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Abstract—in this paper, we utilize an anisotropic diffusion noted that applying a single threshold to the entire image was
model, which we call the anti-geometric heat flow, for adaptive not effective for spatially varying backgrounds. For such cases
thresholding of bimodal images and for segmentation of more ey roposed dividing the original image into subregions,
general greyscale images. In a departure from most anisotropic . . .
diffusion techniques, we select the local diffusion direction that flndlng th? best local thresholds for each subregion, and then
smears edges in the image rather than Seeking to preserve them_|nterp0|at|ng betWeen these |Oca| thl’eShold ValueS to construct
In this manner, we are rapidly able to detect and discriminate a globalthresholding surfacer adaptive threshold
between entire image regions that lie nearby, but on opposite sides, A variety of techniques have been proposed for adaptive

of a prominent edge. The detection of such regions occurs during : ; ; ; ;
the diffusion process rather than afterward, thereby side-stepping thresholding. Yanowitz and Bruckstein [6] obtain an adaptive

the most notorious problem associated with diffusion methods, threshold by noting that pixel intensities near the transitions
namely, “When should you stop diffusing?” We initially outline ~ between foreground and background (edge pixels), in a
a procedure for adaptive thresholding, but ultimately show how smoothed image, serve as the best local thresholds. They locate
this model may be used in a region splitting procedure which, gych pixels by checking for large gradients and interpolate

when combined with energy based region merging procedures, ; .
provides a general framework for image segmentation. We discuss the greyscale values of these pixels to form the thresholding

a fast implementation of one such framework and demonstrate its Surface. There havg, of course,.been ‘many other interesting
effectiveness in segmenting medical, military, and scene imagery. approaches to adaptive thresholding which lie beyond the scope

of our discussion. See, for example, [7]-[12] for further exam-
l. INTRODUCTION ples, more extensive discussions, and additional references.
. . Our model is motivated by the observation of Yanowitz and
T HRESHOLDING and segmentation constitute two of th%ruckstein [6] that information about the best local threshold is
most widely used techniques inimage processing and lo

e . ) be found near image edges (transitions between foreground
level vision, sometimes as end goals by themselves, and some-

) ) 2 nd backgroundpn a smoothed version of the imagehe
times as early steps for higher level vision. The goal of thresh- : . e :

o s 4 . . smoothing step is crucial since the greyscale values on either
olding is to classify image pixels into one of two categories (e.

foreground and background). Segmentation generalizes this Ide of a sharp edge form very poor thresholds when compared

Vg « ” - ;
allowing for an arbitrary number of categories. We will begirt1O the "average” greyscale value encountered in the middle

. . . .~ of a smoothed edge. The question is: “What is the best way
this paper by considering the problemaafaptive thresholding 10 SMOOth?” In this baper. we suagest that the answer to this
but ultimately shift our attention to the more general problem gf Smooth: Papet, ggest | o .

uestion is to use a diffusion model that is specifically designed

segmentation. q d d tin order t t quickl d effectivel
The most straight-forward approach to thresholding is to pié spread an edge apart In oraer 1o most quickly and etiectively
w out this local discriminating information.

a fixed greyscale value (the threshold) and classify each ima dcul ol wtil isotronic diffusi del
pixel by checking whether it lies above or below this value. This n particular, we will utilize an anisotropic diitusion mode
ich, in contrast to earlier anisotropic diffusion models, dif-

technique works reasonably well when the image intensities ificall ; q atonai
distributed bimodally or when the region of interest exhibits i uses spehC| 'fa yacroshsmgge € hge_s as opp(rJ]se (IJlnslmage
tensities consistently above or below all other pixel intensiti&l9€s- The latter behavior, exhibited by the well knayeo-

in the image. metric heat flowis desirable forimage denoising, but the former

One of the earliest analytical methods for choosing behavior is better suited to adaptive thresholding and segmenta-
threshold value, proposed by Chow and Kaneko [1], involvéi?” sincg it has this desire.d effegt of “spreading out” the'edge
fitting & pair of Gaussian curves to the image histogram (Whiéﬂformanon as fast as p053|b!e. Since the model we use diffuses
is assumed to be bimodal) and then choosing the thresholcPf10gonally to the geometric heat flow, we refer to it as the
minimize the probability of misclassification. Extensions an@nti-geometric heat flovand exploit its behavior to detect and
less computationally intensive alternatives were later presenfd@SSify pixels near image edges quickly and accurately. Re-
in [2]-[5]. While proposing their method, Chow and Kanekdnaning pixels (far away from edges) may be classified either

by additional diffusion, interpolation, or region growing (as in

. . . Intensity Gradient Based Thresholding [8]).
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not trying to assign pixel locations to edges that almost always EJ

lie betweerpixels), less sensitivity to noise (since we are dif- n
fusing the data instead of differentiating it), and better connec-
tivity (since edges are now given by the boundaries between de-
tected regions). However, since edges are represented indirectly
in this framework, the applications which benefit most from this
model are those which utilize region representations as opposed
to direct edge representations. Adaptive thresholding and seg-
mentation constitute two such applications.

The remainder of this paper is organized as follows. In Sec-
tion Il we discuss the diffusion model that will be utilized for
adaptive thresholding and segmentation. In Section Il we then
outline how this diffusion process can be used to classify pixgdortant (as in image denoising), it is natural to consider models
into foreground and background regions for adaptive thresihich diffuse along, but not across, the edge directions.
olding, or into arbitrary region types for segmentation. An im- Typically, edge directions are related to the tangents of the
portant note to make ahead of time about this approach is tistintensity contours (level curves or level sets) of an image
classifications will be madduring the diffusion processs op- Letn denote the direction normal to the level curve through a
posed to afterwards, thus avoiding the notorious problem asgéren point (the gradient direction), and fetlenote the tangent
ciated with most diffusion methods, namely, “When should yadirection (see Fig. 1). We may write these directions in terms of
stop the diffusion?” In the framework to be discussed, this quese first derivatives of the imagh, and/, as
tion is naturally answered by “When enough pixels have been

Fig. 1. Normal and tangent directions to a level curve.

classified.” In Section IV we shift our attention to the more gen- (U, 1) ¢ = (=1, 1) (1)
eral problem of image segmentation and show how this diffusion = 2 2’ B 2 2

. TR . ; L>+1, L>+1,
model may be used in conjunction with a simple, fast region

merging algorithm to segment very general classes of greyscale.. . o
imagery (i.e., not just bimodal images consisting of foreground%'ncen and¢ constitute orthogonal directions, we may ex

and background regions); Section V discusses the design rgss the rotationally |nvar|aqt Lgplaman operator as th_e sum of
fast implementation of these methods. In Section VI we co 1e second order spatial derivativkg and/e. in these direc-

pare this method to another segmentation method on synthé'f?@s and write the linear heat equation as
images before showing experimental results on a variety of real oI
images in Section VII. Finally, we discuss current and future re- 5=
search on these methods in Section VIII before concluding in '
Section IX. This decomposition of the linear heat equation has been
considered in many earlier works on anisotropic diffusion (see
Il. ANTI-GEOMETRIC DIFFUSION [14]-{19] for a few examples).
Omitting the normal diffusion while keeping the tangential
In this section we discuss how diffusion may be used for adagitfysion yields the well knowigeometric heat flowwhich dif-
tive thresholding and propose a diffusion model which seemsises along the boundaries of image features but not across
be ideally suited for this purpose. _ _ them. It derives its name from the fact that, under this flow,
A standard adaptive thresholding technique is to form (e |evel curves of the image evolve in the normal direction in
threshold surfacever the domain of an image and then classifyqnortion to their curvature. This model is well known for its
image pixels based upon whether their values lie above or belgyjity to denoise images while maintaining sharp edges and is
this surface. A straight-forward method for constructing thgerefore widely used for image enhancement and smoothing.
threshold surface is simply to blur the image with & Gaussighy more extensive discussions of the many properties of this
low-pass filter. This is equivalent to diffusing the image via thg .\ 2nd related flows see [20], [14], [18], [21]-[24].
Iingar heat equation, giving rise to a family of threshold surfaces-l-he very property which makes teometric heat floypow-
which comprise a'well known scale space [13]. QO”SGQPe”té\Hm forimage denoising (i.e., its ability to preserve edges in the
choosing any particular threshold surface from this continuu age) makes it a poor flow for constructing adaptive thresh-
imposes a certain scale on the features that are captured inot fng surfaces, in which case we actually wanstoearthe

re_sultlng blnar!zed_ IMage. Near_an image edge, a local aver %ge edges. If, instead, we omit the tangential diffusion and
(fine scale) will yield an effective threshold, whereas aw e . .
) eep the normal diffusion, we obtain the complementary diffu-

from an edge, a more global average (coarse scale) is necessary. . . . )

X X siofi model, which we will refer to as thenti-geometric heat
It is not always clear which scale to choose. flowd

Before addressing the ambiguity of scale (see Section Ill), we
n_ote that it is natL_JraI to gengrah;e this .ba5|c thre;holdmg algo- oI IL, +2L1,1,, + I2I,,
rithm by using anisotropic diffusion. Anisotropic diffusion pos- 5= TN Y
sesses the advantage of allowing local control over the diffusion t z 1y
direction. Thisis particularlyimportantwh.ere salientimagef(_ea.-lThe termnongeometrids used by Evans in a paper [25] outlining some
tures are concerned. When the preservation of sharp edges isiatkhematical properties of this and other flows related tg:thaplacian.

V- (V1) = Ieg + Lyy- )

®3)
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in which diffusion occurs deliberately across the boundaries iofthe diffusion process, only the intensity values of pixels near
image features. This is precisely what we want to occur whebject boundaries change significantly, allowing for a confident
constructing an adaptive thresholding surface. By omitting tlsdassification of such pixels as locally light or dark based upon
tangentiageometriccomponent of the diffusion, we also avoidtheir diffusion behavior. As the diffusion proceeds, its more
the shrinkage of the isointensity contours that occurs in bogtobal averaging effects allow us to classify pixels further away.
the geometric and the linear heat flow. Intuitively, the family obnfortunately, if we wait long enough for diffused intensities
isointensity contours which run through a given edge are sprezidpixels far away from object boundaries to differ from their
apart, while the shapes of those that remain near the originaiginal intensities enough to yield a confident classification,
edge location are less distorted than they would be under the dben diffused intensities near boundaries of smaller features
vature-based shrinkage that would be induced by the discardeay switch from being brighter than their original intensities
tangential diffusion. Since diffusion in the direction orthogondb darker than the original intensities (or vice-versa) due to
to the level sets of an image can be useful in any dimension (f6e more global averaging effect of prolonged diffusion. In
instance, we present a volumetric segmentation example |zagrer words, the global effect of prolonged diffusion helps for
on in this paper using the three dimensional version of this diflassifying pixels far away from important image features, but
fusion) we note that the general form of the anti-geometric hezauld lead to less accurate classification of nearby pixels. If,

flow is given by however, we classify a given pixak soon asts classification
- becomes unambiguous (i.e., the diffused and original intensi-
or _ < VI ) V21< Vi > @ ties differ significantly) andmaintainthis classification as the
ot VI (IVI]] diffusion proceeds, then we may run the diffusion as long as

necessary to classify pixels far away from region boundaries
without worrying about consistency problems for pixels that
Have already been classified.

In this manner, we are no longer utilizing a single thresh-
A. Remark olding surface, but aentire familyof thresholding surfaces gen-

_ o o _erated by our anisotropic diffusion model. This method is effec-

As anisotropic diffusion and the use of partial differentighye pecause pixels in regions with high detail (i.e., high spatial
equations for image denoising has become a rat_her mature fle)gﬁiance) change intensity relatively quickly during diffusion;
there are many models, other than the geometric heat flow, th@kir intensities differ by large amounts in short periods of time,
have been considered forimage smoothing and denoising (SH@ly are therefore thresholded at a fine scale. Pixels in low-detalil
as the seminal work of Perona and Malik [26]). This includes hyagions change intensity slowly, are thresholded at a much later

perbolic PDEs which form the basis of continuous morphologyme and are therefore classified at a coarser scale.
(as in the early work of Kimiat al. [27] and the recent work

of Meyer and Maragos [28]) as well as parabolic PDEs, lika. Classification Criteria
those considered in this work, which underlie most diffusion A pixel's net intensity change is not the only criterion that

models. While a complete discussion of such previous Workljr?ay be used to decide when to classify it during the diffu-

vl\gell t;]eyond (;h_e sr(]:_opbe gf th}is paEir' we do W:fhbto point Ufon process. If an image contains edges that are not of uni-
that the trend in this body of work has generally beepre- ¢, contrast, then the main benefit of adaptive thresholding,

serve featured the image while denoising or otherwise Slm'namely avoiding a single constant threshold for the entire image,

plifyir:jg Ithehi_mﬁ%e l‘,jt‘;"ta' tWIe 90 again;st this tre_nd bé/ considgril;? counteracted in this scheme by requiring a single constant
a model which deliberately smears features in order to quic )ﬁange in diffused intensity (another threshold) to decide when

reveal their locations within the image. In short, our model is dﬁ'nd how a pixel should be classified. In cases where a single
signed todetect features a manner which allows us to quickly 5,6 |l not suffice near all image edgea better criterion
construct actual segmentations of the image (these steps wilw

. . . Suld be to check whether a pixel's diffusing intensity value
discussed in the sections that follow) rather than to preserve ff'saéonsistently increasing or decreasing. In other words, rather
tures and eventually obtain a pseudo-segmentation !

than waiting for a fixed change in the diffused intensity to decide
whether a pixel is a light pixel near the boundary of a dark re-
gion or vice-versa, one waits for a fixed period of time in which
In this section we discuss how to use the anti-geometric difie diffusion is monotonic at that pixel location.
fusion process described in Section Il for adaptive thresholding.The advantage of thresholding based on monotonicity is that
One straight-forward idea is simply to use an anti-geometthis criterion is not sensitive to the magnitude of the intensity
cally diffused version of the original image as a thresholdinghanges but is nevertheless robust to noise. To see this, imagine
surface and then classify the image pixels accordingly. This agn isolated bright pixel of noise on a dark background but near
proach, however, suffers from an arbitrary choice of diffusiothhe boundary of a large bright region. The pixel's diffusing in-
time (which relates to a particular scale). tensity value will initially decrease by a huge amount as the
Rather than using a traditional thresholding surface, we ineise is smoothed away. Soon, however, the pixel's intensity
stead seek to classify pixedsiring the diffusion procesgarly  will start increasing due to the diffusion of the large bright re-

whereV?2] denotes the Hessian éf Experiments contrasting
the the anti-geometric, geometric, and isotropic flows al
demonstrated in Section VI-A .

I1l. THRESHOLDING VIA DIFFUSION

2We use the term pseudo-segmentations to refer to segmentation-like effeéThe danger of merely choosing a tiny jump that is small enough to work for
which comes from running an edge-preserving diffusion long enough. even the faintest image edges is sensitivity to noise.
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Fig. 2. Thresholding via anti-geometric diffusiareFT COLUMNS: [top] two different shaded images, [bottom] thresholded images obtained with a fixed threshold.
RIGHT COLUMN: [top] partial thresholding of either image using anti-geometric diffusion, [bottom] final thresholded image by extending the classifidaiivers ob
above.

gion nearby. Although the latter increase in intensity may hieate the resulting number of spurious falsely detected edges
much less than the initial decrease in intensity, the initial dés to convolve the image with a Gaussian kernel before finding
crease happens quickly whereas the latter increase may contitingelaplacian zero crossings (the famaasglacian of Gaussian
steadily for along time. Thus, classification based upon absoluatgerator). This, of course, is also related to the linear heat flow
intensity changes would erroneously classify the noise as parsofce running the linear heat flow for tiniés equivalent to con-
a bright region whereas classification based upon monotonicitylving with a Gaussian of varianeé = 2t (see [29]). The main
would correctly classify the noise as part of a dark region.  disadvantage of using the linear heat flow for this purpose is that

Finally, pixel classification need not be based upon just oitedistorts the shape of the Laplacian zero-crossings due to the
criterion. A combination of monotonicity requirements and aleurvature based shrinkage of the image level sets. This effect,
solute change in intensity requirements can yield added robushich leads to bad edge localization, is exclusively due to the
ness in the presence of noise. geometric component of the linear heat flow, which is discarded

in the anti-geometric model.

B. Robust Edge-Detection

The fact that pixels near edges are classified quickly durifg EXtending Early Classifications
the anti-geometric diffusion process means that a short applisVe may capitalize on this edge-detecting behavior by noting
cation of this diffusion/classification procedure essentially cafhat early in the diffusion/classification process, whatever
tures most, if not all, of the interesting edges and therefore aotgions remain unclassified are likely to be homogeneous.
as an edge-detector. However, unlike more traditional edge @®snfident classifications of such regions may therefore be
tectors, which typically apply gradient-based operators to antrapolated from their boundaries (i.e., neighboring pixels that
image in order to locate edges directly, we apply smoothingere classified during the early stages of diffusion). We may
operators to the image, which have better robustness to ndiserefore speed up the classification process by only running
compared to gradient-based operators, in order to locate regitmes anti-geometric diffusion for a short amount of time or
on opposite sides of edges and thereby capture edges indirecthyil a given percentage of the pixels are classified, and then
Two additional advantages to this type of edge detection are teatending these classifications to the remaining pixels. For
edge points are properly modeled as lylmgfween pixeland adaptive thresholding applications, these classifications are
that we generally obtain better connectivity since we are capinary (white/black, 0/1, or foreground/background). A simple
turing entire regions (with connected boundaries) as opposedvay to extend these binary classifications into the unclassified
point measurements which later have to be linked together. regions is by region growing: unclassified pixels adjacent to

A deeper insight into the edge-detecting behavior of this divhite pixels become white pixels while those adjacent to black
fusion/classification procedure may be obtained by first consigixels become black pixels (repeating as necessary until all
ering thdinear heat flow. Zero-crossings of the Laplacian of th@ixels are classified).
image data are often used as indicators of an edge, and in th&his method is illustrated on a synthetic image in Fig. 2. The
linear heat flow, it is precisely the sign of Laplacian that govirst two columns show a shaded image of 16 squares on the
erns the diffusion direction. Therefore, near a zero-crossing, ttog followed by a thresholded version on the bottom (classified
diffusion will increase intensities on one side and decrease ina a fixed threshold). The shading is less severe in the second
tensities on the other side of the associated edge. The problestumn, allowing a fixed threshold to capture more squares than
with using the Laplacian, which corresponds to the instanti-the first column. In both cases, however, it is impossible to
neous effect of the linear heat flow, is its sensitivity to noise &xtract all 16 squares with a simple threshold. The top of the
a second order differential operator. A standard remedy to elithird column shows bright and dark pixels (shown in white and
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Fig. 3. Presegmentation via anti-geometric diffusiamrT: Original Cardiac MRI.MIDDLE: Image oversegmented with a short run of diffusion and low
thresholding toleranc®IGHT: Image undersegmented with a long run of diffusion and high thresholding tolerance.

black) on opposite sides of the square boundaries as detectedige the effect of oversegmentation but with two prices. First,
a very small amount of anti-geometric diffusion (this output islassification of a given percentage of image pixels requires
the same foboththe mildly and severely shaded images). Thesaore diffusion (and therefore more time and computation) when
classifications are then extended by simple region growing taore restrictive classification conditions are imposed. Second,
obtain the final image on the bottom of the third column. less prominent features may not be detected, causing an un-

For the more general problem of segmentation (where wersegmentation of some regions in the image. Fig. 3 demon-
assume more than just two region types), we propose a vstyates the extremes of oversegmentation and undersegmenta-
different procedure to extend early classifications to remaininign by utilizing drastically different classification parameters
unclassified pixels. In fact, for segmentation, we do not regaoth a cardiac MRI image (regions in category (1) are shown in
pixels away from edges that were not “detected” during the inithite, regions in category (2) are shown in black, and regions
tial diffusion/classification step as unclassified, but instead vire category (3) are shown in gray).

regard such pixels as belonging to yet another class. However, because the regions in categories (1) and (2) lie on
opposite sides of image edges and because regions in categories
IV. A METHOD FORFAST SEGMENTATION (3) are unlikely to contain or border any edges, we should be

. . . . able, through strategic grouping and merging of these regions,

In this section we outline a procedure that uses anti-geometric . . .

e : . i . . 0 obtain decent coarser segmentations of the image (thereby
diffusion in conjunction with region merging for fast segmen- : . .

. : : = . addressing the problem of oversegmentation). We suggest using

tation of greyscale images that cannot be easily classified into . ; 2 :

energy based region merging criteria as suggested both in [30]

merely foreground and background (and therefore are not apy [31]

propriate candidates for adaptive thresholding). )

The procedure begins in the same manner discussed in 18(':]: we approximate the image dafawithin each regionfz;

tion IlI-B, namely, we run anti-geometric diffusion for a shor yits meany,;, then we may measure the total squared efror

amount of time and then classify pixels into three different cate?tween our piecewise constant segmentation and the original

gories: (1) pixels whose intensities diffused significantly (and/(IJr
monotonically) upward, (2) pixels whose intensities diffused 2
significantly (ya)ndyor mon(otznrﬁcally) downward, and (3) pixels E= Z Ei where B = ;(I — ) ©)
which did not diffuse significantly. However, instead of consid- ’ '
ering pixels in categories (1) and (2) as classified and pixelsTtis total error will generally increase (but never decrease) if
category (3) as unclassified, we regard all pixels as “equallye merge any two region8; and R; into a single new region
classified. We do so by giving each connected region(re- R;; = R; U R; and replace the old means and; by the
gardless of which category (1)-(3) it initially belonged to) @ew meanu,; of I over the combined regions. The nonnegative
unique labet. We now have an over-segmentation of the imagehange in the erroA E;; is given by
In other words, this use of anti-geometric diffusion essentially
acts as a region splitting operator, breaking up the initial image AE;; = E;; —E;,—E;, where Eij:Z(I — uij)z. (6)
domain into smaller regions. Ri;

Note, that the degree of oversegmentation depends greatly
upon the specific parameters (such as minimum net intensftySensible criterion is then to merge the regiafs and R,
change or monotonicity requirements) used for classificatid¥nichyield the smallestincreageF;; in the total squared error.
into categories (1) and (2). Parameters requiring only ming&ince this is done, we have reduced the number of regions in
changes during diffusion for classification into categories (PHr Ségmentation by one. We may then repeat this procedure as
or (2) result in rapid segmentation of many small-scale featur@@ny times as necessary until the desired number or regions
including both desired features and noise. Parameters requiringtjs piecewise constant approximation is naturally coupled to our diffusion
more significant diffusion behaviors prior to classification remodel as the heat flow drives initial data toward its mean.
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is obtained, or until we detect a significant jump in the total The iterative approach has several distinct advantages. First,
squared error. While it might seem at first glance that the numbtarative splitting and merging provides strong robustness to
of pairs to check is quite large, itis really not as bad as it seeneboices of classification parameters. Second, applying the
The reason is that we need not consider all possible pairs Hiffusion within a specific region forces the model to detect
only regions which are neighbors (so that merging them eliniisoft” edges or fine scale features that may have been missed
nates a connected region from the segmentation). This redulbgghe global diffusion.

the complexity of the search from(n?) to O(n) wheren is the

total number of regions. V. IMPLEMENTATION

Undersegmentation cannot be remedied by region MET9ING , this section we discuss the implementation of the models

but_can be counteracted by further spllttl_ng of "?'“a"y detecte_ Iscussed in the previous sections of the paper. We pay special
regions. In particular, we propose applying anti-geometric di-

' . A . 2 ttention to implementation details that will result in fast algo-
fusion exclusively within regiong?; exhibiting large squared rithms

errorskE; (since such regions are likely to constitute the under-

segmented regions) in order to refine the classification of pixels |mplementation of Diffusion Based Splitting Algorithm

within these regions. This time features may be detected that

were missed the first time around due to interference from struc—The numerical implementation of anti-geometric diffusion

tures in nearby regions consists of two steps per iteration of diffusion. First, the image
After such refined splitting, the image is probably overse /alues at each pixel location, [j] are actually diffused for one

mented again and requires another merging step to reduce H@Step o yield new d|ffus_e_d |_mage_val_ues. Seconpl_, pixels
number of regions. Since the merging procedure is designed"fB'Ch meet specified classification criteria are classified ac-
merge those regions that contribute to the squared errtgase cording to their diffusion behavior. Once a pixel has been classi-
(whereas the splitting procedure is designed to further partitigﬁd’ Its cIasgﬂcapon is maintained. ,The algorithm |terate's.unt!l

regions which contribute to the squared errortines), the fol- & stop condition is met; the authors’ preferred stop condition is

lowing merging step will not merely “re-assemble” the regiong?;‘;:i‘ﬁzzosen percentage of the pixels in the image have been

that were just further split using the diffusion model. This intu The discrete implementation of each anti-aeometric diffusion
ition leads us to an algorithm (based on those discussed in [301]&p Utilizes a staEdard forward Euler step 9

that integrates global splitting, merging, and local splitting in
an iterative manner to find more accurate segmentations of an Ii .t + A#] = I[i, j, 1] + At I, [i, 5,1] @)
image. The overall algorithm is summarized as follows. o o e

where
1. Use anti-geometric diffusion to split A+2B4C
the entire image domain into smaller re- Iy =T T2 T g where
gions. 2l gt + Il g, 1]
2. Merge pairs of regions in the image A =I2[i, j, 1 i, 4, 1],
until there are r (a desired number chosen B =1.[i,j,t|L,[i, ,t) Lsy[4, 5, t], and
in advance) regions left or until thg C:Ij[i./ji]lyy[@j?t]. 8)
total squared error becomes too high.
3. Split the region with the highest Note that because the diffusion is well-posed, there is no need to
squared error using anti-geometric dif- formulate generalized solutions that require special finite differ-
fusion exclusively within this region. encing schemes. Standard central differences may be employed
4. Repeat steps 2 and 3 until the total to compute the spatial derivatives in (8) needed for the Euler step
squared error converges (for example, when (7) with stable results (just as they may be used in the discrete
AFE/E becomes small). implementations of both the linear and geometric heat flows)

2Ax
likewise for I,[4, j, ],

This iterative algorithm is demonstrated in Fig. 4. We use the I..[¢, j,t] =
undersegmentation shown in Fig. 3 as a starting point to demon-
strate the robustness of this method, even though starting with
the oversegmentation would yield convergence in fewer itera- f,,, [i,7,1] =

tions with better results. The middle image in each row shows (Az)? /
the result of merging the current segmentation down to 20 re- likewise for Iy, [i, j,t], and

gions (the constant greyscale value displayed within each region ;- li,j,1] = A-B where

corresponds to the mean value of the data within that region). ="’ ANz Ay’

The middle images are followed, in the right column, by images A=Ili+1,j+1,t]+I[i—1,j—1,¢, and
which display the value of the normalized squared error within B=Ili+1,j— 1,0+ 1[i—1,j+1,4.

each of the 20 regions. The region with the highest squared error

(shown in white) is then split via additional anti-geometric dif- The stability condition for choosing\¢ is similar to that for
fusion, to yield the new segmentation on the left of the next rotlie geometric heat flow; namelx¢ should be chosen such that
(below). At < 5(Ax)?.
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Merge Split
— .
62 regions 20 regions
Split Merge ‘ Split
C— — —
2057 regions 20 regions E =228%10"
Split Merge ‘: Split
433 regions 20 regions E =1.96+*10"
Split Merge ‘ K Splhit
pe— JE— 1 JEEN
458 regions 20 regions F=1.76+10"
Split Merge ' ‘:
C— —

486 regions 20 regions

Fig. 4. Six iterations of splitting and merging of cardiac MRI (Fig. 3); each row is one iteratiert][Image after splitting. IDDLE] Image after merging.
[RIGHT] Merged image with regions colored I#; . Note that the white region (highet ) at the end of each row is the region split at the beginning of the next row.

After each diffusion step, we check each unclassified pixel telow the diffused value by a given tolerance (in this manner,
see whether or not it may be classified. Various classificatidhe diffused image is used like an adaptive thresholding surface).
criteria are discussed in Section Ill. The simplest criterion is tnother criterion is to track the length of time a pixel’s diffused
check whether a pixel’s original intensity value lies above aalue changes monotonically. If this time exceeds a pre-deter-
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mined threshold, the pixel can be robustly classified. Furthef adjacent regions is a matter of visiting each node and
these two criterion can be combined. (In our experiments, walculatingA E;; for each of its adjacent nodes.
combine the two criteria in a linear discriminant as discussed inThe key to implementing the region merging procedure

Section VI.)

quickly is to realize that one need not scan through the image

It is important to reiterate that not every pixel gets classifiedata over and over again to compule;; for each pair of
at the same time. Some are classified earlier in the diffusiadjacent regiong?; and R;. Only one initial scan through the
than others depending upon the nature of the data, the behainwage data is needed during the construction of the initial graph
of the diffusion, and the exact classification criteria employedtructure to compute a set of statistids, S;, Q;, ui, andE;
Once a a pixel is classified, it continues to diffuse, but is nevéar each initial regionR;.
reclassified. To avoid re-checking or re-classifying a pixel, the « 4;: number of pixels (area) within regiaR;;
algorithm maintains a list of unclassified pixels. When a pixel « §;: sum of image intensities within regia®;;
is classified, it is removed from the list; the algorithm only at- « ();: sum of squared image intensities within regién

tempts to classify pixels remaining on the list.

B. Fast Implementation of Region Merging

* u; = S;/A;: mean image intensity within regiaR;;
e B, =Q; —2u;S; + u?Ai: squared error for regioR;.
From then on, the statistics of a proposed redign= R; U R;

In this section we outline one possible implementation of rernay be immediately computed using the statisticRpandR;
gion merging, paying careful attention to details which miniwithout revisiting the image data by using the following rela-
mize the computational expense of this portion of the overdibnships.
segmentation algorithm. Recall that the region merging step is « Ajj = A+ Aj;
performed after pixels have been classified according to the be-. Sij = S+ 8j;
havior under anti-geometric diffusion. This step is only nec- « Qij = Qi + Q;;

essary for segmentation, not adaptive thresholding for which « ;. = 5;./4
the classifications obtained are already sufficient to construct « £, = Q;; — 2;;S; + n?;A

g
ij

the desired binary image. The overall region merging procedure s AE;; = S;u; + S;p; — Sijpi;.

consists of the following steps.

1. Initially represent the image data

within each connected region R; of iden-
tically classified (or “unclassified”)
pixels by the mean intensity w; of the

original image data within that region.

Then determine the squared error E; be-
tween this representation and the original
image data for that region.

2. For each pair of adjacent regions R;

and R;, calculate AE;; (the increase in
the total squared error) that would result

Technically, we see from this last relationship that adlyand

S (which automatically giveg;) need to be computed and up-
dated for each region since these are the only quantities needed
to evaluate thehangein total squared error. However, it is also
useful to know the actual value of the total squared error (to de-
cide if additional splitting of regions is necessary or to decide
when to stop merging regions for example), and thus one might
as well keep track of); and E; since the extra computational
expense is negligible.

The full merging procedure, if carefully implemented as de-
scribed here, i©)(n?) assuming we continue merging until we
are back to a single region (of course one should stop earlier
than this). If we start with every pixel in an image representing

from merging R; and R; into a single new a separate region, then this is an expensive procedure on a stan-

region R;;. dard 256x 256 image which would contain over 65 000 regions.
3. Merge the pair which contributes the This is why using anti-geometric diffusion for an initial region
smallest total error increase AE;;. splitting allows us to perform the merging very quickly. Even

if the output of this region splitting technique yields 1000 in-
dividual regions, we are still considering an operation count on

i ) ) ) the order of 1 million (which only takes a second or two on most
To save time during the merging process, the image daig,, ters today) compared to an operation count on the order

should be stored in a data-structure that allows for the fagt, \jjion if we start with each image pixel: a full three orders
calculation of AE;;. The authors’ preferred datastructur%f magnitude worse!

is a graph, where each node corresponds to a region in the
image and a connection between two nodes indicates that the
corresponding regions are adjacent in the image. Each node of
the graph contains a linked list of all the pixels in the region. In this section we compare anti-geometric diffusion to sev-
An array of such nodes, where each node is a datastruct@fal other diffusion models and a nondiffusion-based splitting
containing the statistics described below and a list of adjacéRedel.

nodes (i.e., the connections of the graph), represents the entire . o

graph in a manner that allows random access of the nod@s. Comparison of Diffusion Models

The graph is constructed while performing an initial connected In Fig. 5 we illustrate the contrasting behaviors of the linear,
component analysis of the classified and unclassified pixetgeometric, and anti-geometric heat flows on a cardiac MR
Once the graph has been constructed, searching for the jraiage (using equal diffusion times in each case). In the top row

4. Repeat steps 2 and 3 as desired.

VI. COMPARISONS
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Fig. 5. Comparison of Linear, Geometric, and Anti-Geometric Diffusjsop Row Original and diffused versions of a cardiac MR imag®{rom RowW Some
level sets of the original and diffused images.

we see that both the linear (center left) and anti-geometric (far

right) diffusions result in significant blurring of the edges while -
the geometric diffusion (center right) causes very little blurring

of the prominent edges. Note, though, that the geometric dif-

fusion caused a significant distortion in thkapeof the edges 6 ANG i dLi Diffusion for Adaotive Thresholdi

| . nti-Geometric an Inear Dirtusion for aptive resnolding.
even though the Ed_ges_ Wer_e not S_everely b'P”ed_ as _they V\}: ] Cross-section of binary ellipsoid imagemipDLE] Image partially
by the anti-geometric diffusion. This shape distortion is due taresholded using the linear heat flowigHT] Image partially thresholded
the curvature based shrinking of the image level sets incurr¢sing the anti-geometric heat flow. Pixels that diffused significantly upward

- . llipse interior) are labeled black, pixels that diffused significantly downward
by the geometric heat flow. By comparing level sets of thgllipse exterior) are labeled white. The regions that did not diffuse significantly

geometric and anti-geometrically diffused images with those @hd therefore cannot be confidently classified) are labeled grey. See the text
the original image (more precisely, the level sets whose valugsmore details about this figure.
lie close to the midpoint between the intensities on opposite
sides of the prominent edges) we see in the bottom row thi@se and 255 outside the ellipse) as black and pixels that dif-
the anti-geometric diffusion has done a better job of preservifigsed downward more than ten values as white (other pixels
the shapeof prominent image structures (particularly the tw@re shown in gray). Both diffusions smear the bright intensi-
bright blood pools) despite the fact that it has significantlffes from outside the original ellipsoid into the interior of the
blurred the edges. This can be observed even in the top rowélljpsoid, allowing for equally easy classification of the inte-
noting that it is still possible to make out the original shape dfor pixels (black), whereas the anti-geometric diffusion does a
the endocardium in the left ventricle (the boundary of the lowéetter job of smearing dark intensities from inside the original
white region) even though the boundary has been significan@lfipsoid into the exterior of the ellipsoid (particularly near the
blurred. In both the geometric and linear cases, the origirsighly curved endpoints) allowing for much easier classification
shape has been lost (particularly the three concavities at 129Bexterior pixels (white). This is due to the fact that the linear
and 6 o’clock). heat flow has both a geometric and and anti-geometric compo-
Obviously, the anti-geometric flow is a much better moddlent and the inward shrinking of the ellipse boundary incurred
for smearing than the geometric heat flow. We also see from thi the geometric component counteracts much of the outward
above discussion that there are reasons for favoring it over gfgearing incurred by the anti-geometric component.
linear heat flow as well. We further illustrate the advantage of ) )
the anti-geometric flow over the linear heat flow in Fig. 6 by?- Comparison of Segmentation Methods
partially thresholding a synthetic volumetric image of an elon- Inthis subsection we demonstrate the effectiveness of the pro-
gated black ellipsoid on a white background (its central cropssed classification method on a set of synthetic grayscale im-
section is shown on the left) using adaptive thresholding surges with added noise.
faces generated by both the linear (middle) and anti-geometricTo validate the segmentation method, anti-geometric and
(right) heat flows (equal diffusion times). The thresholded inisotropic diffusion are each used in conjunction with region
ages show pixels whose intensities diffused upward by mareerging to segment 128128 synthetic images of squares
than ten greyscale values (original values were 0 inside the ef-decreasing size from added Gaussian noise of increasing
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C-Means

32 x 32 blocks, & = 0.1 noise.

Amti-Geometric Diffusion Tsotropic Diffusion

16 x 16 blocks, & 0.1 noise. Anti-Geometric Diffusion Tsotropic Diftusion C-Means

32 x 32 blocks, & = 4.0 noise. Anti-Geometrie Diffusion Tsotropic Diffusion C-Means

Fig. 7. Synthetic greyscale images segmented using anti-geometric diffusion, isotropic diffusion, and C-Means clustering. Note: Imageevdlees hav
normalized to increase contrast.

variance. For comparison, we use the C-Means algorithmitoage pixels are grouped into either 30, 50, or 200 clusters,
cluster pixels based on a feature vector that includes intendigsed on the noise level of the image. The parameters for both
value, andr coordinate, ang coordinate. The intensity valuemethods are chosen so that the resulting oversegmentations
is weighted by an empirically chosen factor ranging fromontain similar numbers of regions, and never more than 5000
10 to 50 based on the noise level of the image. Though wegions. In the first row of the figure, all three methods are
have defined a region to include a set of (4-connected) pixetgmpetitive due to the large object size and the low noise.
C-Means may classify nonadjacent pixels as belonging kowever, note in the second row of the figure that the C-Means
the same cluster, resulting in over-segmentations similar neethod undersegments many of the adjacent objects with
splitting via diffusion. Again we employ region merging tosimilar intensities (for instance, see the left and right borders of
compensate for this effect. the image). In the noisy image in the third row, the differences
Fig. 7 shows several examples of images from this expeare more pronouced. Even though edge localization is difficult
ment. In each row, we first show the original grayscale imagdue to the noise, anti-geometric diffusion is better able to
followed by the image segmented via iterative anti-geometrsegment each of the 16 regions.
diffusion and region merging, iterative isotropic diffusion The graphs in Fig. 8 shows the percentage of undersegmented
and region merging, and finally C-Means clustering angbjects in the above experiment as a function of the size of the
region merging. For diffusion-based splitting, the images aobjects and noise variance for the three segmentation methods
diffused until 30% of the pixels are classified using the linearsed in this validation. We define an undersegmentation as the
discriminant criteriaA T + ct,,onotone > 1 With the coefficient omission of a border between two regions, resulting in one less
¢ = 0.3 and a threshold” = 1.0. (For the first iteration, these region that is expected. Since the expected number of regions is
parameters may be different to account for the more glokfaded, each undersegmentation is paired with an oversegmenta-
influences in the diffusion.) Region merging is used to redud®n (the insertion of an extra border resulting in one extra re-
the number of regions; the final number of regions is chosgion). Graph (a) demonstrates that region splitting via diffusion
by counting the number of regions in the original image. This robust to varying object sizes, even when the objects have an
process is then iterated until total squared energy decreaassa of 4 pixels. Further, anti-geometric diffusion can more con-
by less than 99.99% per iteration. For C-Means clustering, thistently localize edges when compared to isotropic diffusion.
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Fig. 8. Graph of undersegmentations per region as a function of (a) increasing block size and (b) increasing noise variance.

Fig. 9. Text imagellerT] thresholded via two different fixed thresholdaipDLE] and via anti-geometric diffusiorrRjGHT].

Anti-geometric diffusion as a splitting operator consistently dis- In Fig. 10, the 2-D anti-geometric heat flow (3) is used in con-
tinguished between regions even when high noise levels malection with region merging to segment five different grayscale
edge localization difficult, even when using isotropic diffusionimages. The original images are shown on the left followed
as shown in graph (b). For all these experiments, the averdyethree segmentations ranging from large to medium to small
execution time for the diffusion and region merging algorithmsumbers of regions (i.e., fine to medium to coarse scale), each
was 40.4 seconds when using anti-geometric diffusion and 3@ifie displaying the mean image intensity within every region.
seconds when using isotropic diffusion. This is more than four | Fig. 11 we compare the segmentation of the bone CT from
times faster than an average time of 166.2 seconds when usifg 10 with a segmentation using a C-Means clustering al-
the C-Means algorithm and region merging. These experimegisrithm as the splitting operator, as in Section VI. In this ex-
were simulated using C++ on a Pentium IV 900 MHz processgmple, the two methods give similar segmentations, although
running the Linux operating system. anti-geometric diffusion localizes the edges better (for instance,
Lastly, we note that it may be possible to achieve better rgre edges of the thin, bright bone cross sections in the center of
sults using the C-Means algorithm if we were to include it in aghe image). Further, the diffusion-based method runs in far less
iterative frameWOfk, as we have for the diffusion-based Sp”ﬁme (79 seconds for the diffusion-based method Compared to
ting operators. However, due to the high execution times 894 seconds for C-Means clustering).
the C-Means algorithm, an iterative approach would be far IessIn Fig. 12, the 3-D anti-geometric heat flow (4) in conjunction

practical. with region merging to segment a volumetric cardiac MRI se-
guence (two spatial dimensions and one time dimension). Both
the diffusion and the region merging were performed fully in
In this section we demonstrate the use of anti-geomettlree dimensions. The results, however, are shown as a series of

diffusion for classification of regions in grayscale image<-D images. Each row represents one particular slice in time.
starting with a low-contrast and heavily shaded image dhe original image is on the left, followed by two segmen-
handwritten text shown in Fig. 9. As seen in the two middiations. The first (middle) segmentation is obtained automati-
images, the shading makes it impossible to completely separeadly by merging down to 10 volumetric regions. The second
the text from the background using flat thresholds, while adafright) segmentation is obtained by user-interactive splitting and
tive thresholding using anti-geometric diffusion successfuliyerging of the middle result down to 7 regions. (For all the ex-
separates the two regions, as seen on the right. amples, the final number of regions is chosen empirically.)

VII. APPLICATIONS AND SIMULATION
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Hip CT Image 100 regions 50 regions 10 regions

-

Cardiac Ultrasound 100 regions 20 regions 10 regions

100 regions 20 regions 6 regions

400 regions 50 regions 10 regions

Horses and scenery 100 regions 50 regions 15 regions

Fig. 10. Greyscale images segmented using anti-geometric diffusion and region merging.

The user-interactive stage demonstrated in Fig. 12 involves a VIIl. CURRENT AND FUTURE RESEARCH
user clicking with the mouse on a particular region to be further
split or by clicking on a pair of regions to be merged. Such in- The fact that piecewise constant segmentations governed by
teraction is helpful for clinical segmentation because mergimginimal total squared error do not always represent segmenta-
regions according to their squared error does not always cortiens perceived by the human visual system motivates one of
spond to the segmentation desired by a trained cardiologist. current research directions. Representing the image data within
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Tip CT Image Segmented via C-Meang Segmented via Diffusion
Fig. 11. Grayscale image of a bone CT segmented using two methods. The C-Means algorithm executed in 494 seconds while the Diffusion-based method took

79 seconds.

Fig. 12. Two frames of a time series cardiac MR Image segmented using anti-geometric diffusion and region mergih@riginal image. MIDDLE]
Automatically segmented image (10 regions) using anti-geometric diffusion and region merging] Segmented image (7 regions) after user directed splitting
and merging corrections to previous segmentation.

each region by a linear or smooth function rather than a con-We further note that total squared error is not the only criterion
stant would yield a much more flexible segmentation strategyne could use for region merging. In fact, it is not even necessary
In this manner, segmentations which resemble those obtaiiedse anenergy based criterion. Zhu and Yuille[31], forexample,
using the Mumford-Shah [32] functional may be obtained muckiho utilize a energy based upon Minimum Description Length in
more quickly when compared to the numerical methods us#tir region competition algorithm, pointoutthe popular Fisher’s
to obtain true solutions of this functional (including the receriest [36], a statistically based region merging criterion.
curve evolution approaches proposed in [33], [34] based uporFinally, we are working to generalize this model for vector-
the level set methods of Osher and Sethian [35]). We are cM@lued (specifically color) images. The classification cues taken
rently exploring these more general piecewise representatidi®n the diffusion behavior of each pixel (monotonicity for ex-
of the image data. ample) are currently based upon the well-ordered property of
One point to make in comparing piecewise smooth versiofgalar image intensities. Vector spaces lack this property; so a
of our segmentation procedure with Mumford-Shah Segmenggtferent method of classification will have to be developed if
tion is that we are able to avoid the penalty on the measuredfliffusion model is to be used for segmenting vector valued
the region boundaries used in [32]. In our scheme, scale is H&AJes.
lated to the final number of regions in the segmentation rather
than the lengths of the region boundaries. This facilitates more
accurate detection of object boundaries that contain corners ovWe have outlined a novel method for adaptive thresholding
other fine scale details. and segmentation using an anti-geometric diffusion model

IX. CONCLUSION
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to capture regions on opposites sides of prominent edges 2]
greyscale images. In contrast to more traditional anisotropic
diffusion techniques, we abandon the goal of preserving edgqﬁl
but seek instead to maximally smear them in order to detect
their adjacent neighborhoods. Doing the detectioning the — [24]
diffusion avoids the ambiguity of deciding when to stop before[25]
utilizing the processed image. Since this diffusion/classification
procedure acts as a region splitting operator, we saw that it coulg®!
be used together with region merging to obtain fast piecewise
constant segmentations. We discussed the efficient implemere7]
tation of these methods, and have shown their application to a
variety of images, including both 2-D and 3-D examples. 28]

REFERENCES

[1] C. K. Chow and T. Kaneko, “Automatic boundary detection of left ven-
tricle from cineangiogramsComput. Biomed. Resol. 5, pp. 338-410,
1972.

Y. Nakagawa and A. Rosenfeld, “Some experiments on variable thresh[31]
olding,” Pattern Recognitvol. 11, no. 3, pp. 191-204, 1979.

N. Otsu, “A threshold selection method from gray level histogram,”
|EEE Trans. Syst., Man, Cyberwol. SMC-8, pp. 62-66, 1979.

J. Kittler and J. lllingworth, “Minimum error thresholdingPattern
Recognit, vol. 19, no. 1, pp. 41-47, 1986.

D. Grennhilland E. R. Davies, “A new approach to the determination of [33]
unbiased thresholds for image segmentationPrioc. Int. Conf. Image
Processing Applicationd 995, pp. 519-523.

S. D. Yanowitz and A. M. Bruckstein, “A new method for image seg- [34]
mentation,”Comput. Vis., Graph., Image Proceseol. 46, no. 1, pp.
82-95, 1989.

F. H. Y. Chan, F. K. Lam, and H. Zhu, “Adaptive thresholding by vari- [35]
ational method,lEEE Trans. Image Processingol. 7, pp. 468-473,

Mar. 1998.

J. R. Parker, “Gray level thresholding in badly illuminated images,” [36]
|EEE Trans. Pattern Anal. Machine Intelivol. 13, pp. 813-819, Aug.
1991.

R. M. Haralick and L. B. Shaprio, “Image segmentation techniques,
Comput. Vis., Graph., Image Processl. 29, pp. 100-132, 1983.

N. R. Pal and S. K. Pal, “A review on image segmentation techniques
Pattern. Recognitvol. 26, pp. 1227-1249, 1993.

J. Sauvola, T. Seppanen, S. Haapakoski, and M. Pietikainen, “Ade
tive document binarization,” iRroc. Int. Conf. Document Analysis and
Recognitionvol. 1, 1997, pp. 147-152.

O. D. Trier and T. Taxt, “Evaluation of binarization methods for docu
ment images,|EEE Trans. Pattern. Anal Machine Intellol. 17, pp.
312-315, Mar. 1995.

A. P. Witkin, “Scale space filtering,” ifProc. Int. Conf. Artificial Intel-
ligence 1983, pp. 1019-1023.

L. Alvarez, P. L. Lions, and J. M. Morel, “Image selective smoothing
and edge detection by nonlinear diffusion—I§TAM J. Numer. Ana)l.
vol. 29, pp. 845-866, 1992.

R. Carmona and S. Zhong, “Adaptive smoothing respecting feature di-
rections,”|IEEE Trans. Image Processingol. 7, no. 3, pp. 353—-358,
1998.
G. Unal, H. Krim, and A. Yezzi, “Feature-preserving flows: A stochasti¢s
differential equations’s view,” ifProc. Int. Conf. Image Proc. 20000l.
1, Sept. 2000, pp. 896-899.

R. Whitaker and S. Pizer, “A multi-scale approach to nonuniform di
fusion,” Comput. Vis., Graph., Image Process. Image Undersfadl.
57, no. 1, pp. 99-110, Jan. 1993.

B. B. Kimia and K. Siddiqgi, “Geometric heat equation and nonlineag?
diffusion of shapes and images, ®moc. Comput. Vis. Pattern Recogpnit. \
1994.

[29]
(30]
(2]
(3]
[4]
(5]

(32]

(6]

(71

(8]

[9]
[10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

1323

R. Malladi and J. Sethian, “A unified approach to noise removal, image
enhancement, and shape recovelfgEE Trans. Pattern Anal. Machine
Intell., vol. 5, pp. 1554-1568, 1996.

G. Sapiro and A. Tannenbaum, “On invariant curve evolution and image
analysis,”Indiana Univ. J. Math.vol. 42, 1993.

——, “Affine invariant scale-space/ht. J. Comput. Vis.vol. 11, pp.
25-44, 1993.

L. C. Evans, “Estimates for smooth absolutely minimizing Lipschitz ex-
tensions, Electron. J. Diff. Eqg.vol. 1993, no. 3, pp. 1-9, Oct. 1993.

P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,"EEE Trans. Pattern Anal. Machine Intel\ol.

12, pp. 629-639, July 1990.

B. B. Kimia, A. Tannenbaum, and S. W. Zucker, “Shapes, shocks, and
deformations I: The components of two-dimensional shape adn the re-
action-diffusion spacefht. J. Comput. Visvol. 15, pp. 189-224, 1995.

F. Meyer and P. Maragos, “Nonlinear scale-space representation with
morphological levelings,J. Vis. Commun. Image Represenbl. 11,

pp. 245-265, 2000.

R. Hummel, “Representations based on zero-crossings in scale space,”
in Proc. Comput. Vis. Pattern Recognit986, pp. 204-209.

J. M. Morel and S. Solimini\ariational Methods in Image Segmenta-
tion. Boston, MA: Birkhauser, 1995.

S. Zhu and A. Yuille, “Region competition: Unifying snakes, region
growing, and Bayes/MDL for multiband image segmentatid&EE
Trans. Pattern Anal. Machine Intellol. 18, pp. 884—900, Sept. 1996.

D. Mumford and J. Shah, “Optimal approximations by piecewise smooth
functions and associated variational problemSgmmun. Pure Appl.
Math,, vol. 42, no. 4, 1989.

T. Chan and L. Vese, “A Level Set Algorithm for Minimizing the Mum-
ford-Shah Functional in Image Processing,” UCLA, Los Angeles, CA,
CAM rep., 2000.

A. Tsai, A. Yezzi, and A. Willsky, “A curve evolution approach to
smoothing and segmentation using the Mumford-Shah functional,” in
Proc. Comput. Vis. Pattern Recogn2000.

S. Osher and J. Setbian, “Fronts propagating with curvature dependent
speed: Algorithms based on Hamilton-Jacobi formulatiodsComput.
Phys, vol. 79, pp. 12-49, 1988.

T. Philips, A. Rosenfeld, and A. ShelQ){log n) bimodality analysis,”

Pat. Rec.vol. 22, pp. 741-746, 1989.

Siddharth Manay (S'03) received the Ph.D. degree
in 2003 from the School of Electrical Engineering,
Georgia Institute of Technology, Atlanta.

He is now a Postdoctoral Fellow with the Vision
Lab at the Computer Science Department, Univer-
sity of California at Los Angeles. His research in-
terests are in the field computer vision, with a par-
ticular focus on partial differential equations. He is
currently investigating accurate schemes for compu-
tation of distance functions and invariant descriptions
of shapes.

Anthony Yezzi (M’'99) was born in Gainsville, FL, in
1972 and received the Ph.D. degree in 1997 through
the Department of Electrical Engineering at the Uni-
versity of Minnesota, Minneapolis.

After completing a postdoctoral research position
in the Laboratory for Information and Decision Sys-
tems (LIDS) at Massacusetts Institute of Technology,
he began his current position in 1999 at Georgia
Institute of Technology as an Assistant Professor of
electrical and computer engineering with an adjunct
appointment in biomedical engineering. He has also

Y. L. You, W. X. A. Tannenbaum, and M. Kaveh, “Behavioral analysiconsulted for a number of medical imaging companies including GE, Picker,

of anisotropic diffusion in image processindgEEE Trans. Image Pro- and VTI. His research lies primarily within the fields of image processing

cessingvol. 5, pp. 1539-1553, 1996.
[20]
fundamental equations of image processiAgch. Ration. Mech. Anal.
vol. 123, 1993.
[21]
curves via a function of curvature, | the classical cadeMath., Anal.,
App, vol. 163, pp. 438-458, 1992.

and computer vision. He has worked and continues to work an a variety
L. Alvarez, F. Guichard, P. L. Lions, and J. M. Morel, “Axioms andof problems within these fields including image denoising, edge-detection,
segmentatin and grouping, shape analysis, multiframe stereo reconstruction,
tracking, and registration. Much of his work is motivated by and directed
B. B. Kimia, A. Tannenbaum, and S. W. Zucker, “On the evolution ofowards problems in medical imaging. Two central themes of his research
in general are curve/surface evolution theory from differential geometry and
partial differential equations.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 6, 2008 at 19:51 from IEEE Xplore. Restrictions apply.



