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Abstract. Recently, the Sobolev metric was introduced to define gradient flows
of various geometric active contour energies. It was shown that the Sobolev met-
ric out-performs the traditional metric for the same energy in many cases such as
for tracking where the coarse scale changes of the contour are important. Some
interesting properties of Sobolev gradient flows are that they stabilize certain un-
stable traditional flows, and the order of the evolution PDEs are reduced when
compared with traditional gradient flows of the same energies. In this paper, we
explore new possibilities for active contours made possible by Sobolev active
contours. The Sobolev method allows one to implement new energy-based active
contour models that were not otherwise considered because the traditional min-
imizing method cannot be used. In particular, we exploit the stabilizing and the
order reducing properties of Sobolev gradients to implement the gradient descent
of these new energies. We give examples of this class of energies, which include
some simple geometric priors and new edge-based energies. We will show that
these energies can be quite useful for segmentation and tracking. We will show
that the gradient flows using the traditional metric are either ill-posed or numeri-
cally difficult to implement, and then show that the flows can be implemented in
a stable and numerically feasible manner using the Sobolev gradient.

1 Introduction

Active contours [1] is a popular technique for the segmentation problem. Over the years
there has been a progression of active contours derived from edge-based energies (e.g.,
[2,3]), to region-based energies (e.g., [4,5]), to more recently, prior-based energies (e.g.,
[6,7,8]) and energies incorporating complex geometrical information (e.g., [9,10,11]).
The progression from simple to more complicated energies is not only due to a desire
to segment more complicated images, but it can also be attributed to the traditional gra-
dient descent technique becoming trapped by (undesirable) local minima of the energy
being optimized. Therefore there have been efforts to design optimization schemes that
can obtain the global minimum curve of a generic energy. For example, the minimal
path technique [12] was designed to find the global minimal solution of the edge-based
energy considered in [2,3]. Another technique, called graph cuts [13,14], was designed
for minimizing discrete approximations to some active contour energies.
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The limitation of these global methods is that they may be applied to only certain
types of energies, and therefore gradient descent methods must be used in many cases.
Recently, [15,16] have noticed that the gradient of an energy that is used in descent
algorithms depends on a metric chosen on the space of curves. This fact has been ig-
nored in previous active contour literature; indeed previous active contours were always
derived from the geometric L

2-type (H0) metric. Accordingly, [17,18] have considered
new metrics in the space of curves. It was shown that the metric choice affects the path
taken to minimize an energy, and that certain local minima of an energy can be avoided
by designing an appropriate metric. In particular, Sobolev metrics were considered. It
was shown that gradient flows according to Sobolev metrics give smooth global flows,
which avoid many local minima of energies that trap the usual L

2 gradient flow. In [19],
it was shown that Sobolev active contours move successively from coarse to finer scale
motions, and therefore the method is suitable for tracking.

The main purpose of [17,19] was to show advantages of using Sobolev active con-
tours over the traditional active contour based on the same energy. In contrast, in this
paper we introduce new active contour energies that are quite useful for various seg-
mentation tasks, but cannot be minimized with the traditional L

2 active contour (nor
other global optimization techniques), and the Sobolev active contour must be used. We
show a few examples of these energies, which include simple geometric priors for ac-
tive contours and new edge-based energies. These new energies fall into two categories:
one in which the resulting L

2 flows are not stable, and another in which the traditional
gradient flow results in high order PDEs that are numerically difficult to implement
using level set or particle based methods. We propose to use Sobolev active contours,
which avoid both of these problems.

This paper is meant to illustrate that energies that result in L
2 unstable or high order

flows can still be considered for optimization with the Sobolev method (and these en-
ergies need not be discarded or adjusted). As such we give a few simple examples of
the energies that fall into these categories. Experiments in this paper show the types of
behaviors that can be obtained from the simple energies considered, and one can obtain
good results on more complex images by combining these results with other energies.

The graph cut method is known to be able to minimize three types of geometric
energies: weighted length, flux of a vector field, and weighted area [14]. Some of the
energies we consider are non-simple operations (such as division) of the previous ener-
gies mentioned, and the technique in [14] does not apply; indeed we are not certain that
a graph for the energies we consider can be constructed. Other energies we consider
have curvature inside the integral; since edge weights in graph cuts depend on an edge
(between a pixel and its neighbor), it is unclear whether a curvature term may be in-
corporated in the framework since to compute curvature one needs three points. In any
case, since graph cut methods do not have sub pixel accuracy, curvature computations
would be extremely inaccurate.

In [18], the authors consider various different metrics resulting in ‘coherent’ gradi-
ent flows; indeed they construct flows that favor certain group motions such as affine
motions. In the case of the affine group (others are analogous), the flow is formed by
re-weighting the affine component of the traditional gradient higher and the compo-
nent orthogonal (according to the L

2 inner product) lower. For the class of energies
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that we wish to explore in this paper however, the metrics proposed by [18] based on
group motions also suffer from the same problems as the traditional L

2 metric; namely,
these flows are either not stable or are high order PDEs and are difficult to implement
numerically.

2 Some Useful Energies Precluded by L
2

In this section, we introduce three geometric “energies”, which can be used as building
blocks to produce a variety of other useful energies (to be described in subsequent sec-
tions). We then derive the L

2 gradient and show that the gradient descent flow is either
ill-posed or very difficult to implement numerically. We then derive the Sobolev gradi-
ent flows, and justify that they are well-posed and numerically feasible to implement.

Before we proceed, we introduce the notation used in this paper. A contour will
be denoted, c; its length is L. We define · := L−1

∫
c
· ds, where ds is the arc length

measure of c. Throughout this paper, we define the Sobolev metric as ‖h‖2
Sobolev

:= |h|2+
λ‖h′‖2

L2 , where h is a perturbation of c, h′ is the arc parameter derivative, and λ > 0 is
a scaling factor. We note the fact from [17] that the Sobolev gradient can be computed
from the L

2 gradient as ∇SobolevE = K ∗ ∇L2E, where ∗ is circular convolution and K is
a kernel found in [17] whose second derivative exists in a distributional sense.

The first “energy” that we introduce is the following generalization of average
weighted length:

E(c) =
1
L

∫

c

φ(c(s)) ds = φ, (1)

where φ : R
2 → R

k where k ≥ 1. The L
2 gradient of this energy is

∇L2E(c) = N [N T (Dφ)T − κ(φ − φ)T ] (2)

where T denotes transpose, and D denotes derivative. Since φ − φ is not strictly posi-
tive, the gradient descent flow has a component that is reverse heat flow on half of the
contour, and therefore the L

2 gradient descent is ill-posed. Note that the reverse heat
component attempts to increase the length of certain portions of the contour. Since the
ill-posedness of the L

2 flow only arises from the length increasing effect, we expect
the Sobolev gradient flow to be well-posed. This is because increasing the length of the
contour is a well-posed process using the Sobolev gradient; indeed, the Sobolev gradi-
ent ascent for length is simply a rescaling of the contour [17]. Computing the Sobolev
gradient of (1) we have

∇SobolevE(c) = −c − c

λL2 φ
T

+ K ∗ (Dφ)T + K ′ ∗ (csφ
T ) (3)

Notice that the component, Nφ
T
κ, of the L

2 gradient that caused the ill-posedness has
been converted to the first term of the Sobolev gradient (3), which is a stable rescaling
of the contour.

Next, we introduce a scaled version of the weighted area, given by the energy

E(c) =
1
L2

∫

R

φ(x) dA(x) =
Aφ

L2 , (4)
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where φ : R
2 → R, R is the region enclosed by c, and dA is the area measure in R

2.
Similar to the previous energy, the ill-posedness of the L

2 gradient descent flow of (4)
is due to the scale factor of L−2, which causes a length increasing component in the
gradients, and is ill-posed with respect to L

2. Indeed, calculating the gradient, we have

∇E(c) =
L2∇Aφ − 2AφL∇L

L4 =
Aφ

L2

[
∇Aφ

Aφ
− 2

∇L

L

]

.

Therefore, we see that

∇SobolevE(c) = −Aφ

L2

[

L
K ∗ (φN )

Aφ
+ 2

c − c

λL2

]

, (5)

which leads to a well-posed descent (and ascent).
Lastly, we introduce the following generalization of the elastic energy:

E(c) = L

∫

c

φ(c(s))κ2(s) ds, (6)

where φ : R
2 → R, and κ is the signed curvature of c. The factor of L multiplying the

integral makes the energy scale-invariant when φ is a constant. Note that without the
L factor, one can make the elastic energy arbitrarily small by scaling a contour large
enough. We will also consider the scale-varying elastic energy without the L. These en-
ergies have been used in the past for the “curve completion” problem, which is a curve
interpolation problem between two points [20,21]. In [21], for the numerical implemen-
tation, a discrete version of the energy is minimized with a “shooting” method. One can
show that the L

2 gradient of (6) is

∇L2E(c) = −Ecss + 2L2∂ss(φcss) + 3L2∂s(φκ2cs) + L2κ2∇φ (7)

We note the result of [22], which considers the L
2 gradient descent flow of an energy

similar to (6). The author of [22] considers the L
2 gradient descent flow of the energy

E(c) =
∫

c

(κ2(s) + α) ds

where α > 0. It is proven that an immersed/regular curve evolving under this fourth-
order flow stays immersed/regular, and a solution exists for all time. In the case when φ
is a constant, the flow (7) is similar to the flow that is considered in [22], except that α is
time varying in (7). For numerical implementation, the fourth order flow (7) is difficult
to implement with marker particle methods because of numerical artifacts arising from
fourth order differences, and it is even more problematic to implement with level set
methods because the flow is not known to have a maximum principle and because of
numerical artifacts. These are the reasons for considering the Sobolev gradient:

∇SobolevE = − E

λL2 (c−c)+
2
λ

((φκN )−φκN )−3L2K ′∗(φκ2T )+L2K∗(κ2∇φ). (8)

The Sobolev flow is second order, although it is a integral PDE. We can bypass the
question about a maximum principle for this flow since the local terms have a maximum
principle, and we perform extensions in the level set implementation for global terms.
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3 Geometric Priors for Active Contours

In this section, we introduce some simple geometric shape priors for use in active con-
tour segmentation. As these energies are formed from the energies presented in the
previous section, they cannot be minimized with the usual L

2 gradient descent.

3.1 Length and Smoothness Priors

In many active contour models, a curvature term, i.e., ακN (where α > 0 is a weight),
is added to a data-based curve evolution. The resulting flow will inherit regularizing
properties such as smoothing the curve from the addition of this term. If the active con-
tour model is based on minimizing an energy, then adding a curvature term is equivalent
to adding a length penalty to the original energy, that is, if Edata is the original energy
then the new energy being optimized (w.r.t the traditional L

2 metric) is

E(c) = Edata(c) + αL(c). (9)

This may be considered as a simple prior in which we assume that the length of the
curve is to be shrunk. In general segmentation situations, this assumption may not be
applicable. A more general energy incorporating length information, when such prior
length information is known, is

E(c) = Edata(c) + α(L(c) − L0)2, (10)

in which it is assumed that length of the target curve is near L0. See [23] (and references
within) for related flows where the length of the curve is preserved. Note that this prior
allows for increasing or decreasing the length of the curve based on the current length
of the curve and the value of L0. The L

2 gradient is

∇L2E(c) = ∇L2Edata(c) − 2α(L − L0)κN ,

which leads to an unstable flow if L − L0 < 0. The Sobolev gradient is

∇SobolevE(c) = ∇SobolevEdata(c) + 2α(L − L0)
c − c

λL
,

which is stable if the data term is stable.
In active contour works, the goal of adding the length penalty may have been mainly

for obtaining the regularizing properties of the resulting flow, even though the energy
itself does not favor more regular curves. It is evident that the Sobolev length descent
does not regularize the active contour since the flow is a rescaling of the curve. Thus, to
introduce smoothness into the Sobolev active contour (and even the L

2 active contour),
we introduce the smoothness prior given by the energy,

E(c) = Edata(c) + αL(c)
∫

c

κ2(s) ds. (11)

The energy itself favors smoother contours, and we are not relying on the properties of
a particular metric for regularity; it is inherent in the energy itself. The factor of L is for
scale-invariance (unlike the length descent, this regularizer does not favor shrinking the
length of the contour). Using the scale-varying and scale-invariant elastic energies as
smoothness measures for active contours is mentioned but not implemented in [24,25].
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3.2 Centroid and Isoperimetric Priors

We now consider incorporating prior information on the centroid, length, and area of a
curve into active contour segmentation. We consider the energy

E(c) = Edata(c) + α‖c − v‖2 + β(L − L0)2 + γ(A − A0)2 (12)

where α, β, γ ≥ 0 are weights, c is the centroid of the curve c, v ∈ R
2 is the centroid

known a-priori (see Section 5.2 for an example of how this may be obtained), L0 and
A0 are the prior values for the length and area. If detailed information is not known
about the length and area, then that part of the energy may be replaced by the energy

E(c) = Edata(c) + α‖c − v‖2 + β(ρ(c) − ρ0)2 (13)

where

ρ(c) =
A(c)
L2(c)

(14)

is the isoperimetric ratio, which is a geometric measure of the relative relation between
the length and area of a curve. Note that ρ is scale-invariant. It is a well known fact
that the isoperimetric ratio is maximized by circles, and the maximum ratio is 1/(4π).
Thus, the prior ratio must be constrained so that ρ0 ≤ 1/(4π). Note that a low (near
zero) isoperimetric ratio can be obtained by a snake-like shape, and a high ratio implies
a shape that looks close to a circle. The isoperimetric ratio is mentioned to be used as a
smoothness measure in [24], but this idea is not pursued.

Note that both the L
2 gradient descents for the centroid constraint and the isoperi-

metric penalties are ill-posed. The isoperimetric ratio is a special case of (4) (when
φ = 1), and the constraint gives a gradient of (ρ − ρ0)∇ρ, which gives an unstable L

2

gradient descent flow when ρ > ρ0. Note that the centroid is a special case of (1) (when
φ : R

2 → R
2 is φ(x) = x). The gradient of the centroid penalty is ∇(c)(c − v), which

gives an L
2 gradient of

[(c − v) · N − (c − c) · (c − v)κ]N

using (2). The gradient descent is unstable when (c − c) · (c − v) < 0. The Sobolev
gradient using (3) is

(c̄ − v) + K ′ ∗ [cs(c − c) · (c − v)].

One possible use for (12) and (13) is in tracking applications (see Section 5.2).

4 New Edge-Based Active Contour Models

The energy for the traditional edge-based technique [2,3] (called geodesic active con-
tours) is

E(c) =
∫

c

φ(c(s)) ds (15)

where φ : R
2 → R is chosen low near edges (a common example is φ = 1/(1+‖∇(G∗

I)‖) where G is a Gaussian smoothing filter). There are several undesirable features of
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this model (even if a perfect edge-map φ is chosen). The energy has trivial (undesirable)
minima and even minima that are not at the edges of the image (see for example [26]).
This is in part due to the bias that the model has in preferring shorter length contours,
which may not always be beneficial. Therefore, we propose new edge-based models.

4.1 Non-shrinking Edge-Based Model

We propose to minimize the following non-length shrinking edge-based energy:

E(c) =
∫

c

φ(c(s))
(
L−1 + αLκ2(s)

)
ds, (16)

where α ≥ 0, which we claim alleviates some of the undesirable properties of (15).
An energy, which is similar to (16) (except for the factor of L on the curvature term),
is considered by [27], but a discrete version of the energy is used for implementation.
The first term, 1

L

∫
c
φds (i.e., (16) when α = 0), is the same as the energy used for

the geodesic active contour model, but there is a scale factor of 1/L. This removes the
length shrinking effect of (15) in descent flows; in particular if there are no edges (φ is
constant), then a descent flow will not shrink the contour. The L

2 gradient of the first
term (when α = 0 in (16)) as noted in (2) is −L(φ − φ)κN + L(∇φ · N )N , which is
zero when the contour is aligned on true edges of the image (note that this may not be
the case with the geodesic active contour model). The flow is stable with respect to the
Sobolev metric, but not with respect to L

2.
Dividing the energy (15) by L, as in the first term of (16), loses regularizing effects

of the original flow, and it is possible that the contour can become non-smooth from
irrelevant noise. This observation is the reason for the second term of (16). The second
term, L

∫
c
φκ2 ds, is an image dependent version of the scale-invariant elastic energy.

This term favors smooth contours, but smoothness is relaxed in the presence of edges,
which are determined by φ. The factor of L makes the energy scale-invariant when φ
is constant; therefore, a descent flow will not increase or decrease the length of the
contour unless these behaviors make the curvature smaller or make the contour align
along the edges. The reason for not considering this term alone is for the following
reason. Suppose we are considering open curves with two endpoints fixed. Regardless
of the φ that is chosen, the minimum of this term is always zero, and it is minimized
by a straight line (the curvature is zero). For closed contours, we have observed in the
numerical implementation that the contour sticks to isolated points where there is an
edge of the image, and the converged contour is a straight line between these points
(even if there is no edge along the line). Thus, the contour looks polygon-like. Even
though the κ = +∞ at vertices of polygons, this is not true numerically where κ is
finite. Therefore, in a numerical implementation, the second term of (16) is not useful
by itself.

4.2 Increasing Weighted Length

Instead of a non-shrinking edge-based model, if we have prior information that the
length of the curve should increase, e.g., the initial curve is within the object of interest,
then one may want to maximize the following energy:
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E(c) =
∫

c

φ(c(s)) ds − α

∫

c

κ2(s) ds (17)

where α ≥ 0, and φ, contrary to the geodesic active contour model, is designed to be
large near edges (one example is choosing φ = ‖∇I‖). The first term of the energy is
weighted length, and therefore this term favors increasing the length of the curve while
stopping near edges. Considering only the first term ((17) when α = 0), since the length
of the curve is being increased, it is likely that when the curve has converged on a coarse
scale, fine details due to noise become detected and the curve becomes rough, thereby
further increasing length. Therefore, we add a regularizer, which is the second term
of (17), to the weighted length. Note that we propose to use the scale-varying elastic
energy, which in addition to regularity, gives an effect of increasing the length of curve,
which is beneficial based on the prior assumption.

The L
2 gradient ascent of the weighted length term results in one term that is −φκN ,

which makes the length of the curve increase and is unstable. If α > 0, then the L
2 flow

of (17) may become well-posed since this results in higher order regularity terms, but
the elastic energy has its own problems using the L

2 gradient flow. Therefore, we use
the Sobolev flow.

5 Experiments

5.1 Regularity of Sobolev Active Contour

In this experiment, we show a case when the scale-invariant elastic regularity term (11)
is more beneficial than the using the traditional length penalty (9). Note that the elastic
regularizer does not generally have a length shrinking effect, but keeps the contour
regular. This length shrinking effect may have a detrimental effect as shown in Fig. 1.
Note that the length penalty restricts the curve from moving into the groves between
the fingers. The elastic regularity term, on the other hand, has no such restriction, and
makes the curve more smooth and rounded.

5.2 Tracking with Centroid/ Isoperimetric Prior

In this experiment, we illustrate one possible application of the energy (13) in tracking
a man through an occlusion. For the data-based term in (13), we use the Mumford-Shah
energy [4]. The prior information on the centroid and isoperimetric ratio can be ob-
tained through a filtering process (indeed, we assume a constant acceleration model of
both quantities). We use the tracking framework of [28] for both simulations in Fig. 2.
The top row shows the result using the framework of [28] without the use of prior cen-
troid and isoperimetric information; the bottom row incorporates this prior information.
Notice that the prior information on the centroid keeps the contour moving through
the occlusion, while the isoperimetric ratio (and because we are using Sobolev active
contours) keeps the shape constrained.

5.3 Edge Detection with Non-shrinking Model

In this experiment, we demonstrate that the traditional edge-based geodesic active con-
tour model has an arbitrary length shrinking effect that causes the contour to pass over
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Fig. 1. L
2 regularization (top two rows). Left to right: α = 1000, α = 1000 followed by

curvature smoothing to remove the noise (least number of iterations to remove noise), α =
10000, 50000, 90000. The image-based term is Chan-Vese. Sobolev elastic regularization (bot-
tom two rows). Left to right: α = 0, 0.1, 5, 10, 25. The second and fourth row show the same
result as the row above them, but the image is removed for visibility.

Fig. 2. Tracking a man through an occlusion. Bottom row shows the results of using a prediction
(filtering) on the centroid and the isoperimetric ratio, and then penalizing deviations of the contour
away from predicted parameters by (13) (α = 50000, β = 100). The top row gives the result
with no such penalty. Both use Sobolev active contours.
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some meaningful edges. We show that the non-shrinking edge-based model (16) can
help correct this behavior. We use edge-map, 1/(1 + φ), where

φ(x) =
1

|Br|

∫

Br(x)
(I(y) − Ir(x))2 dA(y), where Ir(x) =

1
|Br|

∫

Br(x)
I(y) dA(y),

(18)
Br(x) = {y ∈ R

2 : ‖y − x‖ ≤ r}, and |Br| denotes the area of Br.
In Fig. 3, we segment a cyst image using various initializations. Notice that the con-

tour with the traditional edge-based energy (using the L
2 or the Sobolev descents) con-

sistently passes over the edge on the right side of the cyst. The non-shrinking model
consistently captures the correct segmentation.

Fig. 3. Segmentation of cyst image with three different initializations (first image in each row).
Converged results for the (15) and L

2 active contour (second image), (15) with the Sobolev active
contour (third image), and the energy (16) (last image).

5.4 Edge Detection by Increasing Weighted Length

In this experiment, we apply the weighted length increasing energy (17) to vessel seg-
mentation. We show the results of using the traditional edge-based technique with a
balloon; that is, we show results of using the L

2 gradient descent for the energy

E(c) =
∫

c

φ(c(s)) ds − α

∫

R

φdA. (19)

We use (18) as the edge-map for the weighted length increasing flow. The edge-map for
(19) is 1/(1 + φ) where φ is given in (18).

In the case of vessel segmentation, it beneficial to increase the length of the initial
contour more so than area. Since a vessel is characterized as a long, thin structure, a
balloon term will fail to capture the global geometry of the vessel. This is demonstrated
in Fig. 4: a small weight on the balloon term results in the flow capturing local features
close to the initial contour; larger weights on the balloon makes the contour balloon out
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Fig. 4. Left to right: initial contour, minimizing (19) α = 0.2, 0.25, 0.4 using L
2, and increasing

weighted length (17) α = 0.1 using Sobolev (all images show converged contour). The contour
expands to enclose the entire image (fifth image).

to capture the entire image. Note the weighted length maximizing flow does not pass
the walls of the vessel since that does not increase the length (although it does increase
area) of the contour, and is therefore able to capture the vessel.

6 Conclusion

We have demonstrated that the Sobolev gradient method allows one to consider active
contour energies that were not considered in the past because the gradient method using
the traditional metric cannot be used. In particular, we have given examples of energies
that result in L

2 gradients that are ill-posed or high order PDEs (and hence numerically
difficult to implement). These energies, as we have shown, result in Sobolev gradient
flows that are both well-posed and numerically simple to implement. The experiments
have shown potential uses for some energies introduced in segmentation and tracking
applications.
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