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Abstract—In this work, we first address the problem of simul-
taneous image segmentation and smoothing by approaching the
Mumford–Shah paradigm from a curve evolution perspective.
In particular, we let a set of deformable contours define the
boundaries between regions in an image where we model the
data via piecewise smooth functions and employ a gradient flow
to evolve these contours. Each gradient step involves solving
an optimal estimation problem for the data within each region,
connecting curve evolution and the Mumford–Shah functional
with the theory of boundary-value stochastic processes. The
resulting active contour model offers a tractable implementation
of the original Mumford–Shah model (i.e., without resorting to
elliptic approximations which have traditionally been favored for
greater ease in implementation) to simultaneously segment and
smoothly reconstruct the data within a given image in a coupled
manner. Various implementations of this algorithm are introduced
to increase its speed of convergence. We also outline a hierarchical
implementation of this algorithm to handle important image
features such as triple points and other multiple junctions.

Next, by generalizing the data fidelity term of the original Mum-
ford–Shah functional to incorporate a spatially varying penalty,
we extend our method to problems in which data quality varies
across the image and to images in which sets of pixel measure-
ments are missing. This more general model leads us to a novel
PDE-based approach for simultaneous image magnification, seg-
mentation, and smoothing, thereby extending the traditional ap-
plications of the Mumford–Shah functional which only considers
simultaneous segmentation and smoothing.

Index Terms—Active contours, boundary-value stochastic
processes, curve evolution, denoising, image interpolation, image
magnification, level sets methods, missing data problems, Mum-
ford–Shah functional, reconstruction, segmentation, snakes.

I. INTRODUCTION

T WO popular applications of partial differential equations
in computer vision and image processing are found in the

problems of segmentation and image smoothing. For segmen-
tation, the technique ofsnakesor active contourshas grown
significantly since the seminal work of Kass, Witkin, and Ter-
zopoulos [14] including the development of geometric models
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based on curve evolution theory [6], [7], [19], [47] and the pro-
gression from edge-based models [6], [7], [12], [14], [15], [19],
[41], [42], [47] to region-based models [9], [27], [34], [48],
[51], [52]. For image smoothing, the technique of anisotropic
diffusion has become a widespread field of research ranging
from techniques based upon the original formulation of Perona
and Malik [29], [30] to curve and surface evolution methods
based upon geometric scale spaces [13], [16], [17], [35] and to
a number of recent techniques for color imagery and other forms
of vector-valued data [39], [40], [44]–[46], [50].

In general, the goal of most active contour algorithms is to ex-
tract the boundaries of homogeneous regions within an image,
while the goal of most anisotropic diffusion algorithms is to
smooth the values of an image within homogeneous regions
but not across the boundaries of such regions. We note that one
of the most widely studied mathematical models in image pro-
cessing and computer vision addresses both goals simultane-
ously, namely that of Mumford and Shah [22], [23] who pre-
sented the variational problem of minimizing a functional in-
volving a piecewise smooth representation of an image. Their
functional included a geometric term which penalized the Haus-
dorff measure of the set where discontinuities in the piecewise
smooth estimate would be allowed. Due to the difficulties as-
sociated with implementing such a term in a numerical algo-
rithm, one of the first practical numerical implementations of
the Mumford–Shah model was developed by Richardson [32]
and was not based upon the original functional but was based in-
stead upon a elliptic approximation of the functional considered
by Ambrosio and Tortorelli [3]. In this elliptic approximation of
the model, the exact location of boundaries between modeled
homogeneous regions was “smeared” into a set with nonzero
Lebesque measure, allowing the Hausdorff term to be elimi-
nated. The recent work by Shah [37] uses the modified boundary
indicator from this relaxed model as a conformal factor in a
geodesic snake model, allowing the resulting algorithm to yield
exact boundary locations.

In the first part of this paper, we present a curve evolution
approach to minimizing theoriginal Mumford–Shah func-
tional, thereby obtaining an algorithm for simultaneous image
smoothing and segmentation.1 In contrast to anisotropic diffu-
sion algorithms, however, the smoothing is linear, with edge
preservation based upon a global segmentation as opposed to

1A preliminary conference paper based on this work can be found in [43].
Ideas very similar to the work described here is a generalization of the work in
[9]. Later in this introduction we provide a few words discussing similarities
and differences with the work of Chan and Vese.
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local measurements based upon the gradient. The development
of this model is based upon both estimation-theoretic and
geometric considerations. In particular, by viewing an active
contour as the set of discontinuities considered in the original
Mumford–Shah formulation, we may use the corresponding
gradient flow equation to evolve the active contour. However,
each gradient step involves solving an optimal estimation
problem to determine piecewise smooth approximations of the
image data inside and outside the active contour. We obtain
these estimates by solving a linear partial differential equation
(PDE) for which the solution inside the active contour is de-
coupled from the solution outside the active contour. This PDE,
which takes the form of a Poisson equation, and the associated
boundary conditions come directly from the variational problem
of minimizing the Mumford–Shah functional assuming the set
of discontinuities (given by our active contour) to be fixed.
The same PDE and boundary conditions can also be obtained
from the theory of boundary-value stochastic processes. By
taking this latter approach, we obtain an algorithm that may be
regarded as a curve evolution driven by a continuum of solu-
tions to auxiliary spatial estimation problems, connecting the
theories of curve evolution and optimal estimation of stochastic
processes. This development may be regarded as an extension
of several recent region-based approaches to curve evolution
[9], [27], [48]. In particular, it naturally generalizes the recent
work of Chan and Vese in [9] who consider piecewise constant
generalization of the Mumford–Shah functional within a level
set framework.2

We note that region-based approaches in general, enjoy a
number of attractive properties including greater robustness to
noise (by avoiding derivatives of the image intensity) and initial
contour placement (by being less local than most edge-based
approaches). In contrast to most other region based techniques
however (including our own previous work [48], [49] and that
of Chan-Vese [9] and Paragios-Deriche [27]), which assume
highly constrained parametric models for pixel intensities
within each region, our approach employs the statistical model
directly implied by the Mumford–Shah functional. That is, the
image is modeled as a random field within each region, a model
that naturally accommodates variability across each region
without the need to model such variability parametrically. In
addition, while many region-based methods require a priori
knowledge of the number of region types (such as [9] which
assumes exactly two region types with two different mean
intensities or [48] which requires separate sets of curves to deal
with more than two region types), our Mumford–Shah based
approach can automatically segment images with multiple
region types (e.g., each with different mean intensities) without
such a priori knowledge.

In the second part of this paper, we generalize the data
fidelity term of the original Mumford–Shah energy functional
by substituting a spatially varying penalty for the traditional
constant one. This allows us to treat images in which the
quality of the measurements vary depending upon location
in the image. In particular, we are able to treat, as a limiting
case, images containing sets of pixels without measurements.

2The formulation in [9] can be viewed as the limiting form of (1) with� =1.

This “missing data” problem arises regularly in archived or
high speed motion picture films, damaged paintings, and
remote sensing and medical images with data dropouts due to
speckle and sensor data gaps. By applying this missing data
technique in a structured manner, we then develop a novel
approach for simultaneous image magnification, segmentation,
and smoothing, thereby providing a new application of the
Mumford–Shah functional. This technique constitutes a more
global approach to interpolating magnified data than traditional
bilinear or bicubic interpolation schemes, while still main-
taining sharp transitions along region boundaries. Furthermore,
the curve length penalty in our Mumford–Shah based flow
tends to prevent the blocky appearance of object boundaries
which is a symptom of replication-based schemes. In Fig. 1, we
illustrate these points by applying our magnification technique
to a noisy synthetic image [Fig. 1(a)]. We show in Fig. 1(b) the
blocky and noisy magnification of the original image based on
zero-order interpolation. In Fig. 1(c), we show a smoother but
blurry magnification of the original image based on bilinear
interpolation scheme. For comparison, in Fig. 1(d), we show
the magnified image based on our Mumford–Shah approach.
The smooth boundaries of the magnified image are the direct
result of the minimum length prior placed on the segmenting
curve while the smooth sinusoidal background of the observed
image is successfully captured by our PDE-based model for
interpolation. It is evident that our magnification approach is
better than these conventional image magnification techniques
by avoiding many of the processing artifacts such as blockiness
and blurring while at the same time, denoising the image.

In our work, we adopt the level set techniques of Osher and
Sethian [26], [36] in the implementation of our Mumford–Shah
active contour model. This numerical implementation tech-
nique, in conjunction with upwind, conservative, monotone
difference schemes [19], [25], [36], allows for automatic
handling of cusps, corners, and topological changes as the
curves evolve.

As mentioned previously, Chan and Vese [10], [11] have re-
cently and independently performed work very similar to ours.
The basic model and formulation outlined in their work and our
work are essentially the same. The differences lie in the algo-
rithmic implementations and extensions developed in this work
and their work. In [10], [11], multiphase level set techniques are
implemented to capture triple points and holes in a very elegant
manner. This allows one to capture up toregion classes using

level set functions. In this work, we employ more standard
level techniques and propose, instead, a hierarchical method to
capture multiple regions and triple points (see Section III-D).
An additional point of divergence comes from our extension of
the basic model to images involving missing data and to simulta-
neous magnification, smoothing, and segmentation. We should
point out, however, that our treatment of missing data shares a
similar flavor with some other recent work by Chan and Shen
on image inpainting [8].

This paper is organized as follows. In Section II, we present
the Mumford–Shah model, its interpretation as an estimation
problem, and the basic formulation of our curve evolution ap-
proach for simultaneous image segmentation and smoothing. In
Section III, we present several progressive enhancements and
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Fig. 1. Three-fold magnification of synthetic data: (a)75� 75 original image; (b)225� 225 magnified image interpolated by zero-order hold; (c)225� 225

magnified image obtained by bilinear interpolation; (d)225� 225 magnified image based on the Mumford–Shah model.

modifications to this initial algorithm to improve convergence
and to handle multiple junctions. In Section IV, we extend the
application of our model to one that can also handle images with
missing data. The application of our model as an image magni-
fication technique is then presented as a structured case of the
missing data problem. Finally, we conclude in Section V with a
summary of the paper and some further research directions that
our formulation and interpretation of the Mumford–Shah func-
tional suggests.

II. M UMFORD-SHAH FORMULATION AS A CURVE

EVOLUTION PROBLEM

The point of reference for this paper is the Mumford–Shah
functional3

(1)

in which denotes the smooth, closed segmenting curve,de-
notes the observed data,denotes the piecewise smooth approx-
imation to with discontinuities only along , and denotes
the image domain [22], [23]. This energy functional is also re-
ferred to as the weak membrane by Blake and Zisserman [5].
The parameters , and are positive real scalars which con-
trol the competition between the various terms above and deter-
mine the “scale” of the segmentation and smoothing. Of course
one of these parameters can be eliminated by setting it to 1 but
for clarity of exposition, we will keep it as is. From an esti-
mation-theoretic standpoint, the first term in , the data
fidelity term, can be viewed as the measurement model for
with inversely proportional to the variance of the observa-
tion noise process. The second term in , the smooth-
ness term, can be viewed as the prior model forgiven . The
third term in is a prior model for which penalizes ex-
cessive arc length. With these terms, the Mumford–Shah func-
tional elegantly captures the desired properties of segmentation

3The final term in the original Mumford–Shah functional consisted of a
penalty on the Hausdorff measure of a more general set of discontinuities than
we consider here. By restricting the discontinuity set to a smooth curve~C, we
are able to replace this term by a simple arc length penalty.

and reconstruction by piecewise smooth functions. The Mum-
ford–Shah problem is to minimize over admissible
and . The removal of any of the three terms in (1) results in
trivial solutions for and , yet with all three terms, it becomes
a difficult problem to solve. In this paper, we constrain the set
of discontinuities in the Mumford–Shah problem to correspond
to evolving sets of curves, enabling us to tackle the problem via
a curve-evolution-based approach.

A. Optimal Image Estimation and Boundary-Value Stochastic
Processes

For any arbitrary closed curve in the image domain, is
partitioned into and , corresponding to the image domain
inside and outside the curve, respectively. Fixing such a curve,
minimizing (1) corresponds to finding estimatesand in
regions and respectively, to minimize

(2)

The estimates and that minimize (2) satisfy (decou-
pled) PDEs which can be obtained using standard variational
methods [22]. Alternatively each of these estimates can also be
obtained from the theory of optimal estimation. This statistical
interpretation suggests lines of inquiry beyond the scope of this
paper (which we briefly discuss in Section V). Specifically, the
estimate that minimizes (2) can be interpreted as the optimal
estimate of a boundary-value stochastic process [1]on the
domain whose measurement equation is

(3)

and whose prior probabilistic model is given by

(4)

where and are independent white Gaussian random fields
with covariance intensities and , respectively.
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One effective approach to characterizingis through the use
of complementary processes [1]. In particular, we seek a process

whichcomplementsthe observation in (3) in that and are
uncorrelated and, together, they are informationally equivalent
to (i.e., to all of the underlying random processes
defining the estimation problem). Moreover, since the specifica-
tion of the statistics of in (3) and (4) is via a differential model
and involving an internal “state” (namely ), we seek an anal-
ogous model for . We refer the reader to [1] for the complete
methodology for the direct construction of such complementary
models, employing Green’s identity and formal adjoints of dif-
ferential operators. The application of this methodology to (3)
and (4) yields the following model for the

(5)

where the internal state satisfies

(6)

with boundary condition

on (7)

where denotes the outer normal of the curve.
Eliminating and from (3)–(6) we can express and

completely in terms of and . Then, since and are uncor-
related, we obtain an internal realization of the optimal estimate

on

with the boundary condition

on

Eliminating and noticing that the product is the
derivative of in the direction of , we obtain the following
damped Poisson equation with Neumann boundary condition
for

on (8a)

on (8b)

In a similar fashion, is given as the solution to

on (9a)

on (9b)

We will refer to (8) and (9) as the estimation PDEs. The deriva-
tion of these equations using standard techniques of calculus of
variations can be found in [22]. The conjugate gradient (CG)
method is employed as a fast and efficient solver for these esti-
mation PDEs.

B. Gradient Flows That Minimize the Mumford–Shah
Functional

With the ability to calculate and for any given , we
now wish to derive a curve evolution for that minimizes (1).
That is, as a function of , we wish to find that minimizes

(10)

The first four terms in (10) are of the form

(11)

where denotes either the interior or the exterior of, and
is a continuous function. The gradient flow to

minimize (11) is given by

(12)

In addition, the gradient flow that minimizes the arc length of
is given by

(13)

where denotes the signed curvature of. Knowing gradient
flows (12) and (13), the curve evolution that minimizes (10) is
given by

(14)

For the rest of the paper, we will refer to this gradient flow,
which is also derived in [22], as theMumford–Shah flow. This
flow together with the optimal estimation PDEs makes explicit
the coupling between the optimal estimates and the curve evo-
lution.

Flow (14) is implemented via the level set method [26], [36]
which offers a natural and numerically reliable implementa-
tion of these solutions within a context that handles topological
changes in the interface without any additional effort. In this
level set framework, is represented by the zero level set of a
graph. This graph or level set function evolves so that its zero
level set moves according to (14). One can then interpolate be-
tween neighboring pixels to locate the precise locations of the
zero level set as the level set function evolves. Additionally, in
this framework, since , and are only defined on the zero
level set, they need to be extended to other level sets as well.
Following the approach described in [26], we let these values at
points on the other level sets take on their corresponding values
from the closest point on the zero level set. In this manner,

, and are extended to all other level sets. This will ensure
proper evolution of the entire level set function. Finally, spatial
derivatives in the level set framework associated with the curva-
ture term in (14) are computed via central differences whereas
spatial derivatives associated with the other terms in (14) (i.e.,
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Fig. 2. Outward flow from inside.

Fig. 3. Bidirectional flow.

Fig. 4. Inward flow from outside.

terms involving and ) are computed using monotone upwind
difference schemes [26] in order to capture the viscosity solu-
tion (when there are discontinuities or jumps in the fitting term,
for example).

C. Remarks on the Mumford–Shah Active Contour Model

One very attractive feature associated with our Mum-
ford–Shah active contour model (and also present in other
region-based methods) is that it automatically proceeds in the
correct direction without relying upon additional inflationary
terms commonly employed by many active contour algorithms.
We illustrate this in Figs. 2–5 with a noisy synthetic image
of a hand. An initial contour completely contained within
the hand will flow outward toward the boundary (Fig. 2); an
initial contour partially inside and partially outside the hand
will flow in both directions toward the boundary (Fig. 3); an
initial contour encircling the hand will flow inward toward
the boundary (Fig. 4); and finally, an initial contour situated
outside the hand will flow outward toward and wrap around

the boundary (Fig. 5). In these figures, Frame (a) shows the
initializing contour with the original image; Frames (b) and
(c) show the estimate of curve and the estimates of and

associated with two intermediate steps of the algorithm;
Frame (d) shows the final segmenting curveand the final
reconstruction of the image (based on the estimatesand

); and finally, Frame (e) shows the reconstruction of the
image without the overlaying curve for comparison to the
original noisy image. Note that the smooth estimate of the
image is continuously estimated based on the current position
of the curve. In Fig. 5, in addition to the curves that outline the
boundary of the hand, there exists extraneous curves around
the four corners of the image which do not correspond to
image edges. This is due to the fact that the algorithm has
descended upon and settled on to a local minimum—a common
problem faced by all algorithms which rely on gradient descent
methods for minimization. However, notice that the piecewise
smooth reconstruction of the image shown in Fig. 5(e) does not
exhibit any ill effects from these extraneous curves; that is, the
reconstruction does not show any semblance of an edge along
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Fig. 5. Outward flow from outside.

Fig. 6. Segmentation and smoothing of an image with four distinct foreground regions.

these extraneous curves. Thus even if the curve is trapped at a
local minimum, the reconstruction of the image is still accurate.

The class of imagery that our algorithm can handle is not
restricted just to images with only two distinct means but is
equally applicable to images with multiple nonoverlapping re-
gions each with different means. Moreover, we do not need to
know in advance the number of such regions or distinct means
are present. As shown in Fig. 6, segmentation and smoothing
are performed on a noisy synthetic image with four foreground
regions of different means situated on a spatially varying back-
ground region. Multiple disjoint regions are captured by a single
contour demonstrating the topological transitions allowed by the
model’s level set implementation. However, it is important to
point out that this single curve cannot detect a region if it is in-
side another region. In Section III-D, we demonstrate how to
handle this type of problem.

Our model can also be generalized, in a very straight for-
ward manner, to handle vector-valued images4 (e.g., color im-
ages or images obtained from scale and orientation decompo-
sitions commonly used for texture analysis). Consider the fol-
lowing vector version of the Mumford–Shah functional:

4Chan and Vese, who have considered the piecewise constant version of the
Mumford–Shah functional [9], have also extended their framework to vector-
valued data in “Active Contours Without Edges for Vector-Valued Images” (see
http://www.math.ucla.edu/applied/cam).

where and denote theth component of the-dimensional
vector-valued observed data and its smooth estimate, respec-
tively. The curve evolution that minimizes this energy functional
is given by

(15)

The and for in (15) is given by the solu-
tions to the following:

on

on

and

on

on

For demonstration, in Fig. 7, we show the segmentation and
smoothing of a noisy color image of six different types of gem-
stones.

III. I MPLEMENTATION

There are two ways in which we can improve the Mum-
ford–Shah active contour model presented so far. One, we can
speed up the convergence of the algorithm by reducing the
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Fig. 7. Segmentation and smoothing of a color image with six distinct foreground regions.

Fig. 8. Noisy image of Star Wars characters Qui-Gon Jinn and Jar Jar Binks in the Tatooine Desert.

required number of curve evolution steps and/or reducing the
computational cost of solving the estimation PDEs. Two, we
can build on the level set implementation of our algorithm
to enable it to handle important image features such as triple
points and other multiple junctions (without having to resort to
more sophisticated level set techniques [21]). In this section, we
present several progressive modifications to the implementation
of the Mumford–Shah active contour model in order to make
these improvements.

A. Approximate Gradient Descent

We propose an approximate gradient descent approach to cal-
culate , and that minimize the Mumford–Shah func-
tional shown in (1). This approach consists of alternating be-
tween the following two steps:

• fix and , and take several gradient descent curve
evolution steps to move the curve;

• fix , and perform just a few iterations of the CG method
for the estimation PDEs—without taking it to conver-
gence—to obtain aroughestimate of and .

We have found that it is not necessary to get an accurate estimate
of and at each evolution. All that is required is a rough
estimate of these values to direct the curve to move in the general
descent direction. The idea is to make the algorithm faster by
reducing the number of times and are estimated and also
the amount of time required to calculate each of them. The CG
procedure is then carried to convergence in the last iteration to
obtain an accurate final estimate of and .

Fig. 8 illustrates the performance of this approach applied to
a noisy image of two Star Wars characters with different mean
intensities standing in a spatially varying background. We ob-
tained the results shown in this figure by alternating between
20 curve evolution steps and ten CG iterations. This reduced
number of CG iterations compares quite favorably to the 100 CG

iterations we use in the end to obtain an accurate estimate of
and . The segmentation clearly delineated the two Star Wars
characters. The reconstruction of the image accurately captured
the spatially varying background and preserved the structures
within each Star Wars character. Obviously, this is not possible
with lower dimensional models (such as ones based on mean
intensities [9]).

As one can appreciate, a large number of curve evolution
steps is required to take the curve from the initial curve in
Fig. 8(a) to the final segmenting curve in Fig. 8(d). This trans-
lates to calculating and many times, a significant load
even if we only perform a few CG iterations at each step. In the
next two subsections, we address this computational issue.

B. Two-Step Approach

Oneway to reduce thenumberofcurveevolutionsteps is toob-
tainagoodinitialestimateof thecurvesothat thetraveldistance
of the initializing curve to the correct image boundary is reduced.
Oneapproach todoingso, thatworks if there are only twodistinct
means in the image, is to employ the method of Chan and Vese [9]
referred to earlier. Chan and Vese restrict the two regions,and

, to have constant values. For the class of bimodal images, this
restriction is equivalent to taking in our Mumford–Shah
active contour model. This reduces flow (14) to

(16)

where and are the average intensities ofand , respec-
tively. This is precisely the flow presented in [9]. Evolving the
curve according to this flow is fast since each evolution only re-
quires updating the mean values inside and outside the curve.
We evolve any starting curve according to this flow in order to
obtain a good initial estimate of. Once we have this estimate,
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Fig. 9. Mammogram showing cyst in the breast tissue.

we relax to a finite value, and employ the approximate gra-
dient descent method introduced earlier to minimize the general
form of the Mumford–Shah functional. Since the initializing
curve is presumably close to the correct boundary, the number
of evolution steps required for convergence is greatly reduced.
However, due to the use of flow (16) in calculating the initial
estimate of , this two-step implementation approach of our
Mumford–Shah active contour model can only handle images
with two distinct means. In Section III-D, we discuss ways to
circumvent this restriction.

Fig. 9 illustrates this two-step implementation of our model.
In Fig. 9(a), a noisy mammogram showing a cyst in the breast
tissue is displayed, along with the starting curve. The next frame
shows the estimate of obtained by assuming piecewise con-
stant regions; that is, obtained by employing flow (16). This
curve is superimposed on top of the original image. Fig. 9(c)
shows the piecewise constant approximation of the image based
on this segmenting curve. In Fig. 9(d) we show the results of ap-
plying the approximate gradient descent implementation of our
active contour model using, as initializing curve, the one shown
in Fig. 9(b). Equal penalty on the arc length of the curve is use
in obtaining the curves shown in Fig. 9(b) and (d). For com-
parison to the original image, in Fig. 9(e) we show the optimal
estimate produced by our algorithm with the segmenting curve
suppressed. It is clear from these results that the segmentation
of the cyst has been refined and that a denoised restoration of
the image is obtained.

C. Multiresolution Approach

Though the two-step approach of above can substantially re-
duce the computational complexity of our algorithm, it is limited
by its ability to handle only images with two distinct means. We
now describe a multiresolution approach that not only speeds up
our algorithm, but also adheres to the original capabilities of our
model to segment images with multiple nonoverlapping regions.

The basic idea of the multiresolution approach is to use a
coarsened representation of the image to obtain a good estimate
of the segmenting curve, and then progressively refine this es-
timate of the curve as the resolution of the image is increased.
Given an image, we repeatedly subsample it by a factor of two in
both the and the direction to obtain a set of images of varying
resolution. The subsampling process terminates before the rele-
vant features within the image are lost. We begin our multireso-
lution approach by applying our technique at the coarsest scale.
Operating at such a coarse scale, we decrease the number of
curve evolution steps required by reducing the travel distance

between the starting curve and the final curves. In addition, the
computational requirements in updating each curve evolution
step is also reduced due to the smaller image domain within
which the curve is evolving. More importantly, we have sub-
stantially decreased the computation of and since the
discretized versions of the estimation PDEs are much lower in
dimension on the coarsened grid. The final curve obtained on
each coarsened image is upsampled by a factor of two in both
the and the direction to serve as the initializing contour for
the image at the next higher resolution (which is easily accom-
plished in the level set framework by replication of the level set
grid). At this new scale, because the initializing contour is al-
ready close in proximity to the edges of the image, the number
of approximate gradient steps required to move the curve to-
ward the edges of the image is small. We also end up with a
good initial estimate of the smooth field at this new scale by up
sampling. Only a few iterations is required in obtaining a seg-
mentation and reconstruction of the image at this scale. This
process of using the segmenting curve at one resolution as the
initial curve for the next finer resolution is repeated until the
finest resolution image is reached. As one can appreciate, the re-
ductions in computation based on this multiresolution approach
give rise to a much more efficient implementation of our algo-
rithm. In Fig. 10, we demonstrate this multiresolution approach
on a color photograph consisting of two different foreground
regions (i.e., the two parakeets). A single contour successfully
captured both foreground regions even though one foreground
region has a different vector mean than the other.

D. Hierarchical Approach

We now propose an implementation of our active contour
model, building on the preceding modifications, to enable our
model to handle images with multiple junctions or holes (i.e., a
region inside another region) without resorting to more sophis-
ticated level set techniques [21]. This approach also allows the
possibility of using the two-step approach of Section III-B to
handle images with more than two distinct regional means.

Given an image, we apply our Mumford–Shah active con-
tour model for segmentation and smoothing. After segmenta-
tion, if any of the resulting subregions require additional seg-
mentation, apply our algorithm again, but this time, restricting
the algorithm to operate only in that particular subregion. This
approach has the natural notion of starting with a crude segmen-
tation and refining the segmentation by telescoping down to the
different subregions in order to capture finer and finer details in
the image. The attractive feature associated with this implemen-
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Fig. 10. Segmentation and smoothing of a noisy color image of two parakeets using a multiresolution approach. (a) The240 � 240 original noisy image. (b)
The60� 60 subsampled image of the original with initializing curve. (c) Final segmenting curve superimposed on top of the60� 60 reconstructed image. (d)
Reconstruction of the60� 60 subsampled image. (e) The120� 120 original image with initializing curve obtained from the up sampled version of the curve
from (c). (f) Final segmenting curve superimposed on top of the120� 120 reconstructed image. (g) Reconstruction of the120� 120 original image. (g) The
240� 240 original image with initializing curve obtained from the up sampled version of the curve from (f). (i) Final segmenting curve superimposed on top of
the240� 240 reconstructed image. (g) Reconstruction of the240� 240 original image.

tation is that it allows us to handle images with triple points by
employing multiple curves to represent such junctions. More-
over, this nested implementation affords us better control as to
what details we desire and what objects we would like to cap-
ture, in the segmentation and smoothing of our image.

Remark: It should be pointed out that this hierarchical ap-
proach has the limitation in that the boundaries of the regions

detected later in the process meet the boundaries detected ear-
lier at right angles. This follows from the theory of junctions as
presented in [22]. Consequently, the triple points found by this
approach are necessarily T-junctions.

We use the brain pathology image shown in Fig. 11(a) to
demonstrate how the approximate gradient descent method of
Section III-A is used in the hierarchical implementation of our
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Fig. 11. Hierarchical segmentation and reconstruction of a pathology image of the human brain based on the approximate gradient descent method. (a) Original
image. (b) Original image with the initialization scheme for the first curve. (c) Segmentation and reconstruction of the image based on the first curve. (d) Initialization
scheme for the second curve. (e) Segmentation and reconstruction of the image based on both curves. (f) Reconstruction of the image based on both curves. Same
set of parameters are used in obtaining the results shown in (c) and (e).

active contour model. First, the segmentation and reconstruction
of the image shown in Fig. 11(c) is obtained based on the
approximate gradient descent approach. The blurring across
the boundary of the white and the gray matter is due to the
erroneous implication of this coarse segmentation, namely that
the inside of the brain is one region over which smoothing
is performed. To provide better details within the brain, we
again applied our technique to the interior region of the brain
to obtain the segmentation and reconstruction of the image
shown in Fig. 11(e). The yellow and the red curves segment the
image into the background, white matter, and the gray matter.
The piecewise smooth reconstruction of the image is shown
in Fig. 11(f) without the segmenting curves for comparison
to the original image.

Next, we demonstrate how the two-step method of Sec-
tion III-B is used in the hierarchical implementation of our

model for the segmentation and reconstruction of a color
Doppler ultrasound image of the heart [Fig. 12(a)] using the
vector-valued model in (15). To demonstrate the effectiveness
of our technique for denoising/smoothing, we show in the next
two frames a comparison between the blurry representation
of the original image after applying isotropic smoothing (i.e.,
the same smoothing used in the Mumford–Shah framework
but applied over the image as one single region) as shown
in Fig. 12(b), and the smooth representation of the original
image without blurring across edges using the Mumford–Shah
model [Fig. 12(c)]. The reconstruction in Fig. 12(c) is obtained
using four segmenting curves, each at a different hierarchical
level. Fig. 12(d)–(g) shows the initialization technique for
the four different curves at the different hierarchical levels.
Notice that each region or subregion of interest is seeded with
regularly spaced initial contours for automatic segmentation.
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Fig. 12. Hierarchical segmentation and reconstruction of a color Doppler ultrasound image of the heart based on the two-step approach. (a) Original image.
(b) Original image after isotropic smoothing. (c) Reconstruction of the original image based on the Mumford–Shah active contour [same image as (o)].(d)–(g)
Initialization scheme for the various levels of the hierarchy. (h)–(k) Segmentation and reconstruction of the image at various levels of the hierarchy. (l)–(o)
Reconstruction of the image at various levels of the hierarchy.

Fig. 12(h)–(k) shows the segmentation and reconstruction of the
image at the various hierarchical levels based on the two-step
method. And finally, Fig. 12(l)–(o) show just the reconstruction
of the image at the various hierarchical levels without the

overlaying segmenting curve. At the first hierarchical level,
the cyan curve captured the white myocardium and the yellow
region corresponding to slow-velocity-flow moving away
from the ultrasound transducer. The green curve at the second
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Fig. 13. Hierarchical segmentation and reconstruction of a noisy avocado image based on the multiresolution approach. (a) Original image. (b) Original image
after isotropic smoothing. (c) Reconstruction of the original image based on the Mumford–Shah active contour [same image as (i)]. (d)–(f) Level 1 multiresolution
segmentation and reconstruction. (g)–(i) Level 2 multiresolution segmentation and reconstruction.

hierarchical level captured the red high-velocity-flow moving
away from the transducer near the heart valve. The magenta
curve at the third hierarchical level captured the ultrasound
beam (together with other brighter parts of the image). Finally,
at hierarchical level four, the yellow curve separated the blue
region (which corresponds to blood flow moving toward
the transducer) from the brighter remaining areas within the
image. As shown in this figure, these four curves enable the
segmentation to handle various multiple junctions.

Finally, by using the noisy avocado image in Fig. 13(a), we
illustrate how the multiresolution approach of Section III-C can
be used in the hierarchical implementation of our model. As
before, in Figs. 13(b) and (c), we compare isotropic smoothing
(with no segmentation) with smoothing based on the Mum-
ford–Shah model. Fig. 13(d) shows the initialization scheme at
the coarsest resolution for the first curve. Fig. 13(e) shows the
curve successfully capturing the two avocado-halves, shown at
the finest resolution. The reconstruction of the image based on
this one curve is shown in Fig. 13(f). Notice the blurring across
the shared edge of the two avocado-halves and across the edges
of the avocado seed. To prevent this blurring, a second curve is

used. Fig. 13(g) shows the initialization scheme for this second
curve at the coarsest resolution. Shown at the finest resolution,
Fig. 13(h) demonstrates how this new curve can captureboth
foreground regions-the seed and the dark outer covering of the
avocado-despite the fact that these two foreground regions have
distinct vector means. As advertised, the hierarchical approach
enables our algorithm to handle triple points. Two such points
can clearly be seen here. Fig. 13(i) shows the reconstruction of
the noisy image without the segmentation curves.

In general, it is not always possible to automatically deter-
mine if a particular subregion requires further segmentation or
not. However, in cases where one is only interested in the the
reconstruction of a noisy image and not the location of the seg-
menting curve, the hierarchical approach can be employed in a
fully automatic fashion. Specifically, we can use the two-step
method of Section III-B within the hierarchical implementation
to recursively segment and smoothly reconstruction the image.
The recursive procedure terminates when further segmentation
of a particular subregion does not substantially decrease the
Mumford–Shah energy functional (i.e., by a predefined amount
set equal to a percentage of the starting energy value).
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IV. EXTENSIONS

So far, we have focused on developing our algorithm for the
particular context in which the Mumford–Shah functional was
originally designed, namely simultaneous image segmentation
and denoising. However, the range of applications of our algo-
rithm is much richer. In this section, we extend the approach
of previous section to handle simultaneous segmentation, de-
noising, and interpolation by generalizing the original Mum-
ford–Shah functional.

A. Segmentation, Denoising, and Interpolation of Images with
Missing Data

Images with missing data are frequently encountered in many
image processing problems. Various approaches have been pro-
posed to restore these images [4], [8], [20], [24]. One approach
in tackling this problem is the use of estimation-theoretic tech-
niques to interpolate the values of these missing data. Stan-
dard estimation formalisms will generally produce smooth in-
terpolations in regions of missing data, something that is not
desirable if there are high-contrast boundaries in any of these
missing data regions. However, since our formalism brings op-
timal estimation and curve evolution together, a very easily im-
plemented generalization allows us to deal with segmentation,
denoising, and interpolation in a simultaneous and naturally
coupled manner.

Our model handles missing data through the parameter. In
the standard Mumford–Shah formulation (1),is a constant
scalar parameter reflecting our confidence in the measurements.
To accommodate applications in which the data quality is spa-
tially varying and even in the limiting such case in which there
are missing pixel measurements distributed arbitrarily through
the image domain, we replace the constant parameterby a spa-
tially varying function whose value at each pixel is inversely
proportional to the variance of the measured noise at that pixel.
For example, in the situation where the data at pixel
is missing, we consider the variance of the data at that pixel as
being infinite and accordingly set . By introducing
this spatially varying , (1) becomes

(17)

The gradient flow that minimizes (17) is given by

(18)

where the optimal estimates and of (18) satisfy

on

on

and

on

on

Over each region of missing data, the estimation equa-
tion reduces to the Laplace equation with the same Neumann
boundary condition

on (19a)

on (19b)

As solutions to the Laplace equation, the estimates obtained
over any such missing data regions not containing part oftake
the form of harmonic functions. As such, we can infer much
about the smooth nature of these interpolated estimates as they
are subject to both a maximum (and minimum) principle as well
as the mean value property. However if the curveintersects

, no such smoothing occurs across this boundary, allowing in-
terpolation to be guided by the segmentation defined by. To
illustrate this, we show in Fig. 14(a) a synthetic image of the
United States with regions of missing data. The synthetic image
is made in an attempt to simulate a satellite picture of the United
States with regions of incomplete data as a result of obscura-
tion by cloud coverings. The final curve estimate is depicted in
Fig. 14(d), and the denoise and interpolated reconstruction is
shown in Fig. 14(e).

Our algorithm can also be used to segment and reconstruct
images with isolated pixels of missing data distributed arbi-
trarily throughout the image as shown in Fig. 15(a). This often
occurs in imaging modalities subject to speckle. By utilizing the
prior smoothness constraint placed on the image, our model ap-
propriately “fills in” the gaps created by the missing data. In
Fig. 16, we demonstrate the capabilities of our method on a real
image. A forward-looking infrared (FLIR) image of three tanks
with missing data distributed throughout the image is shown in
Fig. 16(a). The missing data in the FLIR image are due to inten-
sity saturated and defective pixels of the infrared sensor. Using
our method, we are able to segment out the tanks and also pro-
vide a denoised and complete reconstruction of the image.

B. Segmentation-Based Image Magnification

Image magnification or spatial resolution enhancement is re-
quired in a variety of applications including image compression,
image coding, and HDTV. It deals with the problem of enlarging
a small image to several times its size and often requires some
sort of an interpolation scheme. The most straightforward ap-
proach for image enlargement is to use a zero-order interpo-
lation technique, commonly known as replication, which may
cause the resulting image to appear blocky [18]. Classical en-
largement techniques such as bilinear or bicubic interpolation
schemes tend to cause blurring across the edges when applied
indiscriminantly to the image [18]. More sophisticated schemes
may locate the edges first with local filters prior to interpola-
tion so as to avoid the blurring artifacts [2], [31]. Three impor-
tant shortcomings are evident in these types of algorithms. One,
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Fig. 14. Segmentation and smoothing of a synthetic image with regions of missing data. Missing measurement data points are shown as white pixels in (a).

Fig. 15. Segmentation and smoothing of a synthetic image with missing data distributed throughout the image. Missing measurement data points are shown as
white pixels in (a).

Fig. 16. FLIR image of M2, T62, and M60 tanks. White pixels in (a) denote locations with missing data.

the interpolation schemes used for magnification are local since
they only utilize data values from neighboring pixels. This inter-
polation scheme becomes even more problematic when the ob-
served image is noisy. Two, edge detection schemes employed
prior to interpolation often only make use of local information
(which are very susceptible to noise artifacts) and cannot guar-
antee continuous closed edge contours. Three, it is unclear in
what order the three operations (smoothing, edge detection, and
interpolation) should be performed since they are not commu-
tative. Our approach for image magnification addresses the first
deficiency by using an estimation-theoretic (PDE-based) model
for interpolating the data which incorporates the use of all data
values within each homogeneous region, not just neighboring
pixels, to determine the interpolant. As a result, this interpo-
lation scheme is much more robust to noise. The second defi-
ciency is addressed by the use of our active contour model for
boundary detection which is more global in nature than local fil-
ters (and therefore not as sensitive to noise) and is curve-based
(hence providing a continuous closed edge contour). The third
deficiency is addressed by using the Mumford–Shah model’s
principled approach to provide, in a single framework, a tight

Fig. 17. Diagram showing the locations of missing data in relation to the
measurements in our image magnification technique.

coupling for simultaneous image segmentation, denoising, and,
under the extensions we have just presented, interpolation. In
this manner, the ordering of the different operations is no longer
an issue.
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Fig. 18. Three-fold magnification of a photograph of birthday candles: (a)160� 160 original image; (b)480� 480 magnified image obtained by replication
then smoothing; (c)480� 480 magnified image obtained by smoothing then replication; (d)480� 480 magnified image based on the Mumford–Shah model.

Fig. 19. Three-fold magnification of color photograph of a canyon region in Australia: (a)100� 100 original image; (b)300� 300 magnified image obtained
by bilinear interpolation then smoothing; (c)300�300magnified image obtained by smoothing then bilinear interpolation; (d)300�300magnified image based
on the Mumford–Shah model.

Image magnification capability is weaved into the Mum-
ford–Shah active contour model by considering the image
magnification problem as a very structured case of the missing
data problem. Specifically, consider a new grid with three times
as many pixels in each direction and assign the value of the
original image to the “center” pixel in each block on
the grid and treat the remaining pixels as missing data points
(see Fig. 17). From an estimation-theoretic standpoint, we
can view these “center” pixels as sparse measurements on a
much larger image domain. We then employ our generalized
Mumford–Shah curve evolution procedure to interpolate to this
finer grid, using the curve evolution portion of this procedure
to partition the domain of the magnified image into different
homogeneous subregions so as to provide smooth interpola-
tions where appropriate without blurring across regions of high
contrast.

In Fig. 18(a), we show a noisy black-and-white
photograph of 5 burning birthday candles, each of differing
intensity. We show in Fig. 18(b) the image obtained by first
magnifying the original noisy image using zero-order hold then
smoothing it isotropically. Notice the magnified image is still
noisy because the noise components within the original image
have been exaggerated by the zero-order interpolation scheme.

Fig. 18(c) shows the image obtained by first isotropically
smoothing the original noisy image then magnifying it using
zero-order hold. This image is blurry because the edges of
the image were destroyed during the initial smoothing step.
We show the magnification results based on our approach in
Fig. 18(d). To demonstrate that this magnification technique is
not just limited to scalar-valued images with nonoverlapping
regions, in Fig. 19, we show the results of the various magni-
fication technique (including ours) on a noisy vector-valued
image of a canyon region in Australia [Fig. 19(a)]. Fig. 19(b) is
obtained by first magnifying the original image using bilinear
interpolation followed by isotropic smoothing while Fig. 19(c)
is obtained by first isotropically smoothing the original image
then magnifying it using bilinear interpolation. For comparison,
the hierarchical implementation of the vector-valued counter-
part of (17) is used to obtain our magnification result shown in
Fig. 19(d).

V. SUMMARY AND FURTHER RESEARCHDIRECTIONS

In this paper, we have outlined an estimation-theoretic ap-
proach to curve evolution based on the Mumford–Shah func-
tional.Byviewinganactivecontouras thesetofdiscontinuities in
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thestandardMumford–Shahproblem,weusedthecorresponding
functional to determine gradient descent evolution equations to
deform the active contour. Each gradient descent step involved
solving a corresponding optimal estimation problem, namely
the optimal estimate of the noise-free image given the noisy
image data and the current estimate of the boundary curve.
The solution of this estimation problem came from the theory
of boundary-value stochastic processes, which leads to decou-
pled PDEs in space whose solutions produce the optimal image
estimates in each of the connected regions separated by the
current curve estimate. Very importantly, this theory also gave
us boundary conditions for these estimates along the current es-
timate of the boundary curve which are directly used in evolving
the curve to a local minimum of the Mumford–Shah functional.
By connecting curve evolution and the Mumford–Shah func-
tional with the theory of boundary-value stochastic processes,
our algorithm can be regarded as a curve evolution driven by so-
lutions of a continuum of auxiliary spatial estimation problems.

We have also demonstrated that our approach extends well
beyond the basic Mumford–Shah formulation including two im-
portant applications in which data quality is spatially-varying
or in which sets of pixel measurements are missing throughout
the image. The segmentation and restoration of these missing
data problems is handled seamlessly in our estimation-theo-
retic/curve evolution framework. In addition, our technique is
also applicable to the image magnification problem by consid-
ering it as a special case of the missing data problem in which the
missing data occur in a very structured manner. This segmen-
tation-based approach for image magnification is more global,
is much less susceptible to blurring or blockiness artifacts as
compared to other more traditional techniques, and has the ad-
ditional attractive denoising capability.

Direct implementation of our curve evolution starting from
an initial curve which is far from the optimal curve can lead to
very slow convergence and substantial computation associated
with the estimation PDEs to be solved (or at least approximated)
at each step of the evolution. In this paper, we outlined several
approaches to obtain a fast and efficient implementation of our
algorithm that is also capable of handling important image fea-
tures such as triple-points and other multiple junctions without
having to resort to sophisticated level set methods [21].

Our algorithm suggests possible extensions to the Mum-
ford–Shah model. In particular the estimation-theoretic
interpretation of the Mumford–Shah functional as specifying
particular random field models within each region segmented
by the curve opens up the idea of replacing the specific
random field models in the Mumford–Shah formulation with
other models more appropriate to other contexts. One such
application is that of surface and shape estimation in which the
so-called thin-plate prior model (involving the norm-squared
of the image Laplacian rather than the image gradient) is often
used. The generalization of our formalism to such a prior, which
will allow the simultaneous segmentation and shape estimation
of multiple objects and regions in an image, is currently under
investigation.

While we have not pursued it in this paper, one of the poten-
tial advantages of our estimation-theoretic formalism is that we

can also use the same formalism to compute statistics (e.g., co-
variances) of the errors in these estimates. These statistics can
then be used for a variety of purposes. For example statistical op-
timal fusion of estimates from multiple images (as is commonly
encountered in remote sensing) requires error covariances in
order to weight each of the images to be fused according to its
quality. Also, error variances can be used to detect and correct
for anomalous measurements or to detect changes between the
estimate produced from one set of imagery and a later set of im-
agery of the same region. More generally, since (1) can be inter-
preted as the log-likelihood of the observed imagery given the
random field model implied by the Mumford–Shah functional,
error statistics can in principle be used both for model valida-
tion and parameter estimation. These topics will be the subject
of future research.
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