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Anti-Geometric Diffusion for Adaptive Thresholding
and Fast Segmentation
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Abstract—In this paper, we utilize an anisotropic diffusion
model, which we call the anti-geometric heat flow, for adaptive
thresholding of bimodal images and for segmentation of more
general greyscale images. In a departure from most anisotropic
diffusion techniques, we select the local diffusion direction that
smears edges in the image rather than seeking to preserve them.
In this manner, we are rapidly able to detect and discriminate
between entire image regions that lie nearby, but on opposite sides,
of a prominent edge. The detection of such regions occurs during
the diffusion process rather than afterward, thereby side-stepping
the most notorious problem associated with diffusion methods,
namely, “When should you stop diffusing?” We initially outline
a procedure for adaptive thresholding, but ultimately show how
this model may be used in a region splitting procedure which,
when combined with energy based region merging procedures,
provides a general framework for image segmentation. We discuss
a fast implementation of one such framework and demonstrate its
effectiveness in segmenting medical, military, and scene imagery.

I. INTRODUCTION

T HRESHOLDING and segmentation constitute two of the
most widely used techniques in image processing and low-

level vision, sometimes as end goals by themselves, and some-
times as early steps for higher level vision. The goal of thresh-
olding is to classify image pixels into one of two categories (e.g.,
foreground and background). Segmentation generalizes this by
allowing for an arbitrary number of categories. We will begin
this paper by considering the problem ofadaptive thresholding
but ultimately shift our attention to the more general problem of
segmentation.

The most straight-forward approach to thresholding is to pick
a fixed greyscale value (the threshold) and classify each image
pixel by checking whether it lies above or below this value. This
technique works reasonably well when the image intensities are
distributed bimodally or when the region of interest exhibits in-
tensities consistently above or below all other pixel intensities
in the image.

One of the earliest analytical methods for choosing a
threshold value, proposed by Chow and Kaneko [1], involved
fitting a pair of Gaussian curves to the image histogram (which
is assumed to be bimodal) and then choosing the threshold to
minimize the probability of misclassification. Extensions and
less computationally intensive alternatives were later presented
in [2]–[5]. While proposing their method, Chow and Kaneko
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noted that applying a single threshold to the entire image was
not effective for spatially varying backgrounds. For such cases
they proposed dividing the original image into subregions,
finding the best local thresholds for each subregion, and then
interpolating between these local threshold values to construct
a globalthresholding surfaceor adaptive threshold.

A variety of techniques have been proposed for adaptive
thresholding. Yanowitz and Bruckstein [6] obtain an adaptive
threshold by noting that pixel intensities near the transitions
between foreground and background (edge pixels), in a
smoothed image, serve as the best local thresholds. They locate
such pixels by checking for large gradients and interpolate
the greyscale values of these pixels to form the thresholding
surface. There have, of course, been many other interesting
approaches to adaptive thresholding which lie beyond the scope
of our discussion. See, for example, [7]–[12] for further exam-
ples, more extensive discussions, and additional references.

Our model is motivated by the observation of Yanowitz and
Bruckstein [6] that information about the best local threshold is
to be found near image edges (transitions between foreground
and background)on a smoothed version of the image. The
smoothing step is crucial since the greyscale values on either
side of a sharp edge form very poor thresholds when compared
to the “average” greyscale value encountered in the middle
of a smoothed edge. The question is: “What is the best way
to smooth?” In this paper, we suggest that the answer to this
question is to use a diffusion model that is specifically designed
to spread an edge apart in order to most quickly and effectively
draw out this local discriminating information.

In particular, we will utilize an anisotropic diffusion model
which, in contrast to earlier anisotropic diffusion models, dif-
fuses specificallyacrossimage edges as opposed toalongimage
edges. The latter behavior, exhibited by the well knowngeo-
metric heat flow, is desirable for image denoising, but the former
behavior is better suited to adaptive thresholding and segmenta-
tion since it has this desired effect of “spreading out” the edge
information as fast as possible. Since the model we use diffuses
orthogonally to the geometric heat flow, we refer to it as the
anti-geometric heat flowand exploit its behavior to detect and
classify pixels near image edges quickly and accurately. Re-
maining pixels (far away from edges) may be classified either
by additional diffusion, interpolation, or region growing (as in
Intensity Gradient Based Thresholding [8]).

Not only does this diffusion allow us to quickly detect pixels
in the vicinity of an edge, but it also discriminates between re-
gions on opposite sides of an edge. This enjoys many advantages
over more traditional edge detectors that are designed to capture
edge points directly, including better localization (since we are
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not trying to assign pixel locations to edges that almost always
lie betweenpixels), less sensitivity to noise (since we are dif-
fusing the data instead of differentiating it), and better connec-
tivity (since edges are now given by the boundaries between de-
tected regions). However, since edges are represented indirectly
in this framework, the applications which benefit most from this
model are those which utilize region representations as opposed
to direct edge representations. Adaptive thresholding and seg-
mentation constitute two such applications.

The remainder of this paper is organized as follows. In Sec-
tion II we discuss the diffusion model that will be utilized for
adaptive thresholding and segmentation. In Section III we then
outline how this diffusion process can be used to classify pixels
into foreground and background regions for adaptive thresh-
olding, or into arbitrary region types for segmentation. An im-
portant note to make ahead of time about this approach is that
classifications will be madeduring the diffusion processas op-
posed to afterwards, thus avoiding the notorious problem asso-
ciated with most diffusion methods, namely, “When should you
stop the diffusion?” In the framework to be discussed, this ques-
tion is naturally answered by “When enough pixels have been
classified.” In Section IV we shift our attention to the more gen-
eral problem of image segmentation and show how this diffusion
model may be used in conjunction with a simple, fast region
merging algorithm to segment very general classes of greyscale
imagery (i.e., not just bimodal images consisting of foreground
and background regions); Section V discusses the design of a
fast implementation of these methods. In Section VI we com-
pare this method to another segmentation method on synthetic
images before showing experimental results on a variety of real
images in Section VII. Finally, we discuss current and future re-
search on these methods in Section VIII before concluding in
Section IX.

II. A NTI-GEOMETRIC DIFFUSION

In this section we discuss how diffusion may be used for adap-
tive thresholding and propose a diffusion model which seems to
be ideally suited for this purpose.

A standard adaptive thresholding technique is to form a
threshold surfaceover the domain of an image and then classify
image pixels based upon whether their values lie above or below
this surface. A straight-forward method for constructing the
threshold surface is simply to blur the image with a Gaussian
low-pass filter. This is equivalent to diffusing the image via the
linear heat equation, giving rise to a family of threshold surfaces
which comprise a well known scale space [13]. Consequently,
choosing any particular threshold surface from this continuum
imposes a certain scale on the features that are captured in the
resulting binarized image. Near an image edge, a local average
(fine scale) will yield an effective threshold, whereas away
from an edge, a more global average (coarse scale) is necessary.
It is not always clear which scale to choose.

Before addressing the ambiguity of scale (see Section III), we
note that it is natural to generalize this basic thresholding algo-
rithm by using anisotropic diffusion. Anisotropic diffusion pos-
sesses the advantage of allowing local control over the diffusion
direction. This is particularly important where salient image fea-
tures are concerned. When the preservation of sharp edges is im-

Fig. 1. Normal and tangent directions to a level curve.

portant (as in image denoising), it is natural to consider models
which diffuse along, but not across, the edge directions.

Typically, edge directions are related to the tangents of the
isointensity contours (level curves or level sets) of an image.
Let denote the direction normal to the level curve through a
given point (the gradient direction), and letdenote the tangent
direction (see Fig. 1). We may write these directions in terms of
the first derivatives of the image and as

(1)

Since and constitute orthogonal directions, we may ex-
press the rotationally invariant Laplacian operator as the sum of
the second order spatial derivatives and in these direc-
tions and write the linear heat equation as

(2)

This decomposition of the linear heat equation has been
considered in many earlier works on anisotropic diffusion (see
[14]–[19] for a few examples).

Omitting the normal diffusion while keeping the tangential
diffusion yields the well knowngeometric heat flow, which dif-
fuses along the boundaries of image features but not across
them. It derives its name from the fact that, under this flow,
the level curves of the image evolve in the normal direction in
proportion to their curvature. This model is well known for its
ability to denoise images while maintaining sharp edges and is
therefore widely used for image enhancement and smoothing.
For more extensive discussions of the many properties of this
flow and related flows see [20], [14], [18], [21]–[24].

The very property which makes thegeometric heat flowpow-
erful for image denoising (i.e., its ability to preserve edges in the
image) makes it a poor flow for constructing adaptive thresh-
olding surfaces, in which case we actually want tosmearthe
image edges. If, instead, we omit the tangential diffusion and
keep the normal diffusion, we obtain the complementary diffu-
sion model, which we will refer to as theanti-geometric heat
flow1

(3)

1The termnongeometricis used by Evans in a paper [25] outlining some
mathematical properties of this and other flows related to thep-Laplacian.
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in which diffusion occurs deliberately across the boundaries of
image features. This is precisely what we want to occur when
constructing an adaptive thresholding surface. By omitting the
tangentialgeometriccomponent of the diffusion, we also avoid
the shrinkage of the isointensity contours that occurs in both
the geometric and the linear heat flow. Intuitively, the family of
isointensity contours which run through a given edge are spread
apart, while the shapes of those that remain near the original
edge location are less distorted than they would be under the cur-
vature-based shrinkage that would be induced by the discarded
tangential diffusion. Since diffusion in the direction orthogonal
to the level sets of an image can be useful in any dimension (for
instance, we present a volumetric segmentation example later
on in this paper using the three dimensional version of this dif-
fusion) we note that the general form of the anti-geometric heat
flow is given by

(4)

where denotes the Hessian of. Experiments contrasting
the the anti-geometric, geometric, and isotropic flows are
demonstrated in Section VI-A .

A. Remark

As anisotropic diffusion and the use of partial differential
equations for image denoising has become a rather mature field,
there are many models, other than the geometric heat flow, that
have been considered for image smoothing and denoising (such
as the seminal work of Perona and Malik [26]). This includes hy-
perbolic PDEs which form the basis of continuous morphology
(as in the early work of Kimiaet al. [27] and the recent work
of Meyer and Maragos [28]) as well as parabolic PDEs, like
those considered in this work, which underlie most diffusion
models. While a complete discussion of such previous work is
well beyond the scope of this paper, we do wish to point out
that the trend in this body of work has generally been topre-
serve featuresin the image while denoising or otherwise sim-
plifying the image data. We go against this trend by considering
a model which deliberately smears features in order to quickly
reveal their locations within the image. In short, our model is de-
signed todetect featuresin a manner which allows us to quickly
construct actual segmentations of the image (these steps will be
discussed in the sections that follow) rather than to preserve fea-
tures and eventually obtain a pseudo-segmentation2 .

III. T HRESHOLDING VIA DIFFUSION

In this section we discuss how to use the anti-geometric dif-
fusion process described in Section II for adaptive thresholding.
One straight-forward idea is simply to use an anti-geometri-
cally diffused version of the original image as a thresholding
surface and then classify the image pixels accordingly. This ap-
proach, however, suffers from an arbitrary choice of diffusion
time (which relates to a particular scale).

Rather than using a traditional thresholding surface, we in-
stead seek to classify pixelsduring the diffusion process. Early

2We use the term pseudo-segmentations to refer to segmentation-like effect
which comes from running an edge-preserving diffusion long enough.

in the diffusion process, only the intensity values of pixels near
object boundaries change significantly, allowing for a confident
classification of such pixels as locally light or dark based upon
their diffusion behavior. As the diffusion proceeds, its more
global averaging effects allow us to classify pixels further away.
Unfortunately, if we wait long enough for diffused intensities
of pixels far away from object boundaries to differ from their
original intensities enough to yield a confident classification,
then diffused intensities near boundaries of smaller features
may switch from being brighter than their original intensities
to darker than the original intensities (or vice-versa) due to
the more global averaging effect of prolonged diffusion. In
other words, the global effect of prolonged diffusion helps for
classifying pixels far away from important image features, but
could lead to less accurate classification of nearby pixels. If,
however, we classify a given pixelas soon asits classification
becomes unambiguous (i.e., the diffused and original intensi-
ties differ significantly) andmaintain this classification as the
diffusion proceeds, then we may run the diffusion as long as
necessary to classify pixels far away from region boundaries
without worrying about consistency problems for pixels that
have already been classified.

In this manner, we are no longer utilizing a single thresh-
olding surface, but anentire familyof thresholding surfaces gen-
erated by our anisotropic diffusion model. This method is effec-
tive because pixels in regions with high detail (i.e., high spatial
variance) change intensity relatively quickly during diffusion;
their intensities differ by large amounts in short periods of time,
and are therefore thresholded at a fine scale. Pixels in low-detail
regions change intensity slowly, are thresholded at a much later
time, and are therefore classified at a coarser scale.

A. Classification Criteria

A pixel’s net intensity change is not the only criterion that
may be used to decide when to classify it during the diffu-
sion process. If an image contains edges that are not of uni-
form contrast, then the main benefit of adaptive thresholding,
namely avoiding a single constant threshold for the entire image,
is counteracted in this scheme by requiring a single constant
change in diffused intensity (another threshold) to decide when
and how a pixel should be classified. In cases where a single
value will not suffice near all image edges3 a better criterion
would be to check whether a pixel’s diffusing intensity value
is consistently increasing or decreasing. In other words, rather
than waiting for a fixed change in the diffused intensity to decide
whether a pixel is a light pixel near the boundary of a dark re-
gion or vice-versa, one waits for a fixed period of time in which
the diffusion is monotonic at that pixel location.

The advantage of thresholding based on monotonicity is that
this criterion is not sensitive to the magnitude of the intensity
changes but is nevertheless robust to noise. To see this, imagine
an isolated bright pixel of noise on a dark background but near
the boundary of a large bright region. The pixel’s diffusing in-
tensity value will initially decrease by a huge amount as the
noise is smoothed away. Soon, however, the pixel’s intensity
will start increasing due to the diffusion of the large bright re-

3The danger of merely choosing a tiny jump that is small enough to work for
even the faintest image edges is sensitivity to noise.
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Fig. 2. Thresholding via anti-geometric diffusion.LEFT COLUMNS: [top] two different shaded images, [bottom] thresholded images obtained with a fixed threshold.
RIGHT COLUMN: [top] partial thresholding of either image using anti-geometric diffusion, [bottom] final thresholded image by extending the classifications obtained
above.

gion nearby. Although the latter increase in intensity may be
much less than the initial decrease in intensity, the initial de-
crease happens quickly whereas the latter increase may continue
steadily for a long time. Thus, classification based upon absolute
intensity changes would erroneously classify the noise as part of
a bright region whereas classification based upon monotonicity
would correctly classify the noise as part of a dark region.

Finally, pixel classification need not be based upon just one
criterion. A combination of monotonicity requirements and ab-
solute change in intensity requirements can yield added robust-
ness in the presence of noise.

B. Robust Edge-Detection

The fact that pixels near edges are classified quickly during
the anti-geometric diffusion process means that a short appli-
cation of this diffusion/classification procedure essentially cap-
tures most, if not all, of the interesting edges and therefore acts
as an edge-detector. However, unlike more traditional edge de-
tectors, which typically apply gradient-based operators to an
image in order to locate edges directly, we apply smoothing
operators to the image, which have better robustness to noise
compared to gradient-based operators, in order to locate regions
on opposite sides of edges and thereby capture edges indirectly.
Two additional advantages to this type of edge detection are that
edge points are properly modeled as lyingbetween pixelsand
that we generally obtain better connectivity since we are cap-
turing entire regions (with connected boundaries) as opposed to
point measurements which later have to be linked together.

A deeper insight into the edge-detecting behavior of this dif-
fusion/classification procedure may be obtained by first consid-
ering thelinearheat flow. Zero-crossings of the Laplacian of the
image data are often used as indicators of an edge, and in the
linear heat flow, it is precisely the sign of Laplacian that gov-
erns the diffusion direction. Therefore, near a zero-crossing, the
diffusion will increase intensities on one side and decrease in-
tensities on the other side of the associated edge. The problem
with using the Laplacian, which corresponds to the instanta-
neous effect of the linear heat flow, is its sensitivity to noise as
a second order differential operator. A standard remedy to elim-

inate the resulting number of spurious falsely detected edges
is to convolve the image with a Gaussian kernel before finding
the Laplacian zero crossings (the famousLaplacian of Gaussian
operator). This, of course, is also related to the linear heat flow
since running the linear heat flow for timeis equivalent to con-
volving with a Gaussian of variance (see [29]). The main
disadvantage of using the linear heat flow for this purpose is that
it distorts the shape of the Laplacian zero-crossings due to the
curvature based shrinkage of the image level sets. This effect,
which leads to bad edge localization, is exclusively due to the
geometric component of the linear heat flow, which is discarded
in the anti-geometric model.

C. Extending Early Classifications

We may capitalize on this edge-detecting behavior by noting
that early in the diffusion/classification process, whatever
regions remain unclassified are likely to be homogeneous.
Confident classifications of such regions may therefore be
extrapolated from their boundaries (i.e., neighboring pixels that
were classified during the early stages of diffusion). We may
therefore speed up the classification process by only running
the anti-geometric diffusion for a short amount of time or
until a given percentage of the pixels are classified, and then
extending these classifications to the remaining pixels. For
adaptive thresholding applications, these classifications are
binary (white/black, 0/1, or foreground/background). A simple
way to extend these binary classifications into the unclassified
regions is by region growing: unclassified pixels adjacent to
white pixels become white pixels while those adjacent to black
pixels become black pixels (repeating as necessary until all
pixels are classified).

This method is illustrated on a synthetic image in Fig. 2. The
first two columns show a shaded image of 16 squares on the
top followed by a thresholded version on the bottom (classified
via a fixed threshold). The shading is less severe in the second
column, allowing a fixed threshold to capture more squares than
in the first column. In both cases, however, it is impossible to
extract all 16 squares with a simple threshold. The top of the
third column shows bright and dark pixels (shown in white and
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Fig. 3. Presegmentation via anti-geometric diffusion. LEFT: Original Cardiac MRI.MIDDLE: Image oversegmented with a short run of diffusion and low
thresholding tolerance.RIGHT: Image undersegmented with a long run of diffusion and high thresholding tolerance.

black) on opposite sides of the square boundaries as detected by
a very small amount of anti-geometric diffusion (this output is
the same forboththe mildly and severely shaded images). These
classifications are then extended by simple region growing to
obtain the final image on the bottom of the third column.

For the more general problem of segmentation (where we
assume more than just two region types), we propose a very
different procedure to extend early classifications to remaining
unclassified pixels. In fact, for segmentation, we do not regard
pixels away from edges that were not “detected” during the ini-
tial diffusion/classification step as unclassified, but instead we
regard such pixels as belonging to yet another class.

IV. A M ETHOD FORFAST SEGMENTATION

In this section we outline a procedure that uses anti-geometric
diffusion in conjunction with region merging for fast segmen-
tation of greyscale images that cannot be easily classified into
merely foreground and background (and therefore are not ap-
propriate candidates for adaptive thresholding).

The procedure begins in the same manner discussed in Sec-
tion III-B, namely, we run anti-geometric diffusion for a short
amount of time and then classify pixels into three different cate-
gories: (1) pixels whose intensities diffused significantly (and/or
monotonically) upward, (2) pixels whose intensities diffused
significantly (and/or monotonically) downward, and (3) pixels
which did not diffuse significantly. However, instead of consid-
ering pixels in categories (1) and (2) as classified and pixels in
category (3) as unclassified, we regard all pixels as “equally”
classified. We do so by giving each connected region(re-
gardless of which category (1)-(3) it initially belonged to) a
unique label . We now have an over-segmentation of the image.
In other words, this use of anti-geometric diffusion essentially
acts as a region splitting operator, breaking up the initial image
domain into smaller regions.

Note, that the degree of oversegmentation depends greatly
upon the specific parameters (such as minimum net intensity
change or monotonicity requirements) used for classification
into categories (1) and (2). Parameters requiring only minor
changes during diffusion for classification into categories (1)
or (2) result in rapid segmentation of many small-scale features
including both desired features and noise. Parameters requiring
more significant diffusion behaviors prior to classification re-

duce the effect of oversegmentation but with two prices. First,
classification of a given percentage of image pixels requires
more diffusion (and therefore more time and computation) when
more restrictive classification conditions are imposed. Second,
less prominent features may not be detected, causing an un-
dersegmentation of some regions in the image. Fig. 3 demon-
strates the extremes of oversegmentation and undersegmenta-
tion by utilizing drastically different classification parameters
on a cardiac MRI image (regions in category (1) are shown in
white, regions in category (2) are shown in black, and regions
in category (3) are shown in gray).

However, because the regions in categories (1) and (2) lie on
opposite sides of image edges and because regions in categories
(3) are unlikely to contain or border any edges, we should be
able, through strategic grouping and merging of these regions,
to obtain decent coarser segmentations of the image (thereby
addressing the problem of oversegmentation). We suggest using
energy based region merging criteria as suggested both in [30]
and [31].

If we approximate the image datawithin each region
by its mean4 , then we may measure the total squared error
between our piecewise constant segmentation and the original
image

(5)

This total error will generally increase (but never decrease) if
we merge any two regions and into a single new region

and replace the old means and by the
new mean of over the combined regions. The nonnegative
change in the error is given by

(6)

A sensible criterion is then to merge the regions and
which yield the smallest increase in the total squared error.
Once this is done, we have reduced the number of regions in
our segmentation by one. We may then repeat this procedure as
many times as necessary until the desired number or regions

4This piecewise constant approximation is naturally coupled to our diffusion
model as the heat flow drives initial data toward its mean.
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is obtained, or until we detect a significant jump in the total
squared error. While it might seem at first glance that the number
of pairs to check is quite large, it is really not as bad as it seems.
The reason is that we need not consider all possible pairs but
only regions which are neighbors (so that merging them elimi-
nates a connected region from the segmentation). This reduces
the complexity of the search from to where is the
total number of regions.

Undersegmentation cannot be remedied by region merging
but can be counteracted by further splitting of initially detected
regions. In particular, we propose applying anti-geometric dif-
fusion exclusively within regions exhibiting large squared
errors (since such regions are likely to constitute the under-
segmented regions) in order to refine the classification of pixels
within these regions. This time features may be detected that
were missed the first time around due to interference from struc-
tures in nearby regions.

After such refined splitting, the image is probably overseg-
mented again and requires another merging step to reduce the
number of regions. Since the merging procedure is designed to
merge those regions that contribute to the squared error theleast
(whereas the splitting procedure is designed to further partition
regions which contribute to the squared error themost), the fol-
lowing merging step will not merely “re-assemble” the regions
that were just further split using the diffusion model. This intu-
ition leads us to an algorithm (based on those discussed in [30])
that integrates global splitting, merging, and local splitting in
an iterative manner to find more accurate segmentations of an
image. The overall algorithm is summarized as follows.

1. Use anti-geometric diffusion to split
the entire image domain into smaller re-
gions.
2. Merge pairs of regions in the image
until there are (a desired number chosen
in advance) regions left or until the
total squared error becomes too high.
3. Split the region with the highest
squared error using anti-geometric dif-
fusion exclusively within this region.
4. Repeat steps 2 and 3 until the total
squared error converges (for example, when

becomes small).

This iterative algorithm is demonstrated in Fig. 4. We use the
undersegmentation shown in Fig. 3 as a starting point to demon-
strate the robustness of this method, even though starting with
the oversegmentation would yield convergence in fewer itera-
tions with better results. The middle image in each row shows
the result of merging the current segmentation down to 20 re-
gions (the constant greyscale value displayed within each region
corresponds to the mean value of the data within that region).
The middle images are followed, in the right column, by images
which display the value of the normalized squared error within
each of the 20 regions. The region with the highest squared error
(shown in white) is then split via additional anti-geometric dif-
fusion, to yield the new segmentation on the left of the next row
(below).

The iterative approach has several distinct advantages. First,
iterative splitting and merging provides strong robustness to
choices of classification parameters. Second, applying the
diffusion within a specific region forces the model to detect
“soft” edges or fine scale features that may have been missed
by the global diffusion.

V. IMPLEMENTATION

In this section we discuss the implementation of the models
discussed in the previous sections of the paper. We pay special
attention to implementation details that will result in fast algo-
rithms.

A. Implementation of Diffusion Based Splitting Algorithm

The numerical implementation of anti-geometric diffusion
consists of two steps per iteration of diffusion. First, the image
values at each pixel location [ ] are actually diffused for one
timestep to yield new diffused image values. Second, pixels
which meet specified classification criteria are classified ac-
cording to their diffusion behavior. Once a pixel has been classi-
fied, its classification is maintained. The algorithm iterates until
a stop condition is met; the authors’ preferred stop condition is
that a chosen percentage of the pixels in the image have been
classified.

The discrete implementation of each anti-geometric diffusion
step utilizes a standard forward Euler step

(7)

where

(8)

Note that because the diffusion is well-posed, there is no need to
formulate generalized solutions that require special finite differ-
encing schemes. Standard central differences may be employed
to compute the spatial derivatives in (8) needed for the Euler step
(7) with stable results (just as they may be used in the discrete
implementations of both the linear and geometric heat flows)

The stability condition for choosing is similar to that for
the geometric heat flow; namely, should be chosen such that

.
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Fig. 4. Six iterations of splitting and merging of cardiac MRI (Fig. 3); each row is one iteration. [LEFT] Image after splitting. [MIDDLE] Image after merging.
[RIGHT] Merged image with regions colored byE . Note that the white region (highestE ) at the end of each row is the region split at the beginning of the next row.

After each diffusion step, we check each unclassified pixel to
see whether or not it may be classified. Various classification
criteria are discussed in Section III. The simplest criterion is to
check whether a pixel’s original intensity value lies above or

below the diffused value by a given tolerance (in this manner,
the diffused image is used like an adaptive thresholding surface).
Another criterion is to track the length of time a pixel’s diffused
value changes monotonically. If this time exceeds a pre-deter-
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mined threshold, the pixel can be robustly classified. Further,
these two criterion can be combined. (In our experiments, we
combine the two criteria in a linear discriminant as discussed in
Section VI.)

It is important to reiterate that not every pixel gets classified
at the same time. Some are classified earlier in the diffusion
than others depending upon the nature of the data, the behavior
of the diffusion, and the exact classification criteria employed.
Once a a pixel is classified, it continues to diffuse, but is never
reclassified. To avoid re-checking or re-classifying a pixel, the
algorithm maintains a list of unclassified pixels. When a pixel
is classified, it is removed from the list; the algorithm only at-
tempts to classify pixels remaining on the list.

B. Fast Implementation of Region Merging

In this section we outline one possible implementation of re-
gion merging, paying careful attention to details which mini-
mize the computational expense of this portion of the overall
segmentation algorithm. Recall that the region merging step is
performed after pixels have been classified according to the be-
havior under anti-geometric diffusion. This step is only nec-
essary for segmentation, not adaptive thresholding for which
the classifications obtained are already sufficient to construct
the desired binary image. The overall region merging procedure
consists of the following steps.

1. Initially represent the image data
within each connected region of iden-
tically classified (or “unclassified”)
pixels by the mean intensity of the
original image data within that region.
Then determine the squared error be-
tween this representation and the original
image data for that region.
2. For each pair of adjacent regions
and , calculate (the increase in
the total squared error) that would result
from merging and into a single new
region .
3. Merge the pair which contributes the
smallest total error increase .
4. Repeat steps 2 and 3 as desired.

To save time during the merging process, the image data
should be stored in a data-structure that allows for the fast
calculation of . The authors’ preferred datastructure
is a graph, where each node corresponds to a region in the
image and a connection between two nodes indicates that the
corresponding regions are adjacent in the image. Each node of
the graph contains a linked list of all the pixels in the region.
An array of such nodes, where each node is a datastructure
containing the statistics described below and a list of adjacent
nodes (i.e., the connections of the graph), represents the entire
graph in a manner that allows random access of the nodes.
The graph is constructed while performing an initial connected
component analysis of the classified and unclassified pixels.
Once the graph has been constructed, searching for the pair

of adjacent regions is a matter of visiting each node and
calculating for each of its adjacent nodes.

The key to implementing the region merging procedure
quickly is to realize that one need not scan through the image
data over and over again to compute for each pair of
adjacent regions and . Only one initial scan through the
image data is needed during the construction of the initial graph
structure to compute a set of statistics, , , , and
for each initial region .

• : number of pixels (area) within region ;
• : sum of image intensities within region ;
• : sum of squared image intensities within region;
• : mean image intensity within region ;
• : squared error for region .

From then on, the statistics of a proposed region
may be immediately computed using the statistics ofand
without revisiting the image data by using the following rela-
tionships.

• ;
• ;
• ;
• ;
• ;
• .

Technically, we see from this last relationship that onlyand
(which automatically gives ) need to be computed and up-

dated for each region since these are the only quantities needed
to evaluate thechangein total squared error. However, it is also
useful to know the actual value of the total squared error (to de-
cide if additional splitting of regions is necessary or to decide
when to stop merging regions for example), and thus one might
as well keep track of and since the extra computational
expense is negligible.

The full merging procedure, if carefully implemented as de-
scribed here, is assuming we continue merging until we
are back to a single region (of course one should stop earlier
than this). If we start with every pixel in an image representing
a separate region, then this is an expensive procedure on a stan-
dard 256 256 image which would contain over 65 000 regions.
This is why using anti-geometric diffusion for an initial region
splitting allows us to perform the merging very quickly. Even
if the output of this region splitting technique yields 1000 in-
dividual regions, we are still considering an operation count on
the order of 1 million (which only takes a second or two on most
computers today) compared to an operation count on the order
of 4 billion if we start with each image pixel: a full three orders
of magnitude worse!

VI. COMPARISONS

In this section we compare anti-geometric diffusion to sev-
eral other diffusion models and a nondiffusion-based splitting
model.

A. Comparison of Diffusion Models

In Fig. 5 we illustrate the contrasting behaviors of the linear,
geometric, and anti-geometric heat flows on a cardiac MR
image (using equal diffusion times in each case). In the top row
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Fig. 5. Comparison of Linear, Geometric, and Anti-Geometric Diffusion.[TOP ROW] Original and diffused versions of a cardiac MR image. [BOTTOM ROW] Some
level sets of the original and diffused images.

we see that both the linear (center left) and anti-geometric (far
right) diffusions result in significant blurring of the edges while
the geometric diffusion (center right) causes very little blurring
of the prominent edges. Note, though, that the geometric dif-
fusion caused a significant distortion in theshapeof the edges
even though the edges were not severely blurred as they were
by the anti-geometric diffusion. This shape distortion is due to
the curvature based shrinking of the image level sets incurred
by the geometric heat flow. By comparing level sets of the
geometric and anti-geometrically diffused images with those of
the original image (more precisely, the level sets whose values
lie close to the midpoint between the intensities on opposite
sides of the prominent edges) we see in the bottom row that
the anti-geometric diffusion has done a better job of preserving
the shapeof prominent image structures (particularly the two
bright blood pools) despite the fact that it has significantly
blurred the edges. This can be observed even in the top row by
noting that it is still possible to make out the original shape of
the endocardium in the left ventricle (the boundary of the lower
white region) even though the boundary has been significantly
blurred. In both the geometric and linear cases, the original
shape has been lost (particularly the three concavities at 12, 3,
and 6 o’clock).

Obviously, the anti-geometric flow is a much better model
for smearing than the geometric heat flow. We also see from the
above discussion that there are reasons for favoring it over the
linear heat flow as well. We further illustrate the advantage of
the anti-geometric flow over the linear heat flow in Fig. 6 by
partially thresholding a synthetic volumetric image of an elon-
gated black ellipsoid on a white background (its central cross
section is shown on the left) using adaptive thresholding sur-
faces generated by both the linear (middle) and anti-geometric
(right) heat flows (equal diffusion times). The thresholded im-
ages show pixels whose intensities diffused upward by more
than ten greyscale values (original values were 0 inside the el-

Fig. 6. Anti-Geometric and Linear Diffusion for Adaptive Thresholding.
[LEFT] Cross-section of binary ellipsoid image. [MIDDLE] Image partially
thresholded using the linear heat flow. [RIGHT] Image partially thresholded
using the anti-geometric heat flow. Pixels that diffused significantly upward
(ellipse interior) are labeled black, pixels that diffused significantly downward
(ellipse exterior) are labeled white. The regions that did not diffuse significantly
(and therefore cannot be confidently classified) are labeled grey. See the text
for more details about this figure.

lipse and 255 outside the ellipse) as black and pixels that dif-
fused downward more than ten values as white (other pixels
are shown in gray). Both diffusions smear the bright intensi-
ties from outside the original ellipsoid into the interior of the
ellipsoid, allowing for equally easy classification of the inte-
rior pixels (black), whereas the anti-geometric diffusion does a
better job of smearing dark intensities from inside the original
ellipsoid into the exterior of the ellipsoid (particularly near the
highly curved endpoints) allowing for much easier classification
of exterior pixels (white). This is due to the fact that the linear
heat flow has both a geometric and and anti-geometric compo-
nent and the inward shrinking of the ellipse boundary incurred
by the geometric component counteracts much of the outward
smearing incurred by the anti-geometric component.

B. Comparison of Segmentation Methods

In this subsection we demonstrate the effectiveness of the pro-
posed classification method on a set of synthetic grayscale im-
ages with added noise.

To validate the segmentation method, anti-geometric and
isotropic diffusion are each used in conjunction with region
merging to segment 128128 synthetic images of squares
of decreasing size from added Gaussian noise of increasing
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Fig. 7. Synthetic greyscale images segmented using anti-geometric diffusion, isotropic diffusion, and C-Means clustering. Note: Image values have been
normalized to increase contrast.

variance. For comparison, we use the C-Means algorithm to
cluster pixels based on a feature vector that includes intensity
value, and coordinate, and coordinate. The intensity value
is weighted by an empirically chosen factor ranging from
10 to 50 based on the noise level of the image. Though we
have defined a region to include a set of (4-connected) pixels,
C-Means may classify nonadjacent pixels as belonging to
the same cluster, resulting in over-segmentations similar to
splitting via diffusion. Again we employ region merging to
compensate for this effect.

Fig. 7 shows several examples of images from this experi-
ment. In each row, we first show the original grayscale image,
followed by the image segmented via iterative anti-geometric
diffusion and region merging, iterative isotropic diffusion
and region merging, and finally C-Means clustering and
region merging. For diffusion-based splitting, the images are
diffused until 30% of the pixels are classified using the linear
discriminant criteria with the coefficient

and a threshold . (For the first iteration, these
parameters may be different to account for the more global
influences in the diffusion.) Region merging is used to reduce
the number of regions; the final number of regions is chosen
by counting the number of regions in the original image. The
process is then iterated until total squared energy decreases
by less than 99.99% per iteration. For C-Means clustering, the

image pixels are grouped into either 30, 50, or 200 clusters,
based on the noise level of the image. The parameters for both
methods are chosen so that the resulting oversegmentations
contain similar numbers of regions, and never more than 5000
regions. In the first row of the figure, all three methods are
competitive due to the large object size and the low noise.
However, note in the second row of the figure that the C-Means
method undersegments many of the adjacent objects with
similar intensities (for instance, see the left and right borders of
the image). In the noisy image in the third row, the differences
are more pronouced. Even though edge localization is difficult
due to the noise, anti-geometric diffusion is better able to
segment each of the 16 regions.

The graphs in Fig. 8 shows the percentage of undersegmented
objects in the above experiment as a function of the size of the
objects and noise variance for the three segmentation methods
used in this validation. We define an undersegmentation as the
omission of a border between two regions, resulting in one less
region that is expected. Since the expected number of regions is
fixed, each undersegmentation is paired with an oversegmenta-
tion (the insertion of an extra border resulting in one extra re-
gion). Graph (a) demonstrates that region splitting via diffusion
is robust to varying object sizes, even when the objects have an
area of 4 pixels. Further, anti-geometric diffusion can more con-
sistently localize edges when compared to isotropic diffusion.
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Fig. 8. Graph of undersegmentations per region as a function of (a) increasing block size and (b) increasing noise variance.

Fig. 9. Text image [LEFT] thresholded via two different fixed thresholds [MIDDLE] and via anti-geometric diffusion [RIGHT].

Anti-geometric diffusion as a splitting operator consistently dis-
tinguished between regions even when high noise levels make
edge localization difficult, even when using isotropic diffusion,
as shown in graph (b). For all these experiments, the average
execution time for the diffusion and region merging algorithms
was 40.4 seconds when using anti-geometric diffusion and 36.4
seconds when using isotropic diffusion. This is more than four
times faster than an average time of 166.2 seconds when using
the C-Means algorithm and region merging. These experiments
were simulated using C++ on a Pentium IV 900 MHz processor
running the Linux operating system.

Lastly, we note that it may be possible to achieve better re-
sults using the C-Means algorithm if we were to include it in an
iterative framework, as we have for the diffusion-based split-
ting operators. However, due to the high execution times of
the C-Means algorithm, an iterative approach would be far less
practical.

VII. A PPLICATIONS AND SIMULATION

In this section we demonstrate the use of anti-geometric
diffusion for classification of regions in grayscale images,
starting with a low-contrast and heavily shaded image of
handwritten text shown in Fig. 9. As seen in the two middle
images, the shading makes it impossible to completely separate
the text from the background using flat thresholds, while adap-
tive thresholding using anti-geometric diffusion successfully
separates the two regions, as seen on the right.

In Fig. 10, the 2-D anti-geometric heat flow (3) is used in con-
junction with region merging to segment five different grayscale
images. The original images are shown on the left followed
by three segmentations ranging from large to medium to small
numbers of regions (i.e., fine to medium to coarse scale), each
time displaying the mean image intensity within every region.

In Fig. 11 we compare the segmentation of the bone CT from
Fig. 10 with a segmentation using a C-Means clustering al-
gorithm as the splitting operator, as in Section VI. In this ex-
ample, the two methods give similar segmentations, although
anti-geometric diffusion localizes the edges better (for instance,
the edges of the thin, bright bone cross sections in the center of
the image). Further, the diffusion-based method runs in far less
time (79 seconds for the diffusion-based method compared to
494 seconds for C-Means clustering).

In Fig. 12, the 3-D anti-geometric heat flow (4) in conjunction
with region merging to segment a volumetric cardiac MRI se-
quence (two spatial dimensions and one time dimension). Both
the diffusion and the region merging were performed fully in
three dimensions. The results, however, are shown as a series of
2-D images. Each row represents one particular slice in time.
The original image is on the left, followed by two segmen-
tations. The first (middle) segmentation is obtained automati-
cally by merging down to 10 volumetric regions. The second
(right) segmentation is obtained by user-interactive splitting and
merging of the middle result down to 7 regions. (For all the ex-
amples, the final number of regions is chosen empirically.)
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Fig. 10. Greyscale images segmented using anti-geometric diffusion and region merging.

The user-interactive stage demonstrated in Fig. 12 involves a
user clicking with the mouse on a particular region to be further
split or by clicking on a pair of regions to be merged. Such in-
teraction is helpful for clinical segmentation because merging
regions according to their squared error does not always corre-
spond to the segmentation desired by a trained cardiologist.

VIII. C URRENT AND FUTURE RESEARCH

The fact that piecewise constant segmentations governed by
minimal total squared error do not always represent segmenta-
tions perceived by the human visual system motivates one of
current research directions. Representing the image data within
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Fig. 11. Grayscale image of a bone CT segmented using two methods. The C-Means algorithm executed in 494 seconds while the Diffusion-based method took
79 seconds.

Fig. 12. Two frames of a time series cardiac MR Image segmented using anti-geometric diffusion and region merging. [LEFT] Original image. [MIDDLE]
Automatically segmented image (10 regions) using anti-geometric diffusion and region merging. [RIGHT] Segmented image (7 regions) after user directed splitting
and merging corrections to previous segmentation.

each region by a linear or smooth function rather than a con-
stant would yield a much more flexible segmentation strategy.
In this manner, segmentations which resemble those obtained
using the Mumford-Shah [32] functional may be obtained much
more quickly when compared to the numerical methods used
to obtain true solutions of this functional (including the recent
curve evolution approaches proposed in [33], [34] based upon
the level set methods of Osher and Sethian [35]). We are cur-
rently exploring these more general piecewise representations
of the image data.

One point to make in comparing piecewise smooth versions
of our segmentation procedure with Mumford-Shah segmenta-
tion is that we are able to avoid the penalty on the measure of
the region boundaries used in [32]. In our scheme, scale is re-
lated to the final number of regions in the segmentation rather
than the lengths of the region boundaries. This facilitates more
accurate detection of object boundaries that contain corners or
other fine scale details.

We further note that total squared error is not the only criterion
one could use for region merging. In fact, it is not even necessary
touseanenergybasedcriterion.ZhuandYuille [31], forexample,
who utilize a energy based upon Minimum Description Length in
their regioncompetitionalgorithm,pointout thepopularFisher’s
test [36], a statistically based region merging criterion.

Finally, we are working to generalize this model for vector-
valued (specifically color) images. The classification cues taken
from the diffusion behavior of each pixel (monotonicity for ex-
ample) are currently based upon the well-ordered property of
scalar image intensities. Vector spaces lack this property; so a
different method of classification will have to be developed if
a diffusion model is to be used for segmenting vector valued
images.

IX. CONCLUSION

We have outlined a novel method for adaptive thresholding
and segmentation using an anti-geometric diffusion model
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to capture regions on opposites sides of prominent edges in
greyscale images. In contrast to more traditional anisotropic
diffusion techniques, we abandon the goal of preserving edges
but seek instead to maximally smear them in order to detect
their adjacent neighborhoods. Doing the detectionduring the
diffusion avoids the ambiguity of deciding when to stop before
utilizing the processed image. Since this diffusion/classification
procedure acts as a region splitting operator, we saw that it could
be used together with region merging to obtain fast piecewise
constant segmentations. We discussed the efficient implemen-
tation of these methods, and have shown their application to a
variety of images, including both 2-D and 3-D examples.
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