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Curve Evolution Implementation of the
Mumford—Shah Functional for Image Segmentation,
Denoising, Interpolation, and Magnification

Andy Tsai, Anthony Yezzi, JrMember, IEEEand Alan S. Willsky Fellow, IEEE

Abstract—in this work, we first address the problem of simul- based on curve evolution theory [6], [7], [19], [47] and the pro-
taneous image segmentation and smoothing by approaching the gression from edge-based models [6], [7], [12], [14], [15], [19],
Mumford—Shah paradigm from a curve evolution perspective. [41], [42], [47] to region-based models [9], [27], [34], [48],

In particular, we let a set of deformable contours define the . . . ; .
boundaries between regions in an image where we model the [51], [52]. For image smoothing, the technique of anisotropic

data via piecewise smooth functions and employ a gradient flow diffusion has become a widespread field of research ranging
to evolve these contours. Each gradient step involves solvingfrom techniques based upon the original formulation of Perona
an optimal estimation problem for the data within each region, and Malik [29], [30] to curve and surface evolution methods

connecting curve evolution and the Mumford—Shah functional based upon geometric scale spaces [13], [16], [17], [35] and to

with the theory of boundary-value stochastic processes. The ber of ttechni f lori d other f
resulting active contour model offers a tractable implementation anumber of recenttechniques for colorimagery and other forms

of the original Mumford—Shah model (i.e., without resorting to  Of vector-valued data [39], [40], [44]-{46], [50].

elliptic approximations which have traditionally been favored for In general, the goal of most active contour algorithms is to ex-

greater ease in implementation) to simultaneously segment and tract the boundaries of homogeneous regions within an image,

smoothly reconstruct the data within a given image in a coupled \\hije the goal of most anisotropic diffusion algorithms is to

manner. Various implementations of this algorithm are introduced - I .

to increase its speed of convergence. We also outline ahierarchicalsmooth the values of an |mage within hpmogeneous regions

implementation of this algorithm to handle important image but not across the boundaries of such regions. We note that one

features such as triple points and other multiple junctions. of the most widely studied mathematical models in image pro-
Next, by generalizing the data fidelity term of the original Mum-  cessing and computer vision addresses both goals simultane-

ford—Shah functional to incorporate a spatially varying penalty, ously, namely that of Mumford and Shah [22], [23] who pre-

we extend our method to problems in which data quality varies L S . -
across the image and to images in which sets of pixel measure-S€nted the variational problem of minimizing a functional in-

ments are missing. This more general model leads us to a novelVOlVing a piecewise smooth representation of an image. Their
PDE-based approach for simultaneous image magnification, seg- functional included a geometric term which penalized the Haus-
mentation, and smoothing, thereby extending the traditional ap- dorff measure of the set where discontinuities in the piecewise
plications of the Mumford—Shah functional which only considers  ¢1,00th estimate would be allowed. Due to the difficulties as-
simultaneous segmentation and smoothing. - oy - ’ . .
sociated with implementing such a term in a numerical algo-
Index Terms—Active contours, boundary-value stochastic rithm, one of the first practical numerical implementations of
proceﬁfesz C”rl"e el"o'“t'on' dhendmsmg, |_magde mterpgllatlon, "\;Inagethe Mumford—Shah model was developed by Richardson [32]
magni cation, level sets methods, missing ata problems, Mum- .. . .
ford—Shah functional, reconstruction, segmentation, snakes. and was not basjeq upon the: 0“9_'“a' functional F’Ut was be.tsed In-
stead upon a elliptic approximation of the functional considered
by Ambrosio and Tortorelli [3]. In this elliptic approximation of
. INTRODUCTION the model, the exact location of boundaries between modeled

WO popular applications of partial differential equation§omogeneous regions was “smeared” into a set with nonzero
T in computer vision and image processing are found in th&besque measure, allowing the Hausdorff term to be elimi-
problems of segmentation and image smoothing. For segm@ated. The recentwork by Shah [37] uses the modified boundary
tation, the technique ofnakesor active contourshas grown indicator from this relaxed model as a conformal factor in a
significantly since the seminal work of Kass, Witkin, and Terdéodesic snake model, allowing the resulting algorithm to yield
zopoulos [14] including the development of geometric modefact boundary locations.
In the first part of this paper, we present a curve evolution
approach to minimizing theoriginal Mumford—Shah func-
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local measurements based upon the gradient. The developnidns “missing data” problem arises regularly in archived or
of this model is based upon both estimation-theoretic amih speed motion picture films, damaged paintings, and
geometric considerations. In particular, by viewing an activemote sensing and medical images with data dropouts due to
contour as the set of discontinuities considered in the origiregdeckle and sensor data gaps. By applying this missing data
Mumford—-Shah formulation, we may use the corresponditgchnique in a structured manner, we then develop a novel
gradient flow equation to evolve the active contour. Howeveapproach for simultaneous image magnification, segmentation,
each gradient step involves solving an optimal estimati@nd smoothing, thereby providing a new application of the
problem to determine piecewise smooth approximations of tMumford—Shah functional. This technique constitutes a more
image data inside and outside the active contour. We obtgjlobal approach to interpolating magnified data than traditional
these estimates by solving a linear partial differential equatidilinear or bicubic interpolation schemes, while still main-
(PDE) for which the solution inside the active contour is ddaining sharp transitions along region boundaries. Furthermore,
coupled from the solution outside the active contour. This PDfhe curve length penalty in our Mumford—Shah based flow
which takes the form of a Poisson equation, and the associatieads to prevent the blocky appearance of object boundaries
boundary conditions come directly from the variational problemvhich is a symptom of replication-based schemes. In Fig. 1, we
of minimizing the Mumford—Shah functional assuming the sdtustrate these points by applying our magnification technique
of discontinuities (given by our active contour) to be fixedto a noisy synthetic image [Fig. 1(a)]. We show in Fig. 1(b) the
The same PDE and boundary conditions can also be obtailmacky and noisy magnification of the original image based on
from the theory of boundary-value stochastic processes. Bgro-order interpolation. In Fig. 1(c), we show a smoother but
taking this latter approach, we obtain an algorithm that may béurry magnification of the original image based on bilinear
regarded as a curve evolution driven by a continuum of solimterpolation scheme. For comparison, in Fig. 1(d), we show
tions to auxiliary spatial estimation problems, connecting thbe magnified image based on our Mumford—Shah approach.
theories of curve evolution and optimal estimation of stochasfidhie smooth boundaries of the magnified image are the direct
processes. This development may be regarded as an extensgsnlt of the minimum length prior placed on the segmenting
of several recent region-based approaches to curve evolutiomve while the smooth sinusoidal background of the observed
[9], [27], [48]. In particular, it naturally generalizes the recenimage is successfully captured by our PDE-based model for
work of Chan and Vese in [9] who consider piecewise constainterpolation. It is evident that our magnification approach is
generalization of the Mumford—Shah functional within a levddetter than these conventional image magnification techniques
set framework. by avoiding many of the processing artifacts such as blockiness
We note that region-based approaches in general, enjogral blurring while at the same time, denoising the image.
number of attractive properties including greater robustness tdn our work, we adopt the level set techniques of Osher and
noise (by avoiding derivatives of the image intensity) and initi@ethian [26], [36] in the implementation of our Mumford—Shah
contour placement (by being less local than most edge-basetive contour model. This numerical implementation tech-
approaches). In contrast to most other region based technigoiggie, in conjunction with upwind, conservative, monotone
however (including our own previous work [48], [49] and thatlifference schemes [19], [25], [36], allows for automatic
of Chan-Vese [9] and Paragios-Deriche [27]), which assurhendling of cusps, corners, and topological changes as the
highly constrained parametric models for pixel intensitiesurves evolve.
within each region, our approach employs the statistical modelAs mentioned previously, Chan and Vese [10], [11] have re-
directly implied by the Mumford—Shah functional. That is, theently and independently performed work very similar to ours.
image is modeled as a random field within each region, a modéie basic model and formulation outlined in their work and our
that naturally accommodates variability across each regiaork are essentially the same. The differences lie in the algo-
without the need to model such variability parametrically. Inthmic implementations and extensions developed in this work
addition, while many region-based methods require a priand their work. In [10], [11], multiphase level set techniques are
knowledge of the number of region types (such as [9] whidmplemented to capture triple points and holes in a very elegant
assumes exactly two region types with two different meananner. This allows one to capture ugRtoregion classes using
intensities or [48] which requires separate sets of curves to dedkvel set functions. In this work, we employ more standard
with more than two region types), our Mumford—Shah baséelvel techniques and propose, instead, a hierarchical method to
approach can automatically segment images with multipt@pture multiple regions and triple points (see Section IlI-D).
region types (e.g., each with different mean intensities) withoAn additional point of divergence comes from our extension of
such a priori knowledge. the basic model to images involving missing data and to simulta-
In the second part of this paper, we generalize the dataous magnification, smoothing, and segmentation. We should
fidelity term of the original Mumford—Shah energy functionapoint out, however, that our treatment of missing data shares a
by substituting a spatially varying penalty for the traditionadimilar flavor with some other recent work by Chan and Shen
constant one. This allows us to treat images in which tlm image inpainting [8].
quality of the measurements vary depending upon locationThis paper is organized as follows. In Section I, we present
in the image. In particular, we are able to treat, as a limitinge Mumford—Shah model, its interpretation as an estimation
case, images containing sets of pixels without measurememimblem, and the basic formulation of our curve evolution ap-
proach for simultaneous image segmentation and smoothing. In
2The formulation in [9] can be viewed as the limiting form of (1) with= co. ~ Section I, we present several progressive enhancements and
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(&) (k) (c) (d)

Fig. 1. Three-fold magnification of synthetic data: {&) x 75 original image; (bR225 x 225 magnified image interpolated by zero-order hold;32) x 225
magnified image obtained by bilinear interpolation; £&8p x 225 magnified image based on the Mumford—Shah model.

modifications to this initial algorithm to improve convergencand reconstruction by piecewise smooth functions. The Mum-
and to handle multiple junctions. In Section 1V, we extend thierd—Shah problem is to minimiz&(f, 5) over admissiblef
application of our model to one that can also handle images wiahd C. The removal of any of the three terms in (1) results in
missing data. The application of our model as an image magtivial solutions forf andC, yet with all three terms, it becomes
fication technique is then presented as a structured case of dhdifficult problem to solve. In this paper, we constrain the set
missing data problem. Finally, we conclude in Section V with ef discontinuities in the Mumford—Shah problem to correspond
summary of the paper and some further research directions ttea¢volving sets of curves, enabling us to tackle the problem via
our formulation and interpretation of the Mumford—Shah funa curve-evolution-based approach.
tional suggests.

A. Optimal Image Estimation and Boundary-Value Stochastic

[I. MUMFORD-SHAH FORMULATION AS A CURVE Processes
EVOLUTION PROBLEM For any arbitrary closed cunv in the image domairg? is
The point of reference for this paper is the Mumford—Shapartitioned intolz and 1%, corresponding to the image domain
functional? inside and outside the curve, respectively. Fixing such a curve,
minimizing (1) corresponds to finding estimatgsandfg- in
E(f, C‘) =4 // (f —g)?dA regionsk and R¢ respectively, to minimize
Q
+a// H|Vf|2dA+fyj{ ds 1) Eé(fR,ch):ﬁ//(fR—g)QdA—l—oz// |VEr|? dA
o\C c R R
- 2
in which C denotes the smooth, closed segmenting cugas- + 0 // . (fr- —g)"dA
notes the observed dafadenotes the piecewise smooth approx- )
imation tog with discontinuities only along’, and$2 denotes + o // |VER:|? dA. (2

the image domain [22], [23]. This energy functional is also re-

ferred to as the weak membrane' py Blake and Zissgrman [5]The estimatesr andfg. that minimize (2) satisfy (decou-
The parameters, /3, andy are positive real scalars which conjeq) PDESs which can be obtained using standard variational
trol the competition between the various terms above and detgfsthods [22]. Alternatively each of these estimates can also be
mine the “scale” of the segmentation and smoothing. Of courggtained from the theory of optimal estimation. This statistical
one of these parameters can be eliminated by setting it to 1 fybrpretation suggests lines of inquiry beyond the scope of this
for clarity of exposition, we will keep it as is. From an estipaper (which we briefly discuss in Section V). Specifically, the
mation-theoretic standpoint, the first term &(f, C'), the data  ggtimatefy, that minimizes (2) can be interpreted as the optimal
fidelity term, can be viewed as the measurement modef forastimate of a boundary-value stochastic proces$41dn the

with 3 inversely proportional to the variance of the observasomaink whose measurement equation is
tion noise process. The second termBf, C), the smooth-

ness term, can be viewed as the prior modekfgiven C.The g=fr+v (3)
third term inE(f, C) is a prior model folC' which penalizes ex-
cessive arc length. With these terms, the Mumford—Shah furazzd whose prior probabilistic model is given by

tional elegantly captures the desired properties of segmentation
. . . . . Vip =w (4)
3The final term in the original Mumford—Shah functional consisted of a

penalty on the Hausdorff measure of a more general set of discontinuities thaﬂ d ind d hite G . d field
we consider here. By restricting the discontinuity set to a smooth cirwee wherev andw are independent white Gaussian random fields

are able to replace this term by a simple arc length penalty. with covariance intensities/3 and1/«, respectively.
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One effective approach to characteriziizgs through the use B. Gradient Flows That Minimize the Mumford—Shah
of complementary processes [1]. In particular, we seek a proc€ssctional

z whichcomplementthe observatiog in (3) inthatz andg are  jith the ability to calculatdr andf- for any givend, we
uncorrelated and, together, they are informationally equivaleqs,, wish to derive a curve evolution fé¥ that minimizes (1).
to ¢ = {v,w} (i.e., to all of the underlying random processegp,; s, as a function of, we wish to findc, that minimizes
defining the estimation problem). Moreover, since the specifica-

tion of the statistics of in (3) an? (4) is via a differential model By 5. (& =p // (fr — g)?dA+ // |VER|?dA
and involving an internal “state” (namefy,), we seek an anal- ’ R R

ogous model foe. We refer the reader to [1] for the complete 8 // (f _g)?dA

methodology for the direct construction of such complementary SF

models, employing Green'’s identity and formal adjoints of dif- a9

ferential operators. The application of this methodology to (3) + a//R |ViRre|" dA + ’ng ds. (20)

d (4) yields the followi del for the
and (4) yields the following model for The first four terms in (10) are of the form

z=\—aw (5) J://DHdA (11)

where the internal statk satisfies .
where D denotes either the interior or the exterior@f and

—VA=pv 6) H: R? — R is a continuous function. The gradient flow to
minimize (11) is given by
with boundary condition G, — _HN (12)
NTX=0 onC () In addition, the gradient flow that minimizes the arc length of
C is given by

whereA denotes the outer normal of the cuie B B
Eliminatingv andw from (3)—(6) we can express; and A Cy = —rN (13)
completely in terms of andz. Then, sinceg andz are uncor-

related, we obtain an internal realization of the optimal estimajerer denotes the signed curvature@f Knowing gradient

fr flows (12) and (13), the curve evolution that minimizes (10) is
given by
vV i1 Tfg] _J O Lo o o
{/31 —v} {)\} - {/3g} onk Co = S (IVir-|* = [VEr|)N
38 p A - .
with the boundary condition +5(8 - fre)® — (8 — fr))N —ysN.  (14)
NTi=0 ond For the rest of the paper, we will refer to this gradient flow,

which is also derived in [22], as thdumford—Shah flowThis
flow together with the optimal estimation PDEs makes explicit

Eliminating A and noticing that the producY’ - Vi is the ; . )
g g n " the coupling between the optimal estimates and the curve evo-

derivative off in the direction ofA/, we obtain the following

damped Poisson equation with Neumann boundar conditi%ion'
P q y Flow (14) is implemented via the level set method [26], [36]

for f _ . . .
R which offers a natural and numerically reliable implementa-
FL T S g OonR (8a) tion of these solutions within a context that handles topological
r Jéj n changes in the interface without any additional effort. In this
ot - level set framework(' is represented by the zero level set of a
N =0 onC. (8b) graph. This graph or level set function evolves so that its zero
level set moves according to (14). One can then interpolate be-
In a similar fashionfz- is given as the solution to tween neighboring pixels to locate the precise locations of the
zero level set as the level set function evolves. Additionally, in
fre — EVQ]?RC —g OnR (9a) this framework, sincg, V f, andg are only defined on the zero
I5 level set, they need to be extended to other level sets as well.
e R Following the approach described in [26], we let these values at
. —0 ond 9b : - -
aN onc. (9b) points on the other level sets take on their corresponding values

from the closest point on the zero level set. In this manf‘lgr,
We will refer to (8) and (9) as the estimation PDEs. The derivaZf, andg are extended to all other level sets. This will ensure
tion of these equations using standard techniques of calculugpadper evolution of the entire level set function. Finally, spatial
variations can be found in [22]. The conjugate gradient (CG@lgrivatives in the level set framework associated with the curva-
method is employed as a fast and efficient solver for these estire term in (14) are computed via central differences whereas
mation PDEs. spatial derivatives associated with the other terms in (14) (i.e.,
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(o) (c) i)

Fig. 2. Outward flow from inside.

i) (c) i)

Fig. 3. Bidirectional flow.

(b} (c) id) (e}

Fig. 4. Inward flow from outside.

terms involvingf andg) are computed using monotone upwindhe boundary (Fig. 5). In these figures, Frame (a) shows the
difference schemes [26] in order to capture the viscosity solmitializing contour with the original image; Frames (b) and
tion (when there are discontinuities or jumps in the fitting ternfc) show the estimate of curv@ and the estimates df; and
for example). fr. associated with two intermediate steps of the algorithm;
Frame (d) shows the final segmenting cueand the final
C. Remarks on the Mumford—Shah Active Contour Model reconstruction of the image (based on the estiméfeand
frc); and finally, Frame (e) shows the reconstruction of the
One very attractive feature associated with our Munimage without the overlaying curve for comparison to the
ford—Shah active contour model (and also present in othamiginal noisy image. Note that the smooth estimate of the
region-based methods) is that it automatically proceeds in tineage is continuously estimated based on the current position
correct direction without relying upon additional inflationaryof the curve. In Fig. 5, in addition to the curves that outline the
terms commonly employed by many active contour algorithmisoundary of the hand, there exists extraneous curves around
We illustrate this in Figs. 2-5 with a noisy synthetic imagéhe four corners of the image which do not correspond to
of a hand. An initial contour completely contained withinmage edges. This is due to the fact that the algorithm has
the hand will flow outward toward the boundary (Fig. 2); anlescended upon and settled on to a local minimum—a common
initial contour partially inside and partially outside the hangroblem faced by all algorithms which rely on gradient descent
will flow in both directions toward the boundary (Fig. 3); anmethods for minimization. However, notice that the piecewise
initial contour encircling the hand will flow inward toward smooth reconstruction of the image shown in Fig. 5(e) does not
the boundary (Fig. 4); and finally, an initial contour situatedxhibit any ill effects from these extraneous curves; that is, the
outside the hand will flow outward toward and wrap arounceconstruction does not show any semblance of an edge along
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{a} [{¥)] (c (d) (&}

Fig. 5. Outward flow from outside.

([} () (d) (e}

Fig. 6. Segmentation and smoothing of an image with four distinct foreground regions.

these extraneous curves. Thus even if the curve is trapped atreereg; andf; denote théth component of thé-dimensional
local minimum, the reconstruction of the image is still accurateector-valued observed data and its smooth estimate, respec-

The class of imagery that our algorithm can handle is novely. The curve evolution that minimizes this energy functional
restricted just to images with only two distinct means but is given by
equally applicable to images with multiple nonoverlapping re-
gions each with different means. Moreover, we do not need ta, .
know in advance the number of such regions or distinct mearfst = 9 Z(Wfin
are present. As shown in Fig. 6, segmentation and smoothing i=1k
are performed on a noisy synthetic image with four foreground J5] A A — —~
regions of different means situated on a spatially varying back- T 3 Z((gi —fir-)? — (& — fin) )N — e, (15)
ground region. Multiple disjoint regions are captured by a single =t
contour demonstrr_ﬂing the topo_logical transitiqn_s gllowed byttﬁeﬂR andf; p. fori = 1,... k in (15) is given by the solu-
model’s level set implementation. However, it is important ons to the following:
point out that this single curve cannot detect a region if it is in- '
side another region. In Section IlI-D, we demonstrate how to
handle this type of problem.

Our model can also be generalized, in a very straight for- 3fz‘R
ward manner, to handle vector-valued imaggésg., color im- = =
ages or images obtained from scale and orientation decompq- ON
sitions commonly used for texture analysis). Consider the fol- . @

k
2 |V RPN

(%

fm—ﬁv“’fm:gi onR

—

onC

28 e c
lowing vector version of the Mumford—Shah functional: fire — /3V fire =g ONR
. of; pe =
E(f17f27"'7fk70) Ij =0 onC.
k ON
_ 2
=8 //“ Z(fi — i) dA For demonstration, in Fig. 7, we show the segmentation and
=1

smoothing of a noisy color image of six different types of gem-

k
stones.
+a// Z|Vfi|2dA+'yjI§ ds
¢ =] ¢
I1l. | MPLEMENTATION

4Chan and Vese, who have considered the piecewise constant version of thqhere are two ways in which we can improve the Mum-
Mumford—Shah functional [9], have also extended their framework to vectay- .
valued data in “Active Contours Without Edges for Vector-Valued Images” (s Qrd_Shah active contour model presentgd so far. One,.we can
http:/Awww.math.ucla.edu/applied/cam). speed up the convergence of the algorithm by reducing the
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(b ic) ()] i)

Fig. 7. Segmentation and smoothing of a color image with six distinct foreground regions.

ik ic) )] 2

Fig. 8. Noisy image of Star Wars characters Qui-Gon Jinn and Jar Jar Binks in the Tatooine Desert.

required number of curve evolution steps and/or reducing thierations we use in the end to obtain an accurate estimdtg of
computational cost of solving the estimation PDEs. Two, wendfy, . The segmentation clearly delineated the two Star Wars
can build on the level set implementation of our algorithroharacters. The reconstruction of the image accurately captured
to enable it to handle important image features such as triphe spatially varying background and preserved the structures
points and other multiple junctions (without having to resort taithin each Star Wars character. Obviously, this is not possible
more sophisticated level set techniques [21]). In this section, wéh lower dimensional models (such as ones based on mean
present several progressive modifications to the implementatiotensities [9]).

of the Mumford—-Shah active contour model in order to make As one can appreciate, a large number of curve evolution

these improvements. steps is required to take the curve from the initial curve in
) ) Fig. 8(a) to the final segmenting curve in Fig. 8(d). This trans-
A. Approximate Gradient Descent lates to calculating;z andfz- many times, a significant load

We propose an approximate gradient descent approach to esen if we only perform a few CG iterations at each step. In the
culatefR, fRC andC that minimize the Mumford—Shah func-next two subsections, we address this computational issue.
tional shown in (1). This approach consists of alternating be-

tween the foIIowing two steps: B. Two-Step Approach
« fix fr andfr:, and take several | gradient descent curve ope way to reduce the number of curve evolution steps s to ob-
evolution steps to move the cundé tain agood initial estimate of the curg@eso thatthe travel distance

- fix C, and perform just a few iterations of the CG methogf ihe initializing curve to the correctimage boundary is reduced.
for the estimation PDEs—uwithout taking it to convergne approachto doing so, thatworksifthere are only two distinct
gence—to obtain eoughestimate oz andfk.. means inthe image, is to employ the method of Chan and Vese [9]

We have found thatitis not necessary to get an accurate estimat@rred to earlier. Chan and Vese restrict the two regiBres)d
of fr andfr. at each evolution. All that is required is a roughre, to have constant values. For the class of bimodal images, this
estimate of these values to direct the curve to move in the genggadtriction is equivalent to taking = oo in our Mumford—Shah
descent direction. The idea is to make the algorithm faster B¥tive contour model. This reduces flow (14) to
reducing the number of t|mé§ andec are estimated and also
the amount of time required to calculate each of them. The CG - B . .
procedure is then carried to convergence in the last iteration to Ci= 5(“ —v)(g—u+g—vN — N (16)
obtain an accurate final estimatefef andfyz-.

Fig. 8 illustrates the performance of this approach applied wherew andv are the average intensities Bfand R¢, respec-
a noisy image of two Star Wars characters with different me&mely. This is precisely the flow presented in [9]. Evolving the
intensities standing in a spatially varying background. We oburve according to this flow is fast since each evolution only re-
tained the results shown in this figure by alternating betweepires updating the mean values inside and outside the curve.
20 curve evolution steps and ten CG iterations. This reducéé evolve any starting curve according to this flow in order to
number of CG iterations compares quite favorably to the 100 Gibtain a good initial estimate &f. Once we have this estimate,
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(&) i) () (d) i)

Fig. 9. Mammogram showing cyst in the breast tissue.

we relaxa to a finite value, and employ the approximate grabetween the starting curve and the final curves. In addition, the
dient descent method introduced earlier to minimize the genecaimputational requirements in updating each curve evolution
form of the Mumford—Shah functional. Since the initializingstep is also reduced due to the smaller image domain within
curve is presumably close to the correct boundary, the numiverich the curve is evolving. More importantly, we have sub-
of evolution steps required for convergence is greatly reducestiantially decreased the computationfgf and fg- since the
However, due to the use of flow (16) in calculating the initiafliscretized versions of the estimation PDEs are much lower in
estimate ofC, this two-step implementation approach of oudimension on the coarsened grid. The final curve obtained on
Mumford—-Shah active contour model can only handle imageach coarsened image is upsampled by a factor of two in both
with two distinct means. In Section IlI-D, we discuss ways tthez and they direction to serve as the initializing contour for
circumvent this restriction. the image at the next higher resolution (which is easily accom-

Fig. 9 illustrates this two-step implementation of our modeplished in the level set framework by replication of the level set
In Fig. 9(a), a noisy mammogram showing a cyst in the breagtid). At this new scale, because the initializing contour is al-
tissue is displayed, along with the starting curve. The next frameady close in proximity to the edges of the image, the number
shows the estimate @ obtained by assuming piecewise conef approximate gradient steps required to move the curve to-
stant regions; that is, obtained by employing flow (16). Thizward the edges of the image is small. We also end up with a
curve is superimposed on top of the original image. Fig. 9(gpod initial estimate of the smooth field at this new scale by up
shows the piecewise constant approximation of the image basadhpling. Only a few iterations is required in obtaining a seg-
on this segmenting curve. In Fig. 9(d) we show the results of amentation and reconstruction of the image at this scale. This
plying the approximate gradient descent implementation of oprocess of using the segmenting curve at one resolution as the
active contour model using, as initializing curve, the one shovimitial curve for the next finer resolution is repeated until the
in Fig. 9(b). Equal penalty on the arc length of the curve is udi@est resolution image is reached. As one can appreciate, the re-
in obtaining the curves shown in Fig. 9(b) and (d). For conductions in computation based on this multiresolution approach
parison to the original image, in Fig. 9(e) we show the optimaive rise to a much more efficient implementation of our algo-
estimate produced by our algorithm with the segmenting curvighm. In Fig. 10, we demonstrate this multiresolution approach
suppressed. It is clear from these results that the segmentatiana color photograph consisting of two different foreground
of the cyst has been refined and that a denoised restorationmagfions (i.e., the two parakeets). A single contour successfully
the image is obtained. captured both foreground regions even though one foreground

region has a different vector mean than the other.

C. Multiresolution Approach

Though the two-step approach of above can substantially - Hierarchical Approach
duce the computational complexity of our algorithm, itis limited We now propose an implementation of our active contour
by its ability to handle only images with two distinct means. Wenodel, building on the preceding modifications, to enable our
now describe a multiresolution approach that not only speedsmpdel to handle images with multiple junctions or holes (i.e., a
our algorithm, but also adheres to the original capabilities of otggion inside another region) without resorting to more sophis-
model to segmentimages with multiple nonoverlapping regiort&cated level set techniques [21]. This approach also allows the

The basic idea of the multiresolution approach is to usepassibility of using the two-step approach of Section 1lI-B to
coarsened representation of the image to obtain a good estinfetedle images with more than two distinct regional means.
of the segmenting curve, and then progressively refine this esGiven an image, we apply our Mumford—Shah active con-
timate of the curve as the resolution of the image is increase¢our model for segmentation and smoothing. After segmenta-
Given animage, we repeatedly subsample it by a factor of twotion, if any of the resulting subregions require additional seg-
both ther and they direction to obtain a set of images of varyingnentation, apply our algorithm again, but this time, restricting
resolution. The subsampling process terminates before the réfe algorithm to operate only in that particular subregion. This
vant features within the image are lost. We begin our multiresapproach has the natural notion of starting with a crude segmen-
lution approach by applying our technique at the coarsest scadgion and refining the segmentation by telescoping down to the
Operating at such a coarse scale, we decrease the numbatiftérent subregions in order to capture finer and finer details in
curve evolution steps required by reducing the travel distanite image. The attractive feature associated with this implemen-
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Fig. 10. Segmentation and smoothing of a noisy color image of two parakeets using a multiresolution approact4@)xTBe0 original noisy image. (b)

The60 x 60 subsampled image of the original with initializing curve. (c) Final segmenting curve superimposed on top#dti reconstructed image. (d)
Reconstruction of th60 x 60 subsampled image. (e) TAE0 x 120 original image with initializing curve obtained from the up sampled version of the curve
from (c). (f) Final segmenting curve superimposed on top oflth& x 120 reconstructed image. (g) Reconstruction of 126 x 120 original image. (g) The

240 x 240 original image with initializing curve obtained from the up sampled version of the curve from (f). (i) Final segmenting curve superimposed on top of
the240 x 240 reconstructed image. (g) Reconstruction of 246 x 240 original image.

tation is that it allows us to handle images with triple points bgletected later in the process meet the boundaries detected ear-

employing multiple curves to represent such junctions. Moréer at right angles. This follows from the theory of junctions as

over, this nested implementation affords us better control aspgesented in [22]. Consequently, the triple points found by this

what details we desire and what objects we would like to cappproach are necessarily T-junctions.

ture, in the segmentation and smoothing of our image. We use the brain pathology image shown in Fig. 11(a) to
Remark: It should be pointed out that this hierarchical apdemonstrate how the approximate gradient descent method of

proach has the limitation in that the boundaries of the regioB&ction IlI-A is used in the hierarchical implementation of our
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Fig. 11. Hierarchical segmentation and reconstruction of a pathology image of the human brain based on the approximate gradient descent nigitradd. (a) O
image. (b) Originalimage with the initialization scheme for the first curve. (c) Segmentation and reconstruction of the image based on tlee (@strtiatization
scheme for the second curve. (e) Segmentation and reconstruction of the image based on both curves. (f) Reconstruction of the image basedso8awth curve
set of parameters are used in obtaining the results shown in (c) and (e).

active contour model. First, the segmentation and reconstructimodel for the segmentation and reconstruction of a color
of the image shown in Fig. 11(c) is obtained based on tloppler ultrasound image of the heart [Fig. 12(a)] using the
approximate gradient descent approach. The blurring acresstor-valued model in (15). To demonstrate the effectiveness
the boundary of the white and the gray matter is due to tlo€ our technique for denoising/smoothing, we show in the next
erroneous implication of this coarse segmentation, namely tihab frames a comparison between the blurry representation
the inside of the brain is one region over which smoothingf the original image after applying isotropic smoothing (i.e.,
is performed. To provide better details within the brain, wihe same smoothing used in the Mumford—Shah framework
again applied our technique to the interior region of the brabut applied over the image as one single region) as shown
to obtain the segmentation and reconstruction of the imameFig. 12(b), and the smooth representation of the original
shown in Fig. 11(e). The yellow and the red curves segment tineage without blurring across edges using the Mumford—Shah
image into the background, white matter, and the gray matterodel [Fig. 12(c)]. The reconstruction in Fig. 12(c) is obtained
The piecewise smooth reconstruction of the image is showsing four segmenting curves, each at a different hierarchical
in Fig. 11(f) without the segmenting curves for comparisolevel. Fig. 12(d)—(g) shows the initialization technique for
to the original image. the four different curves at the different hierarchical levels.
Next, we demonstrate how the two-step method of Selotice that each region or subregion of interest is seeded with
tion 1lI-B is used in the hierarchical implementation of ouregularly spaced initial contours for automatic segmentation.
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Fig. 12. Hierarchical segmentation and reconstruction of a color Doppler ultrasound image of the heart based on the two-step approach. @p@giginal i
(b) Original image after isotropic smoothing. (c) Reconstruction of the original image based on the Mumford—Shah active contour [same im&dg-4g)(0)].
Initialization scheme for the various levels of the hierarchy. (h)—(k) Segmentation and reconstruction of the image at various levels of Hye (t¥efa)yc
Reconstruction of the image at various levels of the hierarchy.

Fig. 12(h)—(k) shows the segmentation and reconstruction of teerlaying segmenting curve. At the first hierarchical level,
image at the various hierarchical levels based on the two-step cyan curve captured the white myocardium and the yellow
method. And finally, Fig. 12()-(0) show just the reconstructioregion corresponding to slow-velocity-flow moving away
of the image at the various hierarchical levels without thieom the ultrasound transducer. The green curve at the second
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Fig. 13. Hierarchical segmentation and reconstruction of a noisy avocado image based on the multiresolution approach. (a) Original imagel {imeQeigi
after isotropic smoothing. (c) Reconstruction of the original image based on the Mumford—Shah active contour [same image as (i)]. (d)—(f) tieesoltian
segmentation and reconstruction. (g)—(i) Level 2 multiresolution segmentation and reconstruction.

hierarchical level captured the red high-velocity-flow movingised. Fig. 13(g) shows the initialization scheme for this second
away from the transducer near the heart valve. The mageantave at the coarsest resolution. Shown at the finest resolution,
curve at the third hierarchical level captured the ultrasourkdg. 13(h) demonstrates how this new curve can capboth
beam (together with other brighter parts of the image). Finalligreground regions-the seed and the dark outer covering of the
at hierarchical level four, the yellow curve separated the blaeocado-despite the fact that these two foreground regions have
region (which corresponds to blood flow moving towardlistinct vector means. As advertised, the hierarchical approach
the transducer) from the brighter remaining areas within tlemables our algorithm to handle triple points. Two such points
image. As shown in this figure, these four curves enable tban clearly be seen here. Fig. 13(i) shows the reconstruction of
segmentation to handle various multiple junctions. the noisy image without the segmentation curves.

Finally, by using the noisy avocado image in Fig. 13(a), we In general, it is not always possible to automatically deter-
illustrate how the multiresolution approach of Section IlI-C camine if a particular subregion requires further segmentation or
be used in the hierarchical implementation of our model. A®wt. However, in cases where one is only interested in the the
before, in Figs. 13(b) and (c), we compare isotropic smoothimgconstruction of a noisy image and not the location of the seg-
(with no segmentation) with smoothing based on the Munmenting curve, the hierarchical approach can be employed in a
ford—Shah model. Fig. 13(d) shows the initialization scheme fally automatic fashion. Specifically, we can use the two-step
the coarsest resolution for the first curve. Fig. 13(e) shows theethod of Section 111-B within the hierarchical implementation
curve successfully capturing the two avocado-halves, showrt@trecursively segment and smoothly reconstruction the image.
the finest resolution. The reconstruction of the image based ©he recursive procedure terminates when further segmentation
this one curve is shown in Fig. 13(f). Notice the blurring acrossf a particular subregion does not substantially decrease the
the shared edge of the two avocado-halves and across the ed@@mnford—Shah energy functional (i.e., by a predefined amount
of the avocado seed. To prevent this blurring, a second curvesé equal to a percentage of the starting energy value).
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IV. EXTENSIONS and
So far, we have focused on developing our algorithm for the ptre — aV* g = fg ONR°
particular context in which the Mumford—Shah functional was oF
originally designed, namely simultaneous image segmentation 2 _o onC.
and denoising. However, the range of applications of our algo- ON

of previous section to handle simultaneous segmentation, §8n reduces to the Laplace equation with the same Neumann
noising, and interpolation by generalizing the original Mumpoyndary condition

ford—Shah functional.

. o _ _ Vi, =0 onD (19a)
A. Segmentation, Denoising, and Interpolation of Images with X
Missing Dat of =
'ssing a_a o ) =P —0 onC. (19b)
Images with missing data are frequently encountered in many ON

image processing problems. Various approaches have been pio|,tions to the Laplace equation, the estimates obtained

posed to restore these images [4], [8], [20], [24]. One approagfe, any such missing data regions not containing paittafke

in tackling this problem is the use of estimation-theoretic teclﬂie form of harmonic functions. As such. we can infer much
niques to interpolate the values of these missing data. Stafyy, t the smooth nature of these interpolated estimates as they
dard estimation formalisms will generally produce smooth iNye subject to both a maximum (and minimum) principle as well
terpolations in regions of missing data, something that is NYL the mean value property. However if the cuféintersects
desirable if there are high-contrast boundaries in any of theﬁ? no such smoothing occurs across this boundary, allowing in-
missing data regions. However, since our formalism brings %Rrpolation to be guided by the segmentation definedibfo
timal estimation angl curve evolution together, avery easily i_rﬂfustrate this, we show in Fig. 14(a) a synthetic image of the
pIemt_ar_1ted gene_rallzatlon_allo_vvs us to deal with segmentatiQiyjie g States with regions of missing data. The synthetic image
denoising, and interpolation in a simultaneous and naturalya e in an attempt to simulate a satellite picture of the United
coupled manner. - States with regions of incomplete data as a result of obscura-
Our model handles missing data through the parameter o by cloud coverings. The final curve estimate is depicted in

the standard Mumford—Shah formulation (B)is a constant iy 14(d) and the denoise and interpolated reconstruction is
scalar parameter reflecting our confidence in the measuremegig, vn in Fig. 14(e).

To accommodate applications in which the data quality is spa-g algorithm can also be used to segment and reconstruct

tially varying and even in the limiting such case in which therﬁ"nages with isolated pixels of missing data distributed arbi-
are missing pixel measurements distributed arbitrarily throu%r”y throughout the image as shown in Fig. 15(a). This often
the image domain, we replace the constant paraniiga spa- .crs in imaging modalities subject to speckle. By utilizing the
tially varying function/s whose value at each pixel is inversely,;, smaothness constraint placed on the image, our model ap-
proportional to. the variance of the measured noise at that p”ﬁlopriately “fills in” the gaps created by the missing data. In
For example, in the situation where the data at piel. yo) g 16, we demonstrate the capabilities of our method on a real
is missing, we consider the variance of the data at that pixel g, e ' forward-looking infrared (FLIR) image of three tanks
being infinite and accordingly sz, y,) = 0. By introducing s, missing data distributed throughout the image is shown in
this spatially varyings, (1) becomes Fig. 16(a). The missing data in the FLIR image are due to inten-
sity saturated and defective pixels of the infrared sensor. Using
N 2 our method, we are able to segment out the tanks and also pro-
Ef,0) = //Q pE —g)"dA vide a denoised and complete reconstruction of the image.

+a// IVE|2 dAJr,yj[ ds. (17) B. Segmentation-Based Image Magnification
ANe ¢ Image magnification or spatial resolution enhancement is re-
The gradient flow that minimizes (17) is given by quired in a variety of applications including image compression,
image coding, and HDTV. It deals with the problem of enlarging
a R . a small image to several times its size and often requires some
Cy = —(|VEr:|? — |VEr|P )N sort of an interpolation scheme. The most straightforward ap-
2 proach for image enlargement is to use a zero-order interpo-
I P AUy - lation technique, commonly known as replication, which may
+5 (&= 1fr)" — (g~ f)ON — 9N (18) cause the resulting image to appear blocky [18]. Classical en-
largement techniques such as bilinear or bicubic interpolation
schemes tend to cause blurring across the edges when applied
/3fR — aViHy = fg onR indiscriminantly to the image [18]. More sophisticated schemes
may locate the edges first with local filters prior to interpola-
tion so as to avoid the blurring artifacts [2], [31]. Three impor-
tant shortcomings are evident in these types of algorithms. One,

where the optimal estimatdg andfz. of (18) satisfy

ofg

ZE _0 onC
ON
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{5 (c) i) {e)

Fig. 14. Segmentation and smoothing of a synthetic image with regions of missing data. Missing measurement data points are shown as white pixels in (a)

(a) {5)] (e (d) (e}

Fig. 15. Segmentation and smoothing of a synthetic image with missing data distributed throughout the image. Missing measurement data psmgsare sho
white pixels in (a).

(&} [z

{e)

Fig. 16. FLIR image of M2, T62, and M60 tanks. White pixels in (a) denote locations with missing data.
the interpolation schemes used for magnification are local sin
they only utilize data values from neighboring pixels. This inter
polation scheme becomes even more problematic when the « o 0o 0|0 O ©
served image is noisy. Two, edge detection schemes employ
prior to interpolation often only make use of local information Tt ]O0 € 010 'v< :
(which are very susceptible to noise artifacts) and cannot guz o o olo o o
antee continuous closed edge contours. Three, it is unclearmissing data — measurement
what order the three operations (smoothing, edge detection, & ©c © ojo 0o ©
interpolation) should be performed since they are not comm o 10 ®© o0lo e o .
tative. Our approach for image magnification addresses the fit
deficiency by using an estimation-theoretic (PDE-based) mod © O o]0 O ©
for interpolating the data which incorporates the use of all da
values within each homogeneous region, not just neighborir

pixels, to determine the interpolant. As a result, this interpo-
Iatlon Scheme |S much more robust to n0|se. The Second d@fﬁ, 17. Dlagram ShOWIng the locations of m|53|ng data in relation to the

. . . fneasurements in our image magnification technique.
ciency is addressed by the use of our active contour model for
boundary detection which is more global in nature than local fil-
ters (and therefore not as sensitive to noise) and is curve-basedpling for simultaneous image segmentation, denoising, and,
(hence providing a continuous closed edge contour). The thirdder the extensions we have just presented, interpolation. In
deficiency is addressed by using the Mumford—Shah modethss manner, the ordering of the different operations is no longer
principled approach to provide, in a single framework, a tigln issue.
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Fig. 18. Three-fold magnification of a photograph of birthday candlest@8)x 160 original image; (b#80 x 480 magnified image obtained by replication
then smoothing; (c}80 x 480 magnified image obtained by smoothing then replication#ff) x 480 magnified image based on the Mumford—Shah model.

(&) ()

Fig. 19. Three-fold magnification of color photograph of a canyon region in Australidf(ax 100 original image; (b300 x 300 magnified image obtained
by bilinear interpolation then smoothing; )0 x 300 magnified image obtained by smoothing then bilinear interpolatior8{d)x 300 magnified image based
on the Mumford—-Shah model.

Image magnification capability is weaved into the MumFig. 18(c) shows the image obtained by first isotropically
ford—Shah active contour model by considering the imageoothing the original noisy image then magnifying it using
maghnification problem as a very structured case of the missingro-order hold. This image is blurry because the edges of
data problem. Specifically, consider a new grid with three timése image were destroyed during the initial smoothing step.
as many pixels in each direction and assign the value of thie show the magnification results based on our approach in
original image to the “center” pixel in each x 3 block on Fig. 18(d). To demonstrate that this magnification technique is
the grid and treat the remaining pixels as missing data poimtst just limited to scalar-valued images with nonoverlapping
(see Fig. 17). From an estimation-theoretic standpoint, wegions, in Fig. 19, we show the results of the various magni-
can view these “center” pixels as sparse measurements ofication technique (including ours) on a noisy vector-valued
much larger image domain. We then employ our generalizeadage of a canyon region in Australia [Fig. 19(a)]. Fig. 19(b) is
Mumford—Shah curve evolution procedure to interpolate to thidtained by first magnifying the original image using bilinear
finer grid, using the curve evolution portion of this procedurmterpolation followed by isotropic smoothing while Fig. 19(c)
to partition the domain of the magnified image into different obtained by first isotropically smoothing the original image
homogeneous subregions so as to provide smooth interpdleen magnifying it using bilinear interpolation. For comparison,
tions where appropriate without blurring across regions of highe hierarchical implementation of the vector-valued counter-
contrast. part of (17) is used to obtain our magnification result shown in

In Fig. 18(a), we show a60 x 160 noisy black-and-white Fig. 19(d).
photograph of 5 burning birthday candles, each of differing
intensity. We show in Fig. 18(b) the image obtained by first
magnifying the original noisy image using zero-order hold then
smoothing it isotropically. Notice the magnified image is still In this paper, we have outlined an estimation-theoretic ap-
noisy because the noise components within the original imageach to curve evolution based on the Mumford—Shah func-
have been exaggerated by the zero-order interpolation schetizmal. By viewing an active contour as the setof discontinuitiesin

V. SUMMARY AND FURTHER RESEARCHDIRECTIONS
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the standard Mumford—Shah problem, we usedthe correspondiiag also use the same formalism to compute statistics (e.g., co-
functional to determine gradient descent evolution equationsvariances) of the errors in these estimates. These statistics can
deform the active contour. Each gradient descent step involviéen be used for a variety of purposes. For example statistical op-
solving a corresponding optimal estimation problem, namelinal fusion of estimates from multiple images (as is commonly
the optimal estimate of the noise-free image given the noispcountered in remote sensing) requires error covariances in
image data and the current estimate of the boundary cureeder to weight each of the images to be fused according to its
The solution of this estimation problem came from the theoryuality. Also, error variances can be used to detect and correct
of boundary-value stochastic processes, which leads to decfm-anomalous measurements or to detect changes between the
pled PDEs in space whose solutions produce the optimal imaggimate produced from one set of imagery and a later set of im-
estimates in each of the connected regions separated by abjery of the same region. More generally, since (1) can be inter-
current curve estimate. Very importantly, this theory also gapeeted as the log-likelihood of the observed imagery given the
us boundary conditions for these estimates along the currentmesidom field model implied by the Mumford—Shah functional,
timate of the boundary curve which are directly used in evolvingrror statistics can in principle be used both for model valida-
the curve to a local minimum of the Mumford—Shah functionation and parameter estimation. These topics will be the subject
By connecting curve evolution and the Mumford—Shah funof future research.

tional with the theory of boundary-value stochastic processes,

our algorithm can be regarded as a curve evolution driven by so- ACKNOWLEDGMENT
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