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A Shape-Based Approach to the Segmentation of
Medical Imagery Using Level Sets

Andy Tsai*, Anthony Yezzi, Jr., William Wells, Clare Tempany, Dewey Tucker, Ayres Fan, W. Eric Grimson,
and Alan Willsky

Abstract—We propose a shape-based approach to curve evo-
lution for the segmentation of medical images containing known
object types. In particular, motivated by the work of Leventon,
Grimson, and Faugeras [15], we derive a parametric model for
an implicit representation of the segmenting curve by applying
principal component analysis to a collection of signed distance
representations of the training data. The parameters of this
representation are then manipulated to minimize an objective
function for segmentation. The resulting algorithm is able to
handle multidimensional data, can deal with topological changes
of the curve, is robust to noise and initial contour placements, and
is computationally efficient. At the same time, it avoids the need for
point correspondences during the training phase of the algorithm.
We demonstrate this technique by applying it to two medical
applications; two-dimensional segmentation of cardiac magnetic
resonance imaging (MRI) and three-dimensional segmentation of
prostate MRI.

Index Terms—Active contours, binary image alignment, cardiac
MRI segmentation, curve evolution, deformable model, distance
transforms, eigenshapes, implicit shape representation, medical
image segmentation, parametric shape model, principal compo-
nent analysis, prostate segmentation, shape prior, statistical shape
model.

I. INTRODUCTION

M EDICAL image segmentation algorithms often face dif-
ficult challenges such as poor image contrast, noise, and

missing or diffuse boundaries. For example, tissue boundaries
in medical images may be smeared (due to patient movements),
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missing (due to low SNR of the acquisition apparatus), or
nonexistence (when blended with similar surrounding tissues).
Under such conditions, without a prior model to constrain
the segmentation, most algorithms (including intensity- and
curve-based techniques) fail-mostly due to the under-deter-
mined nature of the segmentation process. Similar problems
arise in other imaging applications as well and they also hinder
the segmentation of the image. These image segmentation
problems demand the incorporation of as much prior informa-
tion as possible to help the segmentation algorithms extract the
tissue of interest. We propose such an algorithm in this paper.
In particular, we derive a model-based, implicit parametric
representation of the segmenting curve and calculate the pa-
rameters of this representation via gradient descent to minimize
an energy functional for medical image segmentation.1

A. Relationship to Prior Work

Our work shares common aspects with a number of model-
based image segmentation algorithms in the literature. Chen
et al. [6] employed an “average shape” to serve as the shape
prior term in their geometric active contour model. Cooteset al.
[10] developed a parametric point distribution model for de-
scribing the segmenting curve by using linear combinations of
the eigenvectors that reflect variations from the mean shape.
The shape and pose parameters of this point distribution model
are determined to match the points to strong image gradients.
Pentland and Sclaroff [21] later described a variant of this ap-
proach. Staib and Duncan [23] introduced a parametric point
model based on an elliptic Fourier decomposition of the land-
mark points. The parameters of their curve are calculated to
optimize the match between the segmenting curve and the gra-
dient of the image. Chakrabortyet al.[4] extended this approach
to a hybrid segmentation model that incorporates both gradient
and region-homogeneity information. More recently, Wang and
Staib [30] developed a statistical point model for the segmenting
curve by applying principal component analysis (PCA) to the
covariance matrices that capture the statistical variations of the
landmark points. They formulated their edge-detection and cor-
respondence-determination problem in a maximuma posteriori
Bayesian framework. Image gradient is used within that frame-
work to calculate the pose and shape parameters that describes
their segmenting curve. Leventonet al. [15] proposed a less re-
strictive model-based segmenter. They incorporated shape in-
formation as a prior model to restrict the flow of the geodesic
active contour [3], [32]. Their prior parametric shape model is

1A preliminary conference paper based on this work can be found in [26].
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derived by performing PCA on a collection of signed distance
maps of the training shape. The segmenting curve then evolves
according to two competing forces: 1) the gradient force of the
image, and 2) the force exerted by the estimated shape where
the parameters of the shape are calculated based on the image
gradients and the current position of the curve.

Our work is also closely related to region-based active con-
tour models [5], [20], [22], [34]. In general, these region-based
models enjoy a number of attractive properties over gradient-
based techniques for segmentation, including greater robustness
to noise (by avoiding derivatives of the image intensity) and ini-
tial contour placement (by being less local than most edge-based
approaches).

B. Contributions of Our Work

In our algorithm, we adopt the implicit representation of the
segmenting curve proposed in [15] and calculate the parameters
of this implicit model to minimize the region-based energy func-
tionals proposed in [5] and [34] for image segmentation. The
resulting algorithm is found to be computationally efficient and
robust to noise (since the evolving curve has limited degrees of
freedom), has an extended capture range (because the segmenta-
tion functional is region-based instead of edge-based), and does
not require point correspondences (due to an Eulerian represen-
tation of the curve). Though in this paper, we only show the de-
velopment of our technique for two-dimensional (2-D) data, this
algorithm can easily be generalized to handle multidimensional
data. We demonstrate a three–dimensional (3-D) application of
our technique in Section VI. Also, in this paper, we focus on
using the region-based models presented in [5] and [34] . How-
ever, it is important to point out that other region-based models
are equally applicable in this framework.

The rest of the paper is organized as follows. Section II de-
scribes a gradient-based approach to align all the training shapes
in the database to eliminate variations in pose. Based on this
aligned training set, we show in Section III the development of
an implicit parametric representation of the segmenting curve.
Section IV describes the use of this implicit curve representa-
tion in various region-based models for image segmentation.
Section V provides a brief overview to illustrate how the var-
ious components mentioned above fit within the scope of our
algorithmic framework. In Section VI, we show the application
of this technique to two medical applications; the segmentation
of the left ventricle from 2-D cardiac MRI and prostate gland
segmentation from 3-D pelvic MRI. We conclude in Section VII
with a summary and some possible future research directions of
this work.

II. SHAPE ALIGNMENT

We begin our shape modeling process with the alignment of
training shapes.2 There have been a number of works dealing
with the alignment of images [6], [8], [11], [17], [28], [29].
For our application, we are interested in aligning binary images
since that is how we encode the training shapes. This greatly

2Our method can take advantage of any alignment technique. We need to
employ an alignment technique as a preprocessing step to allow us to capture
shape variations in our database without interference from pose variations.

simplifies the alignment task, which we approach from a varia-
tional perspective.

A. Alignment Model

Let the training set consist of a set of binary images
, each with values of one inside and zero out-

side the object. The goal is to calculate the set of pose param-
eters used to jointly align the binary im-
ages, and hence remove any variations in shape due to pose dif-
ferences. We focus on using similarity transformations to align
these binary images to each other. That is, in two dimensions,

with , , , and corresponding to, -trans-
lation, scale, and rotation, respectively. The transformed image
of , based on the pose parameter, is denoted by , and is de-
fined as

where

(1)

The transformation matrix is the product of three matrices:
a translation matrix , a scaling matrix , and an
in-plane rotation matrix . This transformation matrix
maps the coordinates into coordinates .

An effective strategy to jointly align the binary images
is to use gradient descent to minimize the following energy
functional:

(2)

where denotes the image domain. Minimizing (2) is equiva-
lent to simultaneously minimizing the difference between any
pair of binary images in the training database. The area normal-
ization term in the denominator of (2) is employed to prevent all
the images from shrinking to improve the cost function.

The gradient of , taken with respect to for any , is
given by

(3)
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Fig. 1. Training data: 12 2-D binary shape models of the fighter jet.

Fig. 2. Alignment results of the above 12 2-D shape models of the fighter jet.

where is the gradient of the transformed imagetaken
with respect to the pose parameter. Using the chain rule, the
th component of is given by

where

(4a)

(4b)

(4c)

(4d)

The matrix derivatives in (4) are taken componentwise. Since
the solution of this alignment problem is under-determined, we
regularize the problem by keeping the initial pose of one of
the shapes fixed and calculating the pose parameters for the re-
maining shapes using the above approach. The initial poses of
the training shapes in are employed as the starting point for
the alignment process and gradient descent is performed until
convergence.

To illustrate this alignment process, a training set, consisting
of 12 binary representations of fighter jets, is shown in Fig. 1. In
this example, the pose parameter of the fighter jet at the far left
side of the figure is chosen to be fixed, i.e., .
The aligned version of this data set is shown in Fig. 2. Note
that all the aligned fighter jets share roughly the same center,
are pointing in the same direction, and are approximately equal
in size. One way to judge the effectiveness of this alignment
process is to assess the amount of overlap between the shapes
within the database before and after the alignment process. The
prealignment overlap image, shown in Fig. 3(a), is generated
by stacking together all the binary fighter jets within the data-
base prior to alignment (i.e., the fighter jets shown in Fig. 1),
and adding them together in a pixelwise fashion. The postalign-
ment overlap image, shown in Fig. 3(b), is generated in a sim-
ilar fashion except that the binary fighter jets used to calculate
the overlap image have already been aligned. Specifically, the
fighter jets used in this case are the ones shown in Fig. 2. By
comparing the two overlap images, there is a dramatic increase

(a) (b)

Fig. 3. Comparison of the amount of shape overlap in the “fighter” database
(a) before alignment and (b) after alignment.

in the amount of overlap between the shapes after the alignment
process suggesting that this method is an effective alignment
technique.

B. Multiresolution Alignment

The nature of the gradient descent approach we just described
allows for only infinitesimal updates of the pose parameters,
thus giving rise to slow convergence properties and increased
sensitivity to local minima. These unattractive features are es-
pecially evident when trying to align large and complicated ob-
jects. One standard extension to enhance alignment algorithms
is to utilize a multiresolution approach. The basic idea behind
this approach is to employ a coarsened representation of the
training set to obtain a good initial estimate of the pose param-
eters. We then progressively refine these pose estimates as the
resolution of the objects is increased.

Specifically, given a set of training objects, we repeatedly
subsample all the objects within the training set by a factor of
two in each axis direction to obtain a collection of training sets
with varying resolutions. Initial alignment is performed on the
coarsest resolution set of objects to obtain a good initial esti-
mate of the pose parameters. Operating at such a coarse scale,
we reduce the number of updates required for alignment (since
the domain of the image is reduced) and the sensitivity of the
algorithm to local minima (by allowing the parameter search
to be less local). More importantly though, the computational
burden of alignment at each gradient step is substantially re-
duced, mostly due to the decreased computational cost associ-
ated with calculating (3) on a coarser grid. The pose parameters
estimated on this coarsened set of training objects are appropri-
ately scaled to serve as the starting pose estimates for the next
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Fig. 4. Training data: 12 2-D binary shape models of the number four with size of 200� 200 pixels.

Fig. 5. Lowest resolution representation of the above training data with size of 50� 50 pixels.

Fig. 6. Alignment results of the above 50� 50 shape models of the number four.

Fig. 7. Coarse-to-fine multiresolution refinement results of the 200� 200 shape models of the number four.

higher resolution set of objects.3 By providing a good starting
estimate of the pose parameters at this new scale, only a small
number of updates are required for convergence. This process
of using the pose estimate at one resolution as the starting pose
for the next finer resolution is repeated until the finest resolu-
tion set of objects is reached. To illustrate this multiresolution
approach, we show in Fig. 4 a set of 12 binary representations
of the number four. The fours are difficult objects to align due
to the complicated structure of these objects. Fig. 5 shows this
same data set with each shape down sampled by a factor of four
in each direction. Initially, we align the fours in this reduced
image domain. The results of this alignment are shown in Fig. 6.
Next, we appropriately scale the pose parameters to serve as the
starting pose for the next higher resolution. We continue this
process until the finest resolution training set is reached. The
final alignment results are shown in Fig. 7. Fig. 8 shows the
prealignment and postalignment overlap images of the number
four to visually demonstrate the effectiveness of this alignment
process.

III. I MPLICIT PARAMETRIC SHAPE MODEL

As mentioned earlier, a popular and natural approach to rep-
resent shapes is via point models where a set of marker points is
used to describe the boundaries of the shape. This approach suf-
fers from problems such as numerical instability, inability to ac-
curately capture high curvature locations, difficulty in handling
topological changes, and the need for point correspondences.
To overcome these problem, we utilize an Eulerian approach to
shape representation based on the level set methods of Osher
and Sethian [19].

3Only the translational components of the pose are scaled up. The scaling and
rotational components of the pose remain fixed.

(a) (b)

Fig. 8. Comparison of the amount of shape overlap in the “four” database
(a) before alignment and (b) after alignment.

A. Shape Parameters

Following the lead of [15] and [19], we choose the signed
distance function4 as our representation for shape. In particular,
the boundaries of each of thealigned shapes in the database5

are embedded as the zero level set ofseparate signed distance
functions with negative distances assigned
to the inside and positive distances assigned to the outside of
the object. Using the technique developed in [15], we compute

, the mean level set function of the shape database, as the av-
erage of these signed distance functions, . To
extract the shape variabilities, is subtracted from each of the

signed distance functions to createmean-offset functions
. These mean-offset functions are then used

to capture the variabilities of the training shapes.

4The signed distance	(p) from an arbitrary pointp to a known surfaceZ
is the distance betweenp and the closest pointz in Z , multiplied by 1 or�1,
depending on which side of the surfacep lies in [1].

5The shapes in the database are aligned by employing the method presented
in Section II.
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Fig. 9. Three-dimensional visualization of the fighter jet shape variability. (a) The mean level set function��. (b) Three-dimensional illustration of+1� � .
(c) Level set of+1� variation of the first principal mode. (d) Three-dimensional illustration of�1� � . (e) Level set of�1� variation of the first principal mode.

Specifically, we form column vectors, , consisting of
samples of each (using identical sample locations for each
function). The most natural sampling strategy is to utilize the

rectangular grid of the training images to generate
lexicographically ordered samples (where the

columns of the image grid are sequentially stacked on top of one
other to form one large column). Next, define the shape-vari-
ability matrix as

An eigenvalue decomposition is employed to factor
as

(5)

where is an matrix whose columns represent the
orthogonal modes of variation in the shape andis an

diagonal matrix whose diagonal elements represent
the corresponding nonzero eigenvalues. Theelements of
the th column of , denoted by , are arranged back into
the structure of the rectangular image grid (by
undoing the earlier lexicographical concatenation of the grid
columns) to yield , the th principal mode or eigenshape.
Based on this approach, a maximum ofdifferent eigenshapes

are generated.
Note that in most cases, the dimension of the matrix

is large so the calculation of the eigen-

vectors and eigenvalues of this matrix is computationally
expensive. In practice, the eigenvectors and eigenvalues of

can be efficiently computed from a much smaller
matrix given by

It is straightforward to show that if is an eigenvector of
with corresponding eigenvalue, then is an eigenvector of

with eigenvalue (see [14] for a proof).
Let , which is selected prior to segmentation, be the

number of modes to consider. Choosing the appropriatein our
model is difficult and beyond the scope of this paper. Suffice it to
say that should be chosen large enough to be able to capture
the prominent shape variations present in the training set, but
not too large that the model begins to capture intricate details
particular to a certain training shape.6 In all of our examples, we
chose empirically. We now introduce a new level set function

(6)

6One way to choose the value ofk is by examining the eigenvalues of the cor-
responding eigenvectors. In some sense, the size of each eigenvalue indicates the
amount of influence or importance its corresponding eigenvector has in deter-
mining the shape. Perhapes by looking at a historgram of the eigenvalues, one
can determine the threshold for determining the value ofk. However, this ap-
proach would be difficult to implement as the threshold value fork varies for
each application. In any case, there is no universalk that can be set.
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where are the weights for the eigen-
shapes with the variances of these weights
given by the eigenvalues calculated earlier. We propose to use
this newly constructed level set functionas our implicit rep-
resentation of shape. Specifically, the zero level set ofde-
scribes the shape with the shape’s variability directly linked to
the variability of the level set function. Therefore, by varying

, we vary which indirectly varies the shape. Note that the
shape variability we allow in this representation is restricted to
the variability given by the eigenshapes.

Fig. 9 provides some intuition as to how the level set repre-
sentation of (6) captures shape variability. The set of 12 fighter
jets shown in Fig. 2 is used as the shape training set to obtain

and . Fig. 9(a) shows
the mean level set function with the red curve outlining the
zero level set of . Fig. 9(b) shows the function with
the magenta curve outlining the zero crossings of this function.
Notice that most of the spatial variations associated with this
function lie in the area corresponding to the wings of the fighter
jet. Specifically, a large rising “hump” can be seen in those areas.
When this function is added to, a new level set representa-
tion of the fighter jet is obtained. This new level set function is
shown in Fig. 9(c) with the blue curve outlining the zero level
set. As expected, adding to causes the wing size to
shrink, thus yielding a new fighter jet with a much smaller wing
span. In Fig. 9(d), we show the function with the ma-
genta curve outlining the zero crossings of this function. This is
simply the negative of Fig. 9(b) and hence adding this function
to causes the wing span of the fighter jet to increase. This
resulting level set function is illustrated in Fig. 9(e) with the
blue curve outlining the zero level set. To further illustrate the
parametric shape encoding scheme of (6), we show in Fig. 10
the mean shape of the fighter jet as well as its shape varia-
tions based on varying its first three principal modes by .
As another demonstration, we employ the set of training shapes
shown in Fig. 7 to obtain an implicit parametric representation
of the number four. Fig. 11 shows the mean shape of the number
four as well as its shape variations based on varying its first three
principal modes by . Notice that by varying the first two
principal modes, the shape of the number four changes topology
going from two curves to one curve. This is an additional advan-
tage of using the Eulerian framework for shape representation
as it can handle topological changes in a seamless fashion. This
ability is of value for biomedical applications. One such applica-
tion is the tracking of changes in multiple sclerosis lesions over
time (as they shrink, migrate, split, disappear, etc.). Another is
in the segmentation of the pancreas which often presents as one
solid organ. But at times, the pancreas does not fuse in utero
and hence presents as two separate lobes which may require
segmentation algorithms that can deal with topology changes.
Another application might be in segmenting skin lesions. Some
skin pathologies can present both as one confluent lesion or as
an island of lesions.

B. Pose Parameters

At this point, our implicit representation of shape cannot ac-
commodate shape variabilities due to differences in pose. To
have the flexibility of handling pose variations,is added as
another parameter to the level set function of (6). With this new

addition, the implicit description of shape is given by the zero
level set of the following function:

(7)

where

with defined earlier in (1). The addition of to our para-
metric shape model enables us to accomodate a larger class of
objects. In particular, the model can now handle object shapes
that may differ from each other in terms of scale, orientation,
or center location. In Section IV, we describe howand are
optimized, via coordinate descent, for image segmentation.

IV. REGION-BASED MODELS FORSEGMENTATION

In region-based segmentation models [5], [20], [22], [34],
the evolution of the segmenting curve depends upon the pixel
intensities within entire regions. That is, region-based models
regard an image as the composition of a finite number of re-
gions and rely on regional statistics for segmentation. The sta-
tistics of entire regions (such as sample mean and variance) are
used to direct the movement of the curve toward the bound-
aries of the image. This is in sharp contrast to edge-based seg-
mentation models [2], [3], [9], [12], [13], [16], [24], [25], [32]
where the evolution of the curve depends strictly on nearby
pixel intensities (i.e., gradient information). As a result, region-
based models are more global than edge-based models. Fur-
thermore, because of the global nature of region-based models,
these models do not require the use of inflationary terms com-
monly employed by edge-based techniques to drive the curve to-
ward image boundaries. Region-based models are also more ro-
bust to noise since they do not employ gradient operators, which
are inherently sensitive to noise, to explicitly detect the loca-
tion of edges. In this section, we present three recently devel-
oped region-based models for segmentation and describe how
these models fit within the scope of our shape-based curve evo-
lution framework. Specifically, in this section, we present the
Chan-Vese model, the binary mean model, and the binary vari-
ance model for image segmentation. However, instead of de-
riving the evolution equation for the curves used to segment the
image (which is the original design of these models), we derive
gradient descent equations used to optimize the shape and pose
parameters that indirectly describe the segmenting curve.

A. Description of the Models

We begin with a simple synthetic example to present how
region-based segmentation models are incorporated into
our model-based algorithm. Assume that the domain of the
observed image is formed by two regions distinguishable
by some region statistic (e.g., sample mean or variance). We
would like to segment this image via the curve, which in our
framework, is represented by the zero level set of, i.e.,
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Moreover, as a result of this implicit parametric representation
of , the regions inside and outside the curve, denoted, respec-
tively, by and , are given by

In our algorithmic framework, we calculate the parameters of
to vary and hence segment the image. These param-

eters, and , are obtained by minimizing region-based energy
functionals that are constructed using various image statistics.
Some useful image statistics, written in terms of , are

area in

area in

sum intensity in

sum intensity in

sum of squared intensity in

sum of squared intensity in

average intensity in

average intensity in

sample variance in

sample variance in

where the Heaviside function is given by

if
if .

Chan and Vese in [5], and Yezziet al. in [34] proposed pure re-
gion-based models to segmentusing these region statistics.
Below, we provide descriptions of their models, describe the
role of and in these models, and detail the optimization of
these models with respect to and (instead of ) for image
segmentation. As detailed in Section III, by calculating the pa-
rameters and that optimize the segmentation energy func-
tionals, we have implicitly determined the segmenting curve.
Thus, our segmentation approach can be considered as a param-
eter optimization technique.

1) The Chan-Vese Model:Chan and Vese in [5] proposed
the following energy functional for segmenting:

which is equivalent, (up to a term which does not depend upon
the evolving curve), to the energy functional below

(8)

The Chan-Vese energy functional can be viewed as a piece-
wise constant generalization of the Mumford-Shah functional
[18]. Gradient descent is employed to search for the parame-
ters and that minimize to implicitly determine the seg-

menting curve. The gradients of , taken with respect to
and , are given by

(9a)

(9b)

2) The Binary Mean Model:A different strategy was pro-
posed by Yezziet al. in [34] to segment . They propose to
evolve so as to maximize the distance betweenand . A
natural cost functional they employed is to minimize the fol-
lowing:

(10)

The authors in [34] called this thebinary model(since it is
initially designed to segment images consisting of two distinct
but constant intensity regions). Once again, gradient descent is
employed to calculate the parametersand that minimize

to implicitly determine the segmenting curve. The gra-
dients of , taken with respect to and , are given by

(11a)

(11b)

3) The Binary Variance Model:So far, we have focused on
using the mean as the image statistic in differentiating the two
regions in . Other image statistics can also be used in a re-
gion-based segmentation model. For example, Yezziet al. in
[34] proposed a segmentation model based on image variances.
Consider the following energy functional for segmentation:

(12)

The design of this model is to partition an image into two re-
gions, one of low variance and one of high variance, by max-
imally separating the sample variances inside and outside the
curve. The gradients of , taken with respect to and

, are given by

(13a)

(13b)

where
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B. Gradients of Region Statistics

As shown in (9), (11), and (13), to update the shape and pose
parameters via gradient descent, the gradients of region statis-
tics , , , , , and , taken with respect to and

, are required. Defining the one-dimensional Dirac measure
concentrated at zero by

we can now express theth component of each of the gradient
terms in (9), (11), and (13) as line integrals along

where

with previously defined in (4).

C. Parameter Optimization Via Gradient Descent

The gradients of the various energy functionals taken with
respect to and are given by (9), (11), and (13). For concise-
ness of notation, denote and as the gradients of any
of the above energy functionals taken with respect toand ,
respectively. With this introduction, the update equations for the
shape and pose parameters in our gradient descent approach are
given by

where and are positive step-size paramters, and and
denote the values of and at the th iteration, respec-

tively. The updated shape and pose parameters are then used
to implicitly determine the updated location of the segmenting
curve.

It is important to note that no special numerics were required
in our proposed technique as it does not involve any partial dif-
ferential equations. This results in fast and simple implementa-
tion of our methodology. In fact, this is one of the main departure
between our model and the earlier one put forth by Leventon
et al. [15]

D. Extension to Three Dimensions

The generalization of this algorithm to three dimensions is
straightforward. The pose parameter is expanded to consist of

seven terms: , , and translation; pitch; yaw; roll; and mag-
nification. The shape alignment strategy is to jointly align the

binary volumetric data via gradient descent. Signed distance
function is similarily employed to represent the 3-D shapes. In
particular, the bounding surfaces of each shape is embedded as
the zero level set of a signed distance function with negative
distances assigned to the inside and positive distances assigned
to the outside of the 3-D object. The 3-D shape parameters are
derived in a similar fashion as the 2-D shape parameters. How-
ever, these 3-D shape parameters implicitly describe a 3-D seg-
menting surface rather than a 2-D segmenting curve. The region
statistics used in the region-based models for segmentation are
now calculated over an entire volume rather than over an entire
region.

E. Illustration of the Models Using Synthetic Data

Figs. 12–14 show the use of , , and for
segmentation. We show in Fig. 12(a) a fighter jet (that is not part
of the fighter jet database of Fig. 1). Fig. 12(b) shows the same
fighter jet surrounded by horizontal and vertical line clutter. The
presence of these lines creates missing edges in the fighter jet
which can cause problems in conventional segmentation algo-
rithms that do not rely on prior shape information. Fig. 12(c)
shows this line-cluttered fighter jet image contaminated by ad-
ditive Gaussian noise. The goal is to segment the fighter jet from
this noisy test image. Knowinga priori that the object in the
image is a fighter jet, we employ the database shown in Fig. 2 to
derive an implicit parametric curve model for the fighter jet [in
the form of (7)]. In this example, we use . The zero level
set of is employed as the starting curve which is illustrated in
Fig. 12(d). The parameters of the segmenting curve,and ,
are calculated to minimize . Fig. 12(e) shows the final shape
and position of the segmenting curve. Notice that we are able to
successfully find the boundaries of the fighter jet without being
distracted by the line clutter. In Fig. 13, we show a slight variant
of the experiment just described. Specifically, a new fighter jet
(which is also not part of the database of Fig. 1) is employed
as the object in the test image, and is employed as the
segmentation functional. Using the same
as before, we are able to successfully segment this new object.

Fig. 14 shows a different experiment. The object in this ex-
periment is the number four which is shown in Fig. 14(a). Ver-
tical and horizontal lines are again added to this image to create
missing edges in the object. The resulting line-cluttered image is
shown in Fig. 14(b). This binary mask is used to create the vari-
ance image shown in Fig. 14(c) which consists of two regions,
each of identical means but of different variances. The goal is to
segment the object from this noisy test image. Knowinga priori
that the object in the image is a handwritten four, we employ the
database of fours, shown in Fig. 7, to obtain the mean shape and
the eigenshapes for our implicit representation of the object. As
before, we use . The zero level set of is employed as the
starting curves as illustrated in Fig. 14(d). Notice in this figure
that two curves are used to describe the starting shape. Because
the image statistic that characterizes the two regions in this test
image is variance, the parameters of the segmenting curve,
and , are calculated to minimize . Fig. 14(e) shows the
successful segmentation of the number four image. Notice that
without any additional effort, the two starting curves merged to
form one single segmenting curve at the end.
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Fig. 10. Shape variability of the fighter jet. (a) The mean shape. (b)+1� variation of the first principal mode. (c)�1� variation of the first principal mode.
(d)+1� variation of the second principal mode. (e)�1� variation of the second principal mode. (f)+1� variation of the third principal mode. (g)�1� variation
of the third principal mode. Grossly, the first three principal modes vary the shape and size of the wings as well as the length of the fighter jets.

Fig. 11. Shape variability of the number four. (a) The mean shape. (b)+1� variation of the first principal mode. (c)�1� variation of the first principal mode.
(d)+1� variation of the second principal mode. (e)�1� variation of the second principal mode. (f)+1� variation of the third principal mode. (g)�1� variation
of the third principal mode.

Fig. 12. Segmentation of a noisy fighter jet with missing edges usingE . (a) Original binary image. (b) Original binary image surrounded by line clutter.
(c) Image in (b) with additive Gaussian noise. (d) Blue curve shows the initializing contour. (e) Red curve shows the final contour.

Fig. 13. Segmentation of a noisy fighter jet with missing edges usingE . (a) Original binary image. (b) Original binary image surrounded by line clutter.
(c) Image in (b) with additive Gaussian noise. (d) Blue curve shows the initializing contour. (e) Red curve shows the final contour.

Fig. 14. Segmentation of a noisy number four with missing edges usingE . (a) Original binary image. (b) Original binary image surrounded by line clutter.
(c) Image in (b) with additive Gaussian noise. (d) Blue curve shows the initializing contour. (e) Red curve shows the final contour.
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Fig. 15. A conceptual representation of our algorithmic framework. The top frame summarizes the training phase of our approach (Sections II and III).The
bottom frame illustrates the segmentation phase of our algorithm (Section IV).

These figures demonstrate that our segmentation method is
robust to the presence of clutter pixel-something that can not be
said of many other segmentation algorithms. The reason for this
is that our use of a finitely parameterized shape model makes the
impact of such anomalous pixels much less significant than in
other curve evolution or other segmentation methods.

V. OUTLINE OF THE ALGORITHMIC FRAMEWORK

In this section, we provide a brief overview of our algorithmic
framework. Fig. 15 shows a block diagram to illustrate how

the different components described throughout this paper fit
within the scope of our algorithmic framework. As illustrated
in this diagram, our segmentation algorithm can be divided
into two phases—a training phase and a segmentation phase.
The training phase consists of shape alignment (described
in Section II) and parametric shape modeling (described in
Section III). Given a set of training shapes, gradient descent is
employed to minimize the alignment model of (2) to jointly
align them. Signed distance maps are generated to represent
each of the shapes in the aligned database. By applying PCA
to this collection of distance maps, we extract the mean shape
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Fig. 16. Training data: 2-D binary shape models of the left ventricle based on human interactive segmentations of different spatial and temporal slices of a
patient’s cardiac MRI.

Fig. 17. Alignment results of the 50 2-D binary shape models of the left ventricle.

and the eigenshapes particular to this shape database. The
mean shape and the eigenshapes are used to form the implicit
parametric shape representation described in (7). The next
part of our algorithm, the segmentation phase (described in
Section IV), involves calculating and , the parameters of
our implicit shape representation, to minimize a segmentation
functional. This minimization is performed as an iterative
process using gradient descent. At each gradient step,and
are updated to generate a new level set . The segmenting
curve is implicitly determined by this new level set. Based
on the new position and shape of, we recalculate the image
statistic inside and outside the curve. These newly computed

statistics are used in the segmentation functional to determine
the update rules for and . We continue this iterative scheme
until convergence is reached for segmentation.

VI. A PPLICATIONS TOMEDICAL IMAGERY

We now apply the model-based curve evolution technique de-
rived in this paper to two medical applications. Section VI-A
illustrates a 2-D example (cardiac MRI segmentation), while
Section VI-B illustrates a 3-D example (prostate gland segmen-
tation from pelvic MRI).
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(a) (b)

Fig. 18. Comparison of the amount of shape overlap in the cardiac database
(a) before alignment and (b) after alignment.

A. A 2-D Example: Left Ventricle Segmentation of Cardiac
MRI

Cardiac MRI is an important clinical tool used to provide
four–dimensional (4-D) (temporal as well as spatial) informa-
tion about the heart. Typically, one study generates 80–120 2-D
images of a patient’s heart. In a variety of clinical scenarios
(such as assessing cardiac function and diagnosing cardiac dis-
eases), it is important to extract the boundaries of the left ven-
tricle from this data set. For example, the segmentation of the
left ventricle is a prerequisite in calculating important physio-
logical parameters such as ejection fraction and stroke volume.
Manual tracing of the left ventricle from such a large data set is
both tedious and time-consuming. A robust automated segmen-
tation algorithm of the left ventricle would be preferred.

Conventional automated segmentation techniques usually
encounter difficulties in segmenting the left ventricle because
1) the intensity contrast between the ventricle and the myo-
cardium is low (due to the smearing of the blood pool in the
ventricle into the myocardium), and 2) the boundaries of the
left ventricle are missing at certain locations due to the presence
of protruding papillary muscles which have the same intensity
profile as the myocardium.

In the experiment to illustrate our technique, we equally di-
vided the 100 2-D images from a single patient’s cardiac MRI
into two sets: a training set and a test set. Fifty 4-D interactive
segmentations of the left ventricle from the training set form the
2-D shape database shown in Fig. 16. This particular database
is employed to allow our model to capture both the spatial and
the temporal variations of the left ventricle. Fig. 17 shows the
aligned version of this database. Fig. 18 compares the overlap
images of the left ventricle database before and after alignment.
Using the aligned database, we derived the mean level set and
the eigenshapes to form the implicit shape model of the left ven-
tricle using . Fig. 19 shows the mean shape of the left
ventricle as well as its shape variations by varying the first three
eigenshapes by . The parameters of this implicit parametric
representation are calculated to minimize using statistics
calculated in the entire region both inside and outside the curve.
Fig. 20 shows the segmentation result of the testing set by our al-
gorithm (red curves). These results are comparable with the ones
given by a 4-D interactive cardiac MRI segmenter [33] (green
curves) which utilizes a 4-D conformal surface shrinking tech-
nqiue based upon the models outlined in [32].

B. A 3-D Example: Prostate Segmentation of Pelvic MRI
Taken With Endorectal Coil

Pelvic MRI, when taken in conjunction with an endorectal
coil (ERC) (a receive-only surface coil placed within the
rectum) using T1 and T2 weighting, provides high-resolution
images of the prostate with smaller field of view and thinner
slice thickness than previously attainable. Because of the
high-quality anatomical images obtainable by this technique,
it may become the imaging modality of choice in the future
for detection and staging of prostate cancer [7], [31]. For
assignment of appropriate radiation therapy after cancer
detection, the segmentation of the prostate gland from these
pelvic MRI images is required. Manual outlining of sequential
cross-sectional slices of the prostate images is currently used to
identify the prostate gland and its substructures, but this process
is difficult, time-consuming, and tedious. The idea of being
able to automatically segment the prostate is very attractive.

Automatic segmentation of the prostate is difficult because
the prostate is a small glandular structure buried deep within
the pelvic region and surrounded by a variety of different tis-
sues which show up as varying intensity levels on the MRI.
This segmentation problem is further complicated by an arti-
fact called the near-field effect which is caused by the use of
the ERC. The near-field effect causes an intensity artifact to ap-
pear in the tissues surrounding the ERC. This can be seen as a
white circular halo surrounding the rectum in each image slice
of Figs. 27 and 30. The intensity artifact can bleach out the bor-
ders of the prostate near the rectum, making the prostate seg-
mentation problem even more difficult.

We employ a 3-D version of our shape-based curve evolution
technique to segment the prostate gland. By utilizing a surface
(instead of a curve), the segmentation algorithm is able to utilize
the full 3-D spatial information to extract the boundaries of the
prostate gland. Fig. 21 shows the prostate training data we use
which consists of eight 3-D binary shape models of the prostate
gland-obtained by stacking together 2-D expert hand segmen-
tations of eight patients’ pelvic MRIs taken with an ERC. The
alignment results of these 3-D models are shown in Fig. 21. To
evaluate the alignment process, Fig. 23 shows 12 consecutive
axial slice overlap images of the eight 3-D prostate gland models
prior to alignment. And Fig. 24 shows the same 12 overlap im-
ages after alignment for comparison. Prior to shape training,
these 3-D shape models are smoothed to remove the “step-like”
artifact along the axial direction of the prostate. Based on these
3-D models, we derived the mean level set and the eigenshapes
to form the implicit shape model of the prostate gland using

. Fig. 25 shows the mean shape of the prostate gland as
well as its shape variations based on varying the first three eigen-
shapes by .

In this particular application, it is important to realize that
despite the fact that the prostate gland is mostly deformed by
its neighboring structures, the prostate shape parameters are
still very important in describing its shape. In our method, by
capturing how its surrounding structures deform the prostate
gland, we obtain shape parameters that can effectively describe
the deformations of the prostate gland. Specifically, we looked
at a population of patients and learned the total net resultant
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Fig. 19. Shape variability of the left ventricle. (a) The mean shape. (b)+1� variation of the first principal mode. (c)�1� variation of the first principal mode.
(d)+1� variation of the second principal mode. (e)�1� variation of the second principal mode. (f)+1� variation of the third principal mode. (g)�1� variation
of the third principal mode.

Fig. 20. Left ventricle segmentation of cardiac MRI. The segmentation by our algorithm (red curves) is compared to the segmentation by an interactive4-D
cardiac MRI segmenter (green curves).

Fig. 21. Training data: eight 3-D shape models of the prostate gland obtained based on axially stacking together 2-D expert hand segmentations of the prostate.

effect of the surrounding structures in deforming the prostate
gland, and incorporated this information within the prostate
shape parameters. Thus, instead of looking at how the prostate
gland deforms in a vacuum by itself, we have taken into ac-

count how the prostate deformsin vivo by the surrounding
structures.

To accentuate the boundaries of the prostate gland as well as
to minimize the intensity artifact caused by the ERC, the pelvic
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Fig. 22. Alignment results of the eight 3-D shape models of the prostate gland.

Fig. 23. Overlap images of consecutive axial slices of the eight 3-D prostate models prior to alignment.

MRI data set is transformed to a bimodal data setby
applying the following map:

where here denotes a 3-D gradient operator. This mapping
was employed because: 1) the interior of the prostate is homo-
geneous in intensity, so with this mapping, the interior regions
of the prostate are mapped to low values while the boundaries
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Fig. 24. Overlap images of consecutive axial slices of the eight 3-D prostate models after alignment.

Fig. 25. Shape variability of the prostate. (a) The mean shape. (b)+1� variation of the first principal mode. (c)�1� variation of the first principal mode. (d)+1�
variation of the second principal mode. (e)�1� variation of the second principal mode. (f)+1� variation of the third principal mode. (g)�1� variation of the
third principal mode.

of the prostate are mapped to high values; and 2) this mapping
is robust to the smooth spatially varying intensity artifact cause
by the ERC. We segment the prostate gland by minimizing
using the transformed data set. The statistics used in are
calculated in the entire volumetric data both inside and outside
the segmenting surface. The energy functional was em-
ployed in this application because we found it to be more robust
empirically. We start by initializing the segmenting surface to
be within the interior of the prostate gland so that the evolving
surface does not get distracted by various other high gradient
features surrounding the prostate (such as interfaces between
various hard and soft tissue types). With each iteration, the seg-
menting surface moves outward to capture more and more of the

low-valued region in the transformed data (which corresponds
to the prostate gland). Eventually, the segmenting surface con-
verges to a local minimum near the boundaries of the prostate
(corresponding to high values in the transformed data).

Twelve contiguous axial slices of patient A’s and B’s MRI
data set containing the prostate gland are displayed in Figs. 26
and 29, respectively. These two data sets are not part of the
training database of Fig. 21. We show in Figs. 27 and 30 the
prostate segmentation results of patient A’s and B’s MRI data
set, respectively. In each of these figures, the MRI data set con-
taining the prostate gland are displayed along with the segmen-
tation by our algorithm (outlined in red), and the segmentation
by a radiologist from Brigham and Women’s Hospital (outlined
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Fig. 26. Prostate images of patient A. These images represent consecutive axial slices of the prostate. Segmenting curves were not superimposed on the images
for better visualization of the prostate organ.

Fig. 27. Prostate segmentation of patient A. The segmentation by the radiologist (green curves) is compared to the segmentation by our algorithm (redcurves).

in green). Another radiologist, also from Brigham and Women’s
Hospital, rated the first radiologist’s segmentation of data set A
to be slightly better than our algorithm’s, and rated our algo-
rithm’s segmentation of data set B to be slightly better than the
radiologist’s. For visual comparison, Figs. 28 and 31 show the
3-D models of the prostate gland generated by our algorithm
and by stacking together 2-D expert hand segmentations. No-
tice that by employing a surface to capture the prostate gland,
our 3-D model does not display any of the “step-like” artifacts
that mar the radiologist’s 3-D rendition of the prostate gland. In
addition, working in 3-D space allows our algorithm to utilize
the full 3-D structural information of the prostate for segmen-
tation (instead of just the information from neighboring slices
which are typically used by the radiologists).

VII. CONCLUSION AND FUTURE RESEARCHDIRECTIONS

We have outlined a statistically robust and computationally
efficient model-based segmentation algorithm using an implicit
representation of the segmenting curve. Because this implicit
representation is set in an Eulerian framework, it does not re-
quire point correspondences during the training phase of the al-
gorithm and can be used to handle topological changes of the

(a) (b)

Fig. 28. Three-dimensional models of patient A’s prostate gland. (a) Based on
our segmentation algorithm. (b) Based on the radiologist’s segmentation.

segmenting curve in a seamless fashion. This algorithmic frame-
work is capable of segmenting images contaminated by heavy
noise and delineate structures complicated by missing or diffuse
edges. In addition, this framework is flexible, both in terms of
its ability to model and segment complicated shapes (as long
as the shape variations are consistent with the training data), as
well as its ability to accommodate the segmentation of multidi-
mensional data sets. Furthermore, by employing a region-based
segmentation functional, our algorithm is more global, exhibits
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Fig. 29. Prostate images of patient B. These images represent consecutive axial slices of the prostate. Segmenting curves were not superimposed on the images
for better visualization of the prostate organ.

Fig. 30. Prostate segmentation of patient B. The segmentation by the radiologist (green curves) is compared to the segmentation by our algorithm (redcurves).

(a) (b)

Fig. 31. Three–dimensional models of patient B’s prostate gland. (a) Based
on our segmentation algorithm. (b) Based on the radiologist’s segmentation.

increased robustness to noise, displays extensive capture range,
and is less sensitive to initial contour placements compared with
other model-based segmentation algorithms.

The performance of our model-based curve evolution tech-
nique depends largely upon how well the chosen set of statistics
is able to distinguish the various regions within a given image.
In this paper, we detailed the use of means and variances as
the discriminating statistics. However, this approach may be ap-
plied to any computed statistics. We are interested in extending

our method by constructing different segmentation functionals
based on first (and maybe higher) order statistics such as skew-
ness, kurtosis, and entropy.

In this paper, we discussed the use of signed distance func-
tions as a way to represent shapes. However, because distance
functions are not closed under linear operations, the level set
representation of our segmenting curve, based on the PCA ap-
proach described in Section III, is not a distance function. This
gives rise to an inconsistent framework for shape modeling. This
intellectual issue remains an important and challenging problem
(indeed one on which we are now working ourselves), but the
method developed in this paper stands on its performance in
practice.
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