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Abstract—In this paper, we present a new information-theo-
retic approach to image segmentation. We cast the segmentation
problem as the maximization of the mutual information between
the region labels and the image pixel intensities, subject to a
constraint on the total length of the region boundaries. We assume
that the probability densities associated with the image pixel
intensities within each region are completely unknown a priori,
and we formulate the problem based on nonparametric density
estimates. Due to the nonparametric structure, our method does
not require the image regions to have a particular type of prob-
ability distribution and does not require the extraction and use
of a particular statistic. We solve the information-theoretic opti-
mization problem by deriving the associated gradient flows and
applying curve evolution techniques. We use level-set methods to
implement the resulting evolution. The experimental results based
on both synthetic and real images demonstrate that the proposed
technique can solve a variety of challenging image segmentation
problems. Futhermore, our method, which does not require any
training, performs as good as methods based on training.

Index Terms—Curve evolution, image segmentation, informa-
tion theory, level-set methods, nonparametric density estimation.

I. INTRODUCTION

IMAGE segmentation is an important problem in image
analysis, appearing in many applications including pattern

recognition, object detection, and medical imaging. Some
previous approaches to image segmentation, which pro-
vide the basis for a variety of more recent methods, include
boundary-based segmentation such as Canny edge detection
[1], region-based segmentation such as region growing [2],
[3], and global optimization approaches such as those based
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on the Mumford–Shah functional [4]–[6]. Recently, there has
been a considerable amount of work on image segmentation
using curve evolution techniques [5], [7]–[14]. Some of these
techniques, including the ones in [10] and [14] have relations to
the approach we present here. In particular, Paragios et al. [10]
developed a parametric model for supervised segmentation of
textured images. Yezzi et al. [14] developed a segmentation
technique using a particular discriminative statistical feature
such as the mean or the variance of image regions. These, and
many other recent methods (such as [12] and [15]) have been
inspired by the region competition model of Zhu and Yuille
[16].

Our strategy is different from those of previous curve evo-
lution-based methods in three major ways. First, unlike the
techniques mentioned above, our approach is based on non-
parametric statistics. The performance of parametric methods
can be severely affected when the assumed parametric model
is not correct. This limits the class of images that can be
segmented using such methods with a particular parametric
model. In response to the need for robustness and a larger mod-
eling capacity in statistical analysis, nonparametric methods
[17] have been widely used in machine learning problems.
Nonparametric methods estimate the underlying distributions
from the data without making strong assumptions about the
structures of the distributions. The nonparametric aspect of
our approach makes it especially appealing when there is little
or no prior information about the statistical properties of the
regions to be segmented. Note that there is a tradeoff, namely,
with a nonparametric approach we expect some performance
loss when the image fits a parametric model. However, we will
give examples that clearly make the case that there are rich
classes of real images for which our method is advantageous.
In particular, we will show a compelling example where two
regions of same means and same variances are segmented.

The second aspect of our technique is that no training
is required. Again, this has advantages and disadvantages.
Obviously if one has training data from which to learn the
distributions of the image regions, one should take advantage
of this, as in Paragios et al. [10]. However, it is also of practical
interest to develop methods that do not require prior knowledge.
We will see that the method developed here can yield results as
good as those of other methods which take advantage of prior
training (which our method does not, and simply must perform
segmentation based on the image presented to it without any
prior training).
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The third aspect of our technique is that this is a principled in-
formation-theoretic framework (using mutual information) that
allows us to understand the several key quantities that drive the
resulting curve evolution. In particular, the first such term is a
likelihood ratio (LR) term that is similar to that used by Zhu
et al. [16], the difference being that in [16] LR is computed
using parametric distributions whose parameters are estimated
at each iteration, while ours uses distributions that are learned
and dynamically adapted in a nonparametric way. If the partic-
ular parametric model is not well matched to data, the nonpara-
metric method will outperform the parametric counterpart. Even
though the image fits the parametric model, our distribution es-
timates approach the quality achieved by parametric estimates.
The formalism we describe also includes two additional terms
which capture the sensitivity of the estimated distributions (and,
hence, the LR) to changes in the segmenting curve as it evolves.

The technique proposed by Jehan-Besson et al. [18] is related
to our work regarding these additional terms. The work in [18]
considers general region-based active contours, where the en-
ergy functionals to minimize are given as region integrals of
so-called descriptors. In particular, they consider the case where
the descriptors themselves depend on the region, and formulate
an optimization method. Their formulation can also be applied
to our energy functional, which is also region based. What is
new with our method is that our energy functional is based on
mutual information and that our “descriptor” involves nonpara-
metric density estimates, whereas they consider means, vari-
ances, determinants of covariance matrices, and histograms (in
their subsequent work [19]) as the descriptors.

The curve evolution technique in [20] and [21] also takes a
nonparametric approach to the image segmentation problem
with an information-theoretic perspective. However, their
approach is different from ours in a number of ways. First,
they implement their technique for polygonal contours whereas
we implement evolution of continuous curves. Furthermore,
their approach only utilizes the first few estimated moments
as approximations of the nonparametric distributions whereas
our approach uses nonparametric estimates of the entire
distributions.

There exists some other work aimed at building a framework
for segmenting a large class of images. In particular, the tech-
nique proposed by Heiler et al. [22] is motivated by recent work
on natural image statistics [23], [24] and is based on parametric
modeling of filter responses by generalized Laplacian distribu-
tions. Their energy functional involves a Kullback–Leibler di-
vergence between those parametric densities, and their method
can segment both gray level natural images and textured images
in an unsupervised fashion. In addition, there exists some other
work pursuing a similar goal of segmenting multiple types of
images, but using a framework other than active contours. For
example, Malik et al. [25] have proposed an approach that works
on a variety of both gray level images and textured images based
on a graph-theoretic framework.

The remainder of this paper is organized as follows. Section II
presents the information-theoretic objective functional for two-
region image segmentation. Section III contains our curve evo-
lution-based approach to minimizing this objective functional.
Section IV presents an extension of the two-region version of
the technique to the multiphase segmentation problem. We then

present experimental results in Section V, using both synthetic
images with a variety of distributions and real images. Finally,
we conclude in Section VI with a summary.

II. INFORMATION-THEORETIC COST FUNCTIONAL

FOR IMAGE SEGMENTATION

A. Problem Statement

In this section, we consider a two-region image segmentation
problem. The two regions are distinct in the sense that they have
different probability density functions for the pixel intensities.
We assume that the pixel intensities in each region are indepen-
dent, identically distributed (i.i.d.). The associated probability
density functions are unknown, and we impose no constraints
on the form of these densities. More formally, the image inten-
sity at pixel , denoted by , is drawn from the density if

, and from if as follows:

(1)

where and denote the two regions which are unknown,
and the associated densities and are also unknown. In
other words, we model the observed pixel intensities as a spa-
tial random process with pixel index . Note that the lower
case is not a random variable but a pixel index. Later, we will
introduce a random variable , which is written in a capital
letter. The left-hand side of Fig. 1 illustrates this image model.
Note that a region can be composed of several topologically sep-
arate components, as shown in this figure. This image model
is similar to that of the region competition method of Zhu and
Yuille [16] in that both models assume that pixel intensities in
each region are i.i.d. The difference is that here the distributions
are unknown, whereas the model in [16] uses a family of pre-
specified probability distributions.

The goal of two-region image segmentation by curve evolu-
tion is to move a curve such that it matches the boundary
between and , i.e., the region inside the curve and the
region outside the curve converge to and , respec-
tively, or vice versa. The right-hand side of Fig. 1 illustrates two
regions, and . This partitioning of the image domain by
the curve gives us a binary label , which
is a mapping from the image domain to a set of two labeling
symbols defined as follows:

if
if

(2)

By this correspondence between labels and curves, image seg-
mentation is equivalent to the binary labeling problem.

B. Mutual Information Between the Image Intensity and the
Label

We now introduce the mutual information (MI) between the
image intensity and the label and discuss its properties. Let us
initially consider the case where and are known. As men-
tioned before, we have a candidate segmenting curve , and

, are the true unknown regions. Now, suppose that we
randomly choose a point in such that is a uniformly
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Fig. 1. Left: Illustration of the foreground region (R ), the background region
(R ), and the associated distributions (p and p ). Right: Illustration of the
curve ( ~C), the region inside the curve (R ), and the region outside the curve
(R ).

distributed random location in the image domain.1 In this case,
the label is a binary random variable that depends on
the curve . It takes the values and with probability

and , respectively, where denotes the
area of the region .

On the other hand, the image intensity is a random
variable that depends on the true regions and , and has
the following density:

(3)

(4)

where is an argument for the densities. Note that this density
is a mixture of and due to the randomness of the

pixel location . As can be seen in (3), has two sources
of uncertainty, namely, the uncertainty of pixel location being
in or , and the uncertainty of the intensity given the pixel
location. The binary label contains some information
about the former uncertainty, namely, being in or .
Therefore, intuitively speaking, the more accurately the label

can determine whether or , the less
uncertainty has, and the more information about
the label will have. This motivates using the mutual information

as a segmentation criterion.
Now, let us consider more formally the mutual information

(5)

where the differential entropy of a continuous
random variable with support is defined by

. The three entropies in (5) are func-
tionals of , , and ,

1This is similar to the work of Viola et al. [26], where they measure the
amount of dependence between two images u(x) and v(x) by mutual infor-
mation I(u(X); v(X)), where X is a random variable, which ranges over the
domain of u(�) and v(�).

respectively. The two conditional distributions are given as
follows:

(6)

(7)

Each conditional entropy measures the degree of heterogeneity
in each region determined by the curve . In other words, the
more homogeneous the segmented regions, the less the condi-
tional entropies, and the higher the mutual information is, which
is a desirable property for segmentation.

We can show that the mutual information
is maximized if, and only if, is the correct segmentation, i.e.,
if , (or, equivalently, , ).
The proof is given in Appendix A. This result suggests that mu-
tual information is a reasonable criterion for the segmentation
problem we have formulated.

However, in practice, we really cannot compute the mutual
information for two reasons. First, the com-
putations above involve the regions and , which are actu-
ally unknown to us (otherwise the segmentation problem would
be solved). Second, unlike what we assumed in the above dis-
cussion, we would like to solve the segmentation problem when

and are unknown.
We, thus, need to estimate the mutual information as follows:

(8)

This, in turn, requires us to estimate the densities ,
, and . The way we estimate

these densities are presented in Section III.

C. Energy Functional

Finally, we combine the mutual information estimate with
the typical regularization penalizing the length of the curve in
order to construct our overall energy functional to be used for
segmentation. This regularization prevents the formation of a
longer jagged boundary. Depending on the prior information
one might have about the region boundaries, constraints other
than the curve length penalty can also be used in our framework.

In the energy functional, the mutual information should be
weighted by the area of the image domain in order to repre-
sent the total amount of information between the label and the
image, since corresponds to the contribution
of a single pixel to the total information. The resulting energy
functional to minimize is then given by

(9)
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where is the length of the curve and is a scalar pa-
rameter. The statistical interpretation of this energy functional
is given in Appendix B.

III. NONPARAMETRIC DENSITY ESTIMATION

AND GRADIENT FLOWS

This section contains the derivation of the curve evolution for-
mula for minimizing the energy functional of (9) using
nonparametric Parzen density estimates. First, we present the
way the nonparametric Parzen density estimates are used in es-
timating the conditional entropy terms in (8). This results in the
expression of the energy functional in the form of nested
region integrals. We then calculate the gradient flow for
and discuss the properties of the curve evolution formula.

A. Estimation of the Differential Entropy

Equation (8) involves differential entropy estimates, and we
use nonparametric Parzen density estimates in order to estimate
the differential entropies. For a review of nonparametric entropy
estimation, we refer the reader to [27].

Since in (8) is independent of the curve, we just
consider and
as follows:

(10)

(11)

Note that involves the expected
value of the logarithm of , and we
approximate this expected value by the sample mean of

in (10). We then use a continuous version of the
Parzen density estimate [17] of in (11). We use the kernel

, where is a scalar parameter.
Similarly, we have

(12)

B. Gradient Flows for General Nested Region Integrals

Note that (11) and (12) have nested region integrals. Let us
consider a general nested region integral of the form

where

and does not depend on (13)

where is the region inside the curve and is a time index
for the evolution of (which we often drop for notational con-
venience as in and ). For such integrals we
have derived the gradient flow (the negative of the gradient so

that the region integral decreases most rapidly), which is given
by

(14)

where is the outward unit normal vector. The detailed deriva-
tion can be found in Appendix C.

The second term appears in (14) because the integrand
in (13) depends on the curve .

C. Gradient Flow for the Information-Theoretic Energy
Functional

Now that we have the nonparametric estimates of the mutual
information in the form of nested region integrals as in (11) and
(12), it is straightforward to calculate the gradient flow for the
energy functional using the result of Section III-B. We
provide the details of this computation in Appendix D. Here,
we state the main result, namely, the overall gradient flow for

of (9)

(15)

where is the curvature of the curve and is the gradient
flow for the curve length penalty, whose derivation can be found
in [28]. We implement the curve evolution for the gradient flow
in (15) using the level-set method [29], [30] together with the
narrow band approach [31], [32].

A direct computation of this gradient flow is expensive. In
particular, the bottleneck is in the computation of the second
and the third terms. If we use a direct computation, it takes

of pixels time per each iteration, which we now ex-
plain. Since the evaluation of the density estimate in the form
of at each pixel

on the curve takes time, evaluation of at
each pixel on the curve takes time, where is
the number of pixels in region inside the curve. Thus, the com-
putation of the first term at all the points on the curve takes

time, where is the number of pixels
along the curve (i.e., the size of the narrow band). In order to
compute the second term, we compute and store for
all , which takes time and then compute the
integral using the stored values of . The computation
of this integral at all the points on the curve takes
time. Therefore, the complexity of a direct computation of the
gradient flow is

of pixels

per each step.
However, we reduce the complexity by using an approxima-

tion method based on the fast Gauss transform (FGT) [33]–[35].
The FGT can evaluate density estimates based on data points
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in the form of at different
points in time instead of time, where

is the precision number which grows with the required preci-
sion of the approximation. The precision number is the order
of the Taylor series expansions used in FGT, and less than 10
is often sufficient in most cases. Furthermore, in evaluating ,
we observe that using only a randomly selected subset of is
sufficient instead of using all the pixel intensities in . If we
select points from in order to estimate and another

points from , the computational cost using FGT per each
iteration is

where the integral in the second and third term in (15) takes
time by FGT. Given the size of the narrow band,

a reasonable choice of will be a linear function of . This
results in the overall complexity of , i.e., linear in the size
of the narrow band.

In general, FGT is also possible for estimation of multidi-
mensional density functions, which will allow us to extend our
framework to color and vector-valued images. For dimen-
sional data, the complexity of FGT is now [35],
with the same and as the above. The only difference in
computational complexity from the case of gray level images
is in the constant factor . Therefore, the computational com-
plexity is still linear in the size of the narrow band, if our method
is extended to vector-valued images.

Since our energy functional involves a curve length penalty
term, we have a curvature flow term in (15). If we replace
the curve length penalty term by as in the
geodesic active contours [8], the evolution (15) will have

replacing the curvature flow, where
is the corresponding level-set function. In this case, the fast

geodesic active contours proposed by Goldenberg et al. [36]
can be combined with our framework, just as the simplified
Mumford–Shah model of Chan and Vese [5] has been combined
with the fast geodesic active contours in Kimmel et al. [37].
For further information on the fast geodesic active contours, we
refer the readers to [38].

D. Discussion on the Gradient Flow

The first term of the gradient flow expression in (15) is a
log-LR which compares the hypotheses that the observed image
intensity at a given point on the active contour belongs
to the foreground region or the background region based
upon the current estimates of the distributions and . By
this log-LR term, the pixel on the boundary is merged to either
the region or the region such that the updated regions
are more homogeneous.

To understand the second and third terms in (15), let us con-
sider the analogy to the generic flow in (14). We have the second
term of (14) because the integrand in (13) depends on the
curve. Similarly, we have the second and third terms in the gra-
dient flow(15) because the integrands of the entropy estimates
(11) and (12), which are logarithms of Parzen density estimates,
depend on the curve.

These second and third terms reinforce and refine what the
first term does. The first term alone does not take into account
the fact that a deformation of the curve results in updating the
data samples used for the two density estimates. It is the two
additional terms that compensate for the change of density esti-
mates.

These second and third terms, as well as the use of the
nonparametric density estimates distinguish this active contour
model from the region competition algorithm of Zhu and Yuille
[16], which involves alternating iterations of two operations:
estimating the distribution parameters inside and outside the
curve; and LR tests to evolve the curve. In that algorithm,
changes in the distributions are not directly coupled with LR
tests. In contrast, the changes in the nonparametric density
estimates are built directly into our curve evolution equation
through these two terms.

IV. EXTENSION TO MULTIPHASE SEGMENTATION

In this section, we provide an extension of the two-region ver-
sion of our technique to images with more than two regions. To
this end, we incorporate the multiphase segmentation formula-
tion of [39] into our information-theoretic, nonparametric seg-
mentation framework. Our method uses level-set functions
to segment up to regions, and the resulting curve evolution
equation (motion equation) turns out to be a natural generaliza-
tion of nonparametric region competition.

A. ary Segmentation Problem and Mutual Information

We extend the two-region image segmentation problem to an
ary (i.e., -region) version, where denote the true

unknown regions, and the image intensity at pixel , denoted
by , is drawn from the density if , where s are
unknown. Fig. 2(a) illustrates this image model when .

The goal of ary image segmentation by curve evolution is
to move a set of curves (equivalently, a set of
level-set functions ) such that these curves parti-
tion the image domain into the true regions . Each
curve partitions the image domain into the two regions, the
region inside the curve and the region outside the curve ( does
the same thing by its sign). Thus, the level-set functions par-
tition the image domain into regions, each of which we label
by the signs of the level-set functions in that region. For in-
stance, when , we have four regions, , , ,

as illustrated in Fig. 2(b).
Given the partitioning by the curves , we can

label each pixel by its label . For instance, if ,
. More formally, this partitioning of the image

domain by the curves gives us a label

which is a mapping from the image domain to a set of
labeling symbols defined as follows:

(16)
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Fig. 2. Multiphase segmentation image model. (a) Illustration of the case
where n = 4: True regions R ; . . . ; R , with the associated distributions
p ; . . . ; p . (b) Illustration of the two curves ( ~C ; ~C ) and the regions R ,
R , R , R partitioned by the curves.

where is the th element in the set
. By a straightforward generalization of (9), we propose

the following energy functional for multiphase segmentation

(17)

where the mutual information estimate is naturally extended to

(18)

B. Gradient Flows

We now compute the gradient flow to minimize of (17).
For notational convenience, we consider the case where ,
but the development could easily be generalized to any .

In (18), we have conditional entropies to estimate,
namely,

. We compute these estimates in a way that is analo-
gous to what we did for the two-region case. For example,

is given by

(19)

and the other entropy estimates are obtained in a similar way.
Generalizing our results from Section III, and using the mul-

tiphase segmentation formulation of [39], we compute the first
variation of the energy functional in (17), and obtain the
following coupled motion equations:

(20)

(21)

where is the Heaviside function ( if and
if ).

Equations (20) and (21) involve log-LR tests comparing the
hypotheses that the observed image intensity at a given
point on the active contour belongs to one region or the other.

As illustrated in Fig. 2(b), delineates either the boundary
between and , or the boundary between and

, when lies inside or outside curve , respectively.
Equation (20) exactly reflects this situation and reveals the region
competition between regions adjacent to curve . Similarly,
(21) expresses the region competition between regions adjacent
to curve .

V. EXPERIMENTAL RESULTS

We present experimental results on synthetic images of
geometric objects, and a number of real images. In all the ex-
amples, the regularization parameter in (9) or (17) is chosen
subjectively based upon our qualitative assessment of the seg-
mented imagery. In cases where prior information is available
about the objects in the scene, it may be possible to learn an
appropriate distribution of regularizers based upon the known
smoothness characteristics of the object boundaries coupled
with the signal-to-noise ratios of the images to be segmented.

We use synthetic images generated by several sets of distri-
butions. Fig. 3 shows the result produced by our technique for
the case where the two distributions for the foreground and the
background are Gaussian with different means and the same
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Fig. 3. Evolution of the curve on a synthetic image; the different mean case.

Fig. 4. Evolution of the curve on a synthetic image; the different variance case.

Fig. 5. Evolution of the curve on a synthetic image without the additional two terms; the different variance case.

variance. Fig. 4 shows the result for the case where the two dis-
tributions for the foreground and the background are Gaussian
with different variances and the same mean. For these two cases,
the method of Yezzi et al. [14] would require the selection of
the appropriate statistic (i.e., mean and variance for the first and
second cases, respectively) a priori, whereas our method solves
the segmentation problem without that information.

For the result in Fig. 3, we measured the run time for both
our nonparametric method and parametric counterpart in [14].
On an Intel Xeon 2.2-GHz cpu, the nonparametric method took
167 s (image size is 126 by 121), whereas the parametric method
took 26 s. The parametric method is of less computational cost
when the parametric method is well-matched to the problem
here. However, if there is a mismatch between the image and
the parametric model, there will be losses in terms of both the
accuracy of the segmentation and the computational cost.

As we mentioned in Section III-D, the motion equation for
the curve (15) contains three data-driven terms and a curvature
term. We now provide an empirical analysis of the relative con-
tribution of the first data-driven term (the log-LR) versus the
other two data-driven terms, to the overall curve evolution. To
this end, we consider the example in Fig. 3. We compute the nu-

merical values of the log-LR, the second term, and the third term
of the gradient flow (15) at each point on the curve, for multiple
snapshots during the iterative curve evolution process. In order
to analyze the general behavior of these terms, we combine all
those data obtained throughout the curve evolution process and
show their histograms in Fig. 6. Fig. 6(a) and (b) shows his-
tograms of the values taken by the second term and the third
term, respectively. We observe that the values of both terms are
often close to 1, and lie in a limited range (mostly between 0 and
1.5). We analyze this observation in more detail in Appendix E.
Fig. 6(c) and (d) shows histograms of the values taken by the
first term and the other two terms (i.e., the second term minus
the third term). Since both the second and the third term have a
limited range, their difference (which is their overall contribu-
tion to the evolution) is also in a limited range (mostly between

and 1.5), as is shown in Fig. 6(d). Finally, Fig. 6(e) shows
a histogram of . We
can observe that mostly the first term has a larger magnitude than
the other two terms; hence, it is the dominant contributor to the
curve evolution. Consequently, for the experiment in Fig. 3, we
obtain a similar segmentation results without including the two
additional terms.
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Fig. 6. Histograms of the three terms of the gradient flow for the points on the boundaries of Fig. 3.

Fig. 7. Example image with two regions [boundaries marked in (b)], where the foreground has a unimodal density p , and the background has a bimodal density
p . The two densities p and p have the same mean and the same variance.

Fig. 8. Evolution of the curve on a synthetic image; unimodal versus bimodal densities.

However, for other types of images, the log-LR can be small,
and the other two terms can become more important affecting
the performance of the segmentation. For instance, if we do not
include the additional two terms for the segmentation of the
image in Fig. 4(a), we observe a loss in the accuracy of the
segmentation as illustrated in Fig. 5. We observe that the sharp
corners of the rectangle are missed. A similar performance loss
due to excluding these additional terms is also pointed out by
Jehan-Besson [18]. Based on these empirical observations, we
believe this is an issue that requires further analysis in future
works.

The next synthetic example we consider involves a more chal-
lenging image shown in Fig. 7(a). The underlying distributions
of the foreground and the background are a unimodal Gaussian
density and a bimodal density with two Gaussian components
as illustrated in Fig. 7(c) and (d), respectively. The two distri-
butions have the same mean and same variance, so it is hard
even for a human observer to separate the foreground from the
background. In order to let the readers see the foreground, we
show the actual boundaries by a curve in Fig. 7(b). For this kind
of image, the methods based on means and variances such as
that proposed by Yezzi et al. [14] would no longer work. Fig. 8
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Fig. 9. Segmentations of the image in Fig. 7(a) with various initializations. (a) Eight different initializations with varying number of seeds. (b) Corresponding
segmentation results.

shows our segmentation results. As shown in Fig. 8(a), we have
used an automatic initialization with multiple seeds. The power
of the multiple-seed initialization is that it observes entire re-
gions, and the evolution of the curve occurs globally. Fig. 8(b)
and (c) shows the intermediate stages of the evolution, where
the seeds in the background region gradually shrink at each it-
eration, whereas those in the foreground region grow. The final
result shown in Fig. 8(d) appears to be an accurate segmentation.
Similarly, the next synthetic example in Fig. 10 involves two dis-
tributions with the same mean and the same variance, where the
foreground distribution is uniform and the background one is
bimodal with two Gaussian components. As shown in Fig. 11,
our method can detect the foreground objects without any prior
knowledge about the probability densities involved.

We empirically analyze the sensitivity of our segmentation
results to initialization. In Fig. 9, we run our algorithm on the
same image as the one generated from unimodal and bimodal
densities in Fig. 7 with different initializations. Fig. 9(a) shows
various initializations with different number of seeds, and
Fig. 9(b) shows the corresponding segmentation results. As
the upper row of Fig. 9(b) shows, the segmentation can be

suboptimal if we have a small number of seeds indicating that
the segmentations depend on the initializations. However, the
lower row of Fig. 9(b) shows that as long as the number of
seeds is large enough, the segmentation result is stable with
respect to initializations even for this challenging example. It
will be a worthwhile future work to analyze the dependence
of the curve evolution on the initializations. At this point, we
can give a rule of thumb for initializations with multiple seeds
that the seeds need to cover the entire region such that they
intersect with both the foreground and the background with
high probability and that the number of seeds need to be large
enough in order to avoid local minima.

Let us now consider the challenging examples in Figs. 8 and
11. If we did not have access to the underlying truth (as shown in
Figs. 7 and 10), then based on the data and the results in Figs. 8
and 11, one might naturally ask the question of whether there are
really two regions (i.e., foreground and background) here as the
segmentations suggest, or whether there is only a single region.
This raises the issue of statistical significance of a given result.
We can address this issue by considering the null hypothesis
that there is only one region versus the alternative hypothesis
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Fig. 10. Example image with two regions [boundaries marked in (b)], where the foreground has a uniform density p , and the background has a bimodal density
p . The two densities p and p have the same mean and the same variance.

Fig. 11. Evolution of the curve on a synthetic image; uniform (foreground) versus bimodal (background) densities.

that there are two regions. We present the details of this
analysis in Appendix B, where we observe that the key quantity
involved here is again the mutual information. Specifically,
the log-LR
is given by the size of data times the mutual information esti-
mate, i.e., , which leads to the following
interpretations: First, the higher the mutual information, the
more different the density estimates , are and, thus, the
more confidence we have. Second, the larger the size of data,
the more accurate those density estimates are. Based on these
observations, we take as a statistic, and
generate samples of this statistic under the null hypothesis
that there is a single region. The procedure for generating these
samples is described in Appendix B. Next, we compute the
sample mean and the sample variance of

under . Finally, we evaluate whether the
mutual information estimate produced
by our segmentation result is a likely outcome under the null
hypothesis. For this evaluation, we simply use the -value,

, which measures the

distance between the observed value and the mean under
, in terms of the number of standard deviations. Large values

indicate that the result is significant; hence, the null hypothesis
can be rejected. For the result shown in Figs. 8(d) and 11(d)
the values are 4.24 and 5.63, respectively. These values are
unlikely to occur under the null hypothesis, which thereby
indicates that the segmentation results we have are statistically
significant.

We now report the result for a leopard image and a zebra
image shown in Figs. 12 and 13, respectively. Both of these
are challenging segmentation problems, where methods based
on single statistics may fail. Fig. 12(d) shows the segmentation
result for the leopard image. The final curve captures the main

body of the leopard and some parts of its tail and legs. The
parts of the tail and the legs that are missing look similar to
the background, which makes a perfect segmentation difficult.
Fig. 13 shows the success of our method in segmenting the
zebra image, which is the identical zebra image used in Paragios
et al. [10]. Their supervised texture segmentation algorithm
requires an image patch taken from the object and an image
patch taken from the background in advance as an input to
the algorithm. In contrast, the merit of our method is that
we do not have to know or choose which feature to use and
that the method nonparametrically estimates probability density
functions and use that as a statistical feature. It is noticeable that
our method, which is unsupervised, can segment this complex
image as accurately as their supervised algorithm. Regarding
the computational costs, on an Intel Xeon 2.2 GHz cpu, the
nonparametric method took 211 s for segmenting the zebra
image, whose size is 115 115.

Although our method can segment textured images without
a prior training, there are some classes of images where our
framework breaks down. For instance, if one region has a texture
with a marginal distribution , and the other region has a dif-
ferent texture with the same marginal distribution , then such
an image can not be segmented without using a preprocessing
such as one based on filter banks.

Now we present the results of our information-theoretic, mul-
tiphase segmentation method on synthetic images of geometric
objects, as well as real images. The image shown in Fig. 14(a)
contains four regions (circle, ellipse, hexagon, and background)
with Gaussian distributions with different means. Hence, in this
case, we have , . The initial, intermediate, and final
stages of our curve evolution algorithm are shown in Fig. 14,
where the four regions , , , determined by
the two curves capture the circle, the background, the hexagon,
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Fig. 12. Evolution of the curve on a leopard image.

Fig. 13. Evolution of the curve on a zebra image (input image courtesy of Nikos Paragios).

Fig. 14. Evolution of the curve on a synthetic image; four regions with different mean intensities.

Fig. 15. Evolution of the curve on a synthetic image; three regions with different intensity variances.

and the ellipse, respectively. Note that methods such as that of
[14] would also work for this simple example, but would require
the selection of an appropriate statistic (in this case the mean)
a priori, whereas our method does not. The Mumford–Shah-
based multiphase technique of [39], would also work in this
case. Fig. 15(a) contains an example with three regions having
Gaussian distributions with different variances; hence, ,

. In this case, , and capture the back-
ground, the hexagon, and the ellipse, respectively, whereas
shrinks and disappears.

Fig. 16(a) shows an image of an airplane. The two curves in
the final segmentation in Fig. 16(d) capture the four regions, the
airplane, the sky, the white clouds, and the darker clouds.

Fig. 17(a) shows a brain pathology image, which has three
regions, the background, the white matter, and the gray matter.
This kind of brain images involve not only complex boundaries
but also a topological constraint that the white matter is inside
the gray matter. The proposed multiphase segmentation method
can handle this topology and the three regions capture the white
matter, the gray matter, and the background.

VI. CONCLUSION

We have developed a new information-theoretic image seg-
mentation method based on nonparametric statistics and curve
evolution. We have formulated the segmentation problem as
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Fig. 16. Evolution of the curve on an aircraft image.

Fig. 17. Evolution of the curve on a brain image.

one of maximizing the mutual information between the region
labels and the pixel intensities, subject to curve length con-
straints. We have derived the curve evolution equations for the
optimization problem posed in our framework. Due to the non-
parametric aspect of our formulation, the proposed technique
can automatically deal with a variety of segmentation prob-
lems, in which many currently available curve evolution-based
techniques would either completely fail or at least require the
a priori extraction of representative statistics for each region.
We use fast techniques for the implementation of nonparametric
estimation, which keep the computational complexity at a rea-
sonable level. Our experimental results have shown the strength
of the proposed technique in accurately segmenting real and
synthetic images.

APPENDIX A
PROOF OF THE FACT ABOUT MUTUAL INFORMATION

In this Appendix, we prove a statement from Section II,
namely, that the mutual information is max-
imized if, and only if, is the correct segmentation, i.e., if

, (or, equivalently, , ).
We remind the readers that this analysis makes use of the
knowledge of , , , so that we can compute the MI.
Since is independent of the label , it is
sufficient to show that

(22)

and that equality holds if, and only if, , (or,
equivalently, , ).

Proof: The inequality is basically the data processing in-
equality [40]. We will follow the proof in [40].

By using the chain rule, we can expand the mutual
information between and , namely,

in the following two different ways:

(23)

(24)

Note that given , is just a constant .
Thus, and are conditionally independent
given , and we have . Since

, we have

(25)

The equality holds if, and only if, ,
i.e., and are conditionally independent given .
Now, it suffices to show that if,
and only if, , (or, equivalently, ,

). The remainder of the proof is based on the fact
that is not homogeneous, (i.e., it is a mixture of

and ) unless gives a correct segmentation, whereas
is always homogeneous.

Note that the conditional densities and
are mixtures of and , as given in (6) and

(7)

(26)

(27)

On the other hand, the conditional density
is if and if

.
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Suppose that , . Then (26) and (27) give
us that and .
Similarly, if , , then
and . In either case, we have

.
However, unless , (or, equivalently,

, ), at least one of
and is a mixture of and ; thus,

.
Therefore, if, and only if,

, (or, equivalently, , ),
and this completes the proof.

Remark: The inequality (22) is also true for the case where
is an ary label, and the equality holds if and only if

. Consequently, the equality
holds if the label gives a correct segmentation. Now
we prove that the equality does not hold if the label gives
an incorrect segmentation. Since is always
homogeneous, the equality holds only if is
homogeneous. However, if the segmentation is incorrect,

is a mixture for at least one ; thus,
. This proves the same fact for

the ary label case.

APPENDIX B
STATISTICAL INTERPRETATION AND ANALYSIS

MAP Estimation Interpretation of the Energy Functional

The curve that minimizes the energy functional is given by

(28)
Now, the conditional entropy term corresponds to the negative
logarithm of the likelihood as follows:

(29)

where the last expression is the negative log-likelihood of
the data in terms of the estimated density.
On the other hand, the curve length term can be interpreted
as the negative logarithm of prior probability for the curve,

. Therefore, minimizing the energy
functional corresponds to finding the maximum a posteriori
estimate of the label.

MI as a Confidence Measure

We express the question of whether the image has only a
single region or two regions as the following hypothesis testing
problem:

single region (30)

two regions (31)

Under the null hypothesis , the data have a
single unknown density , and in this case

, whose estimate is . Thus, the log-likelihood is given
by

(32)

Under the alternative hypothesis, the data have two unknown
densities and , and their estimates are and . Thus,
(29) gives the negative of the log-likelihood of the data under

. Therefore, we have the log-LR in terms of the data size and
the mutual information estimate as follows:

(33)

This gives a quantitative measure of the belief that is true.

Computing the -Value

To evaluate the significance of a segmentation result (indi-
cating the existence of two regions in the image), we need to
generate samples of the statistic under the null hypothesis that
there is a single region. We obtain such samples through random
permutations of the binary label. More formally, we define the
permutation of the binary labels induced by a permuta-
tion of the pixels as follows:

In a similar way to [41], we perform the following procedure:

• Repeat times (with index to
):
– Sample a random permutation from a
uniform distribution over the set of all
permutations.
– Compute the MI statistic

.
• Compute sample mean and sample variance
of .

These sample mean and sample variance are used as estimates
of and .
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APPENDIX C
GRADIENT FLOWS FOR “NESTED” REGION INTEGRALS

In Section III-B, we stated the gradient flow for a general
nested region integral. In this section, we provide a derivation
of the gradient flow (via the first variation) of a curve for
minimizing an energy integral , which is a region integral over
the curve’s interior (we have used a shorthand notation

for in the main body of the paper). In our deriva-
tion, we use the results of Delfour and Zolesio [42]. Alternative
derivations for this type of region integrals can be found in [18]
and [19].

For a simple region integral in the form of

(34)

where the integrand does not depend on the curve or time (de-
pendence on the curve implies dependence on time ), we
have the following expression for the time derivative:

(35)

where we use subscript to denote partial derivative as in
. From the above derivative, the form of the gradient flow

for (the negative of the gradient so that the region integral
decreases most rapidly) is revealed to be [16]

(36)

We now consider a general class of region-based energy func-
tionals where the integrand depends upon another family of
region integrals over . Note that the “nested” re-
gion integrals depend on , since (the interior of

) changes as the curve evolves over time. More precisely,
we assume as in (13)

where (37)

If we let , our energy functional can be
written as

(38)

where depends on time . Delfour and Zolesio [42] have con-
sidered region integrals in the form of (38), and [42, Th. 4.2, p.
352] provides derivatives of such region integrals w.r.t. time .
Using their results, the derivative of (38) is given by

(39)
where . Since

in (37) does have the form of a simple region integral (34)

for each , whose integrand does not depend on . As such,
we can write as follows:

(40)

Plugging this into the above expression for yields

(41)

revealing the following gradient flow for (where is omitted
as an argument for simplicity):

(42)

which is the result we stated in (14).

APPENDIX D
DERIVATION OF THE CURVE EVOLUTION FORMULA

This section presents the derivation of the curve evolution
formula (15) given in Section III-C. We begin by rewriting the
energy functional (9) as follows:

(43)

where the components and are given by

(44)

(45)

We now proceed with a calculation of the gradient flow for
noting that the flow for will have a similar form (but with an
opposite sign). Since in (44) also depends on the curve,
we start by breaking into two integrals

(46)

(47)
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(48)

where the second integral exhibits the structure of the
general nested form given in (13) (with the integrand ,
the nested integral , and the nested integrand labeled
accordingly). Using (14), the gradient flow for , which
we denote by , is given by (49) and (50), shown at the
bottom of the page, while the gradient flow for is given by

(51)

Adding these gradients yields

(52)

The gradient for has a similar structure (but with an opposite
sign since the outward normal with respect to is given by

rather than )

(53)

Finally, the overall gradient flow for of (9) is obtained
as follows:

(54)

APPENDIX E
APPROXIMATIONS OF THE SECOND AND THIRD TERMS

In Section V, we have empirically observed that the second
and third terms in the curve evolution expression in (15) have
a limited range. Here we show that under certain assumptions,
the values of these terms approach 1. In particular, provided that

and , we have

(55)

Similarly, provided that and ,
we have

(56)

Derivation

Let , then .
Now the approximation is as follows:

(57)

The derivation of (56) is similar to that of (55).

(49)

(50)
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