on this particular sequence.
However, these approaches would not also determine the pose of the object, which is valuable
information for tracking applications.

3.2. Robustness to noise. To test the robustness of our technique to noise, a sequence
of 200 images was constructed by continuously transforming the 3D model of the “2D3D”
logo and projecting it onto the image plane using the parameters of a simulated calibrated
camera (e.g., focal length f = 200). The translation parameters, rotation axis, and angle were
continuously varied (i.e., the total angle variation over the sequence exceeded 160◦) to ensure
a large variation of the aspect and position of the object throughout the sequence. From the
basic sequence obtained, diverse levels of Gaussian noise were added, with standard deviation
ranging from σn = 10% to σn = 100% (see Figure 8).
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Frame �1 Frame �100 �200

Frame �25 Frame �100 Frame �175

Frame �50 Frame �100 Frame �150

Figure 8. Robustness to noise. Visual tracking results for the sequences involving the “ 2D3D” logo (green
curves). First row: tracked sequence with Gaussian noise of standard deviation σn = 10%. Second row: tracked
sequence for σn = 30%. Third row: tracked sequence for σn = 100%.

Table 1
Robustness to noise. Quantitative tracking results for the “ 2D3D” sequences with diverse levels of noise.

The table displays %-absolute error statistics over the 200 images of the sequences.

Noise level Mean error (in %) Std. dev. error (in %) Max error (in %)

σn = 10% T: 0.85; R: 0.96 T: 0.23; R: 0.45 T: 1.43; R: 2.60

σn = 30% T: 0.97; R: 1.09 T: 0.21; R: 0.47 T: 1.50; R: 2.94

σn = 60% T: 0.95; R: 1.30 T: 0.30; R: 0.52 T: 2.39; R: 2.60

σn = 100% T: 1.02; R: 2.12 T: 0.39; R: 0.87 T: 2.18; R: 4.36

Typical visual results obtained using our approach (flow of (2.12) combined with the
tracking scheme alluded to above) are reproduced in Figure 8. For all noise levels, which can
be rather large (e.g., in the case σn = 100% object and background are barely distinguishable),
tracking was maintained throughout the whole sequence. Table 1 reproduces the results of the
pose estimation procedure. For each image, percent absolute errors with respect to the ground-
truth were computed for both the translation and rotation as Error = ‖vmeasured−vtruth‖

‖vtruth‖ , with

v a translation or quaternion (see [38]) vector. From the pose estimation point of view, the
method appears to perform quite well: Average error and standard deviation computed over
the 200 frames of each sequence rarely exceed 2% and 1%, respectively, for both translation
and rotation. This highlights the accuracy and reliability of the method and suggests that it
is quite resilient to large amounts of noise (very little deterioration of the results is observed
with increasing noise levels).
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Frame �50 Frame �100 Frame �150

Frame �75 Frame �100 Frame �175

Figure 9. Robustness to missing information. Tracking results (green curves) for the “ 2D3D” sequences
with occlusions. First row: sequence with Rectangular occlusion. Second row: sequence with Word “SHAPE”
as occlusion. Gaussian noise with σn = 30% was added.

3.3. Robustness to missing/imperfect image information. To test the robustness of our
technique to missing information, we created two sequences by adding two different occlusions
in the basic sequence featuring the “2D3D” model (see Figure 9). The first occlusion is a
gray rectangle that can mask more than 2/3 of the “2D3D” logo. The second occlusion
is the word “SHAPE” written in black letters that can mask the object at several places.
Gaussian noise of standard deviation 30% was also added to both resulting sequences. Figure 9
presents the results of tracking the sequences of 200 frames with our approach. One notes that
despite the occlusions (and noise), accurate segmentations are obtained: In particular, missing
letters or parts are accurately localized and reconstructed. Track was maintained throughout
both sequences. For the first sequence mean %-absolute error (over the 200 frames) in the
transformation parameters was 1.08% for translation (T) and 1.57% for rotation (R) with
standard deviation 0.45% for T and 0.75% for R. For the second sequence mean %-absolute
error was 0.87% for T and 1.19% for R (standard deviation 0.34% for T and 0.53% for R).

In Figure 10, we used images extracted from the horse sequence and occluded different
parts of the horse body (e.g., the legs, which have valuable information about its angular
position). Diverse pose parameters quite far from the truth were used as initializations (e.g.,
angular position could be off by more than 30◦). Despite the occlusions with various pixel
intensities or texture (and poor initializations), very convincing segmentations were obtained.
Also, the positions of the object in the camera referential were accurately recovered. As
can be noticed by comparing with Figure 7, the results in the presence of occlusion are very
comparable to those without occlusion.

In Figures 11 and 12, we present segmentation results where the background and object
are difficult or impossible to distinguish based on pixel statistics only (due to specular re-
flections on the object, similar colors in object and background, or occlusions). The results
obtained with the (infinite dimensional) active contour flow of [11], which is the region-based
segmentation technique underlying our approach, are not satisfying since the contour leaks
into the background. Robust results are obtained using our approach.
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Frame #1 occluded (1) Frame #1 occluded (2) Frame #2 occluded

Frame #4 occluded Frame #26 occluded Frame #29 occluded

Figure 10. Robustness to missing information. Segmentation results with occlusions. Cyan contours: some
of the initializations tested (note the large errors in angular position). Yellow contours: final results (almost
identical to results in Figure 7 with no occlusion).

Figure 11. Robustness to imperfect or missing information. Comparative segmentation results with oc-
clusions. Left: initializations (green curves). Middle: final results obtained with (infinite dimensional) active
contour flow as in [11], which is the region-based segmentation technique underlying our approach (yellow
curves). Right: final results with our approach (green curves). In these images, statistical distinction between
object and background is difficult due to similar colors in object and background and occlusion of parts of the
object.
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Figure 12. Robustness to imperfect information. Comparative segmentation results. Left: initializations
(green curves). Middle: final results obtained with (infinite dimensional) active contour flow as in [11], which
is the region-based segmentation technique underlying our approach (yellow curves). Right: final results with
our approach (green curves). In these images, statistical distinction between object and background is difficult
due to specularities on the object and similar colors in object and background.

The experiments of Figures 9, 10, 11, and 12 would pose a major challenge to most region-
based active contour techniques, even using shape priors [17, 19, 20]: Statistics alone are not
sufficient to segment the images, and the aspect of the object changes drastically from one
image to the other. Hence, a large catalogue of 2D shapes would need to be learned to achieve
similar performances using the method in [17, 19, 20], for instance.

3.4. Tracking sequences. In this section, we present tracking results for three challenging
sequences of images. The first two sequences are composed of 250 frames. In addition to a
cluttered background, important changes in the size and aspect of the object occur due to
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Seq. #1 ; Frame #1 Seq. #1 ; Frame #100 Seq. #1 ; Frame #250

Seq. #2 ; Frame #1 Seq. #2 ; Frame #100 Seq. #2 ; Frame #250

Seq. #3 ; Frame #1 Seq. #3 ; Frame #40 Seq. #3 ; Frame #50

Seq. #3 ; Frame #100 Seq. #3 ; Frame #300 Seq. #3 ; Frame #450

Figure 13. Tracking results for 3 sequences (green curves). Note in particular the cluttered background,
partial occlusions, and fast changes in scale.

camera motion. The third sequence is composed of 450 frames. In this sequence, the object
is manually moved, which creates a partial occlusion as well as changes in the background
and angular position of the object. Using the flow of (2.21) and our tracking scheme, the
three sequences were convincingly tracked in their integrality. Figure 13 presents some of the
typical results obtained.

4. Conclusions and future work. In this work, we presented a region-based approach
to the 3D pose estimation problem. This approach differs from other 3D pose estimation
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algorithms since it does not rely on local image features. Our method allows one to employ
global image statistics to drive the pose estimation process. This confers a satisfying level
of robustness to noise and initialization to our framework and bypasses the need to establish
correspondences between image and object features, contrary to most 3D pose estimation
approaches.

Furthermore, the approach possesses the typical qualities of a region-based active contour
technique with shape prior, such as robustness to occlusion or missing information, without
the need to evolve an infinite dimensional contour. Also, the prior knowledge of the shape of
the object is compactly represented by a unique 3D model, instead of a dense catalogue of 2D
shapes.

The main advantage of the proposed technique is that it enables one to locate the object
not only in 2D images (a task typically handled by GAC approaches) but also in the world
(a task typically handled by 2D-3D pose estimation algorithms). This makes the method
particularly suitable for tracking applications involving a unique calibrated camera.

A possible direction for future research is to extend the proposed approach to include
the knowledge of multiple 3D shapes. In particular, the method in [18] (where evolution of
parameters in the shape space is performed in addition to pose parameters) could be adapted
to the problem at hand. It is expected that the resulting framework will allow one to learn the
possible deformations of the object and lead to robust performances for nonrigid registration
and tracking tasks.
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