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Vessels as 4-D Curves: Global Minimal 4-D Paths to
Extract 3-D Tubular Surfaces and Centerlines

Hua Li and Anthony Yezzi*

Abstract—In this paper, we propose an innovative approach to
the segmentation of tubular structures. This approach combines
all of the benefits of minimal path techniques such as global
minimizers, fast computation, and powerful incorporation of user
input, while also having the capability to represent and detect
vessel surfaces directly which so far has been a feature restricted
to active contour and surface techniques. The key is to represent
the trajectory of a tubular structure not as a 3-D curve but to go
up a dimension and represent the entire structure as a 4-D curve.
Then we are able to fully exploit minimal path techniques to
obtain global minimizing trajectories between two user supplied
endpoints in order to reconstruct tubular structures from noisy
or low contrast 3-D data without the sensitivity to local minima
inherent in most active surface techniques. In contrast to standard
purely spatial 3-D minimal path techniques, however, we are
able to represent a full tubular surface rather than just a curve
which runs through its interior. Our representation also yields a
natural notion of a tube’s “central curve.” We demonstrate and
validate the utility of this approach on magnetic resonance (MR)
angiography and computed tomography (CT) images of coronary
arteries.

Index Terms—Eikonal equations, fast marching techniques,
geodesic active contours, global minima, minimal path methods.

1. INTRODUCTION

EDICAL image segmentation is an essential, primary,
Mand important step for clinical tasks such as 3-D organ
visualization, disease diagnosis, and surgical planning. Nu-
merous segmentation methods have been proposed that depend
upon organ structures, imaging modalities, application do-
mains, user-interaction requirements, and so on [1]-[5]. The
extraction of vascular objects such as blood vessels, coronary
arteries, and retinal blood vessels, has attracted the attention of
more and more researchers.

Generally, vascular structures are treated as tubular struc-
tures, and most proposed vessel extraction methods are based
on this assumption. With different segmentation objectives,
existing vessel extraction methods can be divided into two cat-
egories: surface extraction methods and centerline (or skeleton)
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extraction methods. Here, we give a brief review of some rep-
resentative methods on vessel surface extraction or centerline
extraction, and focus specifically on the methods based on
active contour models [6]-[8] and minimal path techniques [9],
[10], because the approach proposed in this paper combines all
of the benefits of minimal path techniques, while also having
the full representation power of active contour and surface tech-
niques. More detailed descriptions of a number of methods for
vessel surface or centerline extraction can be found in [3]-[5].

Surface extraction methods have been proposed to extract
vessel surfaces directly followed by thinning or similar algo-
rithms to generate the corresponding centerlines. Deformable
models (or active contour models) with various constraints have
been widely used in this category. Frangi et al. [11] presented
a parametric deformable model, which consists of the represen-
tation of the central vessel axis coupled to a vessel wall sur-
face, for quantitatively defining vessel boundaries of 3-D mag-
netic resonance angiogram (MRA) data. However, parametric
deformable models are not powerful tools for detecting complex
vascular structures accurately because they cannot handle topo-
logical changes during surface evolution. Shortly afterward, a
geodesic active contour model for the segmentation of brain vas-
cular structures and abdominal aortas from MRA or computed
tomography (CT) images was designed in [12], in which the en-
ergy is minimized based on the image intensity values together
with the local smoothness properties of the desired boundary.
Another active contour model [13] utilizes the central vessel
axis obtained from the multiscale filtering technique in [11]
to initialize a level set evolution for the segmentation of con-
trast-enhanced MRA data.

In contrast to using deformable models alone, some re-
searchers have also integrated them with different preprocessing
or postprocessing operators. In [14], the authors interactively
activated three terms in the level set evolution equation for seg-
menting the interesting MRA vessels of a whole vascular tree,
and also refined the resulting models for computational fluid
dynamics simulations. Similarly, Chan et al. [15] combined
multiscale filtering, deformable geometric models, and level
set evolution for the segmentation, correction, reconstruction,
and quantification of vessel structures from 3-D MRA image
data. In [16], triangulated meshes are integrated with a special
deformable isosurface model to conform to the boundaries of
objects with a priori assumptions of object shape. Based on
Bayesian principles and level set evolutions, an approach [17]
was developed for the 3-D segmentation and reconstruction of
human left coronary arteries from angio-CT data. Unlike the
method in [17], Nain [18] used an implicit deformable model
with a soft shape prior for vessel segmentation. Manniesing
[19] utilized an estimation of the background and vessel inten-
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sity distributions to guide the level set evolution for cerebral
vascular tree segmentation from computed tomography angiog-
raphy (CTA) data. A capillary geodesic active contour which
utilizes capillary forces was introduced in [20] to detect very
thin blood vessel branches. In these methods, initializations
must be performed carefully, which is also a common trait of
variational active contour models. However, the initialization
of our method simply consists of choosing two spherical end-
points of the vessel to be extracted. Beyond these deformable
models, other methods reported during the past twenty years
include statistical models [21], active shape models [22], non-
linear anisotropic filtering methods [23], multiple scale filtering
methods [24], edge operator methods [25], topology marking
methods [26], mathematical morphology [27], region-growing
[28], vessel tracking [29], and a priori anatomical knowledge
based methods [30].

Contrary to contour or surface based techniques, centerline
extraction methods have been proposed to extract only a cen-
terline (or skeleton), thereby requiring further processing to ob-
tain the 3-D surface or shape. By assuming the centerline cor-
responds to a kind of minimal cost path, some methods have
been designed based on path finding procedures. Wink et al.
[31] developed a multiscale approach for determining the cen-
tral axis of vessels in 2-D and 3-D images based on the min-
imum cost path program [32]. In another skeletonization algo-
rithm proposed by Bouix et al. [33], the average outward flux of
the gradient vector field of a Euclidean distance function from
the structure boundary is calculated based on the skeletoniza-
tion method proposed in [34]. Deschamps and Cohen [35] sim-
plified the problem of generating centerlines into the problem of
finding minimal paths [9], [10] in 3-D images by fast marching
methods [36]. Although their method is most closely related
to our method, it can only detect a simple curve, while our
method has the advantage of detecting vessel surfaces and cen-
terlines simultaneously while maintaining all of the benefits of
the minimal path technique. A number of other centerline ex-
traction methods have also been reported in the literature, such
as 3-D parallel curve-thinning algorithms [37], methods based
on Euclidean distance transformations [38], multiscale filtering
methods [39], and iterative centerline tracking approaches based
on Hessian matrix [40].

However, to the best of our knowledge, none of the reported
techniques inherit the elegant advantage of detecting vessel sur-
faces and centerlines simultaneously. In this paper, we propose
a novel tubular structure extraction method which is very dif-
ferent than the other methods introduced above. Although our
method is motivated by minimal path techniques [10], we in-
stead propose a novel variant of the traditional, purely spatial
minimal path technique by incorporating an additional nonspa-
tial dimension into the search space. The resulting algorithm
requires us to search for a single, global minimal path between
user supplied endpoints in this higher dimensional domain. The
detected path captures directly and simultaneously the central
curve of the extracted vessel as well as the 3-D vessel surface.
As such, we keep all of the benefits of purely spatial minimal
path techniques as well as one of the primary benefits of active
contour and surface evolution techniques.

The key is to model a vessel, or any other tubular surface, as a
4-D curve rather than a purely spatial 3-D curve. Each point on
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the 4-D curve consists of three spatial coordinates plus a fourth
coordinate which describes the thickness (radius) of the vessel
at that corresponding 3-D point in space. Thus, each 4-D point
represents a sphere in 3-D space, and the vessel is obtained by
taking the envelope of these spheres as we move along the 4-D
curve. We may instead take the center points of this family of
spheres if we wish to reconstruct the central path rather than the
surface of the detected tubular structure. Like traditional spa-
tial minimal path algorithms, we may exploit techniques such
as fast marching methods to keep the computation time down.
The implementation is a straightforward 4-D version of the 3-D
implementation, and is, therefore, extremely simple. The initial
user-supplied endpoints are also very useful in avoiding spu-
rious side branches. Finally, we demonstrate the utility of this
approach on both 2-D and 3-D MR angiography and CT coro-
nary images.

II. TUBULAR SURFACE EXTRACTION

A. Background—Global Minimal Paths

The minimal path technique proposed in [10] captures the
global minimum curve of a contour dependent energy between
two user supplied endpoints. The well-known snake model [6]
combines smoothing terms and an image feature term (potential
P) in the energy functional

E(C):oz'/HC’(s)HZds+5./||0”(s)||2ds—l—)\./P(C(s))ds
0 0 0 (l)

where «, 3, and X are real positive weighting constants, C'(s) €
R™ is a parameterized curve, C'(s) is the first derivative and
(C"(s) the second derivative with respect to s, and P(C) is a
potential which depends upon some desirable image features. In
the minimal path technique, contrary to (1), a simplified energy
minimization model

B(C) = / {w+ P (C(s)} ds = / P(C)ds

Q

(@)

was proposed without the second derivative term. In this model,
s represents the arc-length parameter, C'(s) € R™ represents
a curve, P is the potential associated to the image, w is a real
positive constant, and P = P 4+ w. E(C) represents the energy
along the curve C.

Given a potential P > 0 that takes lower values near the
desired boundary, the objective of the minimal path technique
is to look for a path (connecting two user-supplied end points)
along which the integral of P = P + w is minimal. A minimal
action map Uy, (p) is defined as the minimal energy integrated
along a path between a starting point py and any point p

UPO (p) = ;nf

[ Pctndsp = int (B(©)

(€)

where A, ,, is defined as the set of all paths between pg and p.
The value at each point p of this minimal action map U,,, (p) cor-
responds to the minimal energy integrated along a path starting
from point pg to point p. Thus, the minimal path between point
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Fig. 1. Two disadvantages of the classical minimal path technique. Panel (a)
shows the gradient information and the two initial points (red crosses). Panel (b)
shows the related original image with the extracted boundary (red line). Panel
(c) shows another original image and the two initial points (red crosses). Panel
(d) shows the extracted inaccurate central path (red line).

po and point p can be easily deduced by calculating the action
map U, (p) and then sliding backwards along its gradient field
from point p to point py. Because the action map Up,, has only
one minimum value at the starting point py and increases from
po outward, it can be determined by solving the Eikonal equa-
tion

IVU,, || =P with U, (po) = 0. @)

Three algorithms are described in [10] to compute this map
U,, which are all consistent with the continuous propagation
rule while implemented on a rectangular grid. These three
algorithms utilize level set methods [41], shape from shading
methods [42], [43], and fast marching methods [44]. Fast
marching methods were favored because of their lower com-
plexity compared to the other two algorithms.

The minimal path approach [10] has several advantages such
as finding global minimizers, fast computation, ease of imple-
mentation, and more powerful incorporation of user input. Such
advantages are lacking in most surface evolution techniques
(whether they be level set or finite element approaches) with the
problem of local minima being particularly troublesome in most
cases. Surface evolution approaches generally make use of user
input only for obtaining seed points from which to start evolving
the initial surface. This is fundamentally different from minimal
path techniques which are specifically designed to fully trust
and exploit the initial user input, guaranteeing its incorporation
into the final answer. Unfortunately, despite their numerous ad-
vantages, traditional minimal path techniques exhibit some dis-
advantages both in general and in the particular application of
vessel segmentation.

First, vessel boundary extraction can be exceedingly difficult,
even in 2-D where the longitudinal cross-sectional boundary
of a vessel is completely described by two curves (see Fig. 1).
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Even if the two user-supplied endpoints are located exactly on
the same desired boundary, the minimal path may jump tem-
porarily to a different nearby boundary and return at a later
point as a “short cut” to reduce the total cost of the path. This
is illustrated in Fig. 1(a) and (b). However, surface evolution
techniques do have one nice advantage, though: when they are
successful, they capture and represent the vascular surface di-
rectly, not just some path running through its interior as in the
minimal path approach. This is particularly important in cases
where one wishes to measure changes in vascular thickness at
different places along the vessel.

Second, vessel interior extraction does not always yield a tra-
jectory that remains central to the vessel. Since intensity based
potentials do not vary greatly between different points within
the vessel interior, the minimal path tends to favor trajectories
of shortest Euclidean distance within the tubular structure, often
yielding paths that run tangential to vessel boundaries rather
than central to their interior. This undesirable property is shown
here in Fig. 1(c) and (d), and later in Fig. 3(f) and (1). This af-
fects applications such as virtual endoscopy, where subsequent
path centering methods [35] are required to readjust a tradition-
ally extracted, purely spatial minimal path in order to obtain a
central trajectory for virtual fly-through.

Finally, in 3-D (just as in 2-D), traditional purely spatial
minimal path techniques can be used only for curve extraction,
whereas vessels and other tubular structures, despite sharing
some characteristics with curves, are surfaces. In [45], the
authors proposed a 3-D surface extraction method. It models
the desired surface as an infinite set of 3-D minimal paths that
join individual points between two user supplied curves. Their
approach, which is not designed for vessels, would struggle in
capturing long winding vessel boundaries, for the reasons illus-
trated in Fig. 1(a) and (b), and has a complex implementation.

B. Generalization: Tubular Surface Extraction

As discussed in Section II-A, traditional spatial minimal path
techniques do not apply for the detection of surfaces or regions.
However, for the special case of vessels and other tubular sur-
faces, we may generalize these approaches by representing a
3-D vessel surface as a 4-D curve and using a corresponding
minimal path algorithm in 4-D. As such, we keep all of the ben-
efits of minimal path techniques (global minima, fast implemen-
tations, full incorporation of user input) while adding the ability
to represent and detect the vessel surface directly, which so far
has been a feature restricted to active contour and active surface
techniques.

We represent the surface of a tubular structure as the enve-
lope of a one-parameter family (curve) of spheres with different
centers (three coordinates) and different radii (fourth coordi-
nate). This representation is illustrated in Fig. 2. In this way, the
3-D surface extraction problem is translated into the problem of
finding a 4-D curve which encodes this family of 3-D spheres.

We now modify (2) to a new energy minimization model re-
lating to 3-D spheres rather than 3-D points

E(C) = /{w+P (C’(c(s),r(s)))}ds - /ﬁ(é)ds )

Q Q
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Fig. 2. We present a tubular surface as the envelope of a family of spheres with
continuously changing center points and radii.

where s still represents the arc-length parameter over an interval
Q, ¢(s) represents the location of a point in the original image
domain Q; either in R?[c(s) = (2(s),y(s))] or in R3[c(s) =
(x(5),y(s),2(5))], r(s) € [0, rmax] represents the radius of a
circle/sphere centered at ¢(s) (rmax is the largest allowed thick-
ness of the vessel to be captured), C(c(s), r(s)) € Qr repre-
sents a “path” composed by a family of circles/spheres in {2,
E (é’) represents the energy which is the integral of P along
C(c(s),7(s)), P is the potential related to the image properties,
w is a real positive constant, and P = P 4 w.

Furthermore, in (5), ds is a differential displacement vector
and ds? = dx? + dy?® 4 dz% + \dr?. r represents the sphere ra-
dius, and it may have the different Euclidean metric. A imposes
a smoothness constraint on the variations of the sphere radius
and may be changed. We simply choose A = 1 for all the tests
in this paper. _

Traditionally, the potential P is a pointwise image measure-
ment. Here, we instead design P as a measurement which incor-
porates the full set of image values within a sphere. We define
a sphere in Q as sp = (p,r), where p is the center point and
r is the radius. In designing P related to such spheres in the
image, we should keep in mind that the entire sphere should lie
inside the desired object and be as large as possible (so that it is
tangential to the object boundary). Such spheres should exhibit
lower values of P compared to smaller spheres which lie inside
the desired object or any sphere which lies outside (fully or par-
tially) the desired object.

Given a potential P that satisfies the above conditions (we
will give two example potentials later) and two user supplied
spheres spy and sp; which mark the beginning and ending lo-
cations (and radii) of the vessel or tubular object, our goal is to
find a family of spheres C' such that C(¢(0), 7(0)) = spo and
C(c(1),7(1)) = spy and such that the integral of P = P + w
along C is minimal. The vessel interior is then modeled by the
union of the interiors of all the spheres along C, its surface is
modeled by the envelope of the spheres along C, and its cen-
terline is modeled by the centers of the spheres along C. In ad-
dition, the varying thickness of the vessel may be read directly
using the radii of the spheres along C.

There are two problems to solve in this proposed method. The
first is how to minimize the energy functional shown in (5). In
particular, can we still define the minimal action map and use
fast marching methods to calculate it? The second one is how
to formulate an appropriate potential P satisfying the discussed
design conditions.
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A sphere sp = (p, ) in Q5 corresponds to a point p in a new
domain Q7 , = Qr X [0, Tmax]. Here, the sphere’s radius r €
R! is added as the additional fourth coordinate in 1,r- In this
way, each point in €27, consists of three spatial coordinates of
a 3-D sphere’s center plus a fourth coordinate which represents
its radius. The initial 3-D sphere spy is the 4-D point pg, and
the final 3-D sphere sp; is the 4-D point p;. The problem of
finding a family of spheres C'in3-D is translated to the problem
of finding an optimal curve in 4-D with py and p; as its end
points (optimal meaning that along this 4-D path the integral
of P = P + w is minimal). So, we are able to fully exploit
the minimal path technique to obtain minimizing trajectories
between two 4-D end-points. Since a 2-D (or 3-D) sphere is
represented as a point in 3-D (or 4-D), we should use a 3-D (or
4-D) fast marching scheme to solve the Eikonal equation and
calculate the minimal action map of 2-D (or 3-D) spheres.

C. Analysis of the Proposed Method

Our tubular surface extraction method is very simple once the
observation that a 3-D tubular surface can be modeled as a 4-D
curve is made. As such, we may use very standard numerical al-
gorithms to calculate a minimal path in one higher dimension to
obtain a direct representation of the tubular surface itself. In this
section, we offer some choices for the 4-D potential P as well
as address the front propagation scheme, the algorithm com-
plexity, and the relationship between our method with purely
spatial minimal path techniques.

An appropriate potential P is the most important factor for
obtaining accurate surface extraction results. P is an image fea-
ture attraction item and should be decided according to the prop-
erties of the images. We expect that P yields the smallest values
for largest possible spheres which are fully inside the desired ob-
ject. For tubular objects in medical imaging such as vessels and
colons, the intensity inside the objects is often fairly constant (at
least within small sections of the “tube”). We may exploit this
property to design the first sample potential.

For any image point p with gray value I(p) in an image I, we
define the mean value y(sp) and the variance o2(sp) of sphere
sp = (p,r) as

fB(p,r) I(ﬁ)dﬁ
p(sp) = —F———
( ) fB(p,r) dp
Jop,) 1(B) = )" dp
2 sp) = (p,r) _ (6)
7 ( ) fB(p,r) dp

where B(p, r) represents the whole sphere. We then propose a
sample potential

P(p) = P(sp)
—w-+ X (Insp)fr = plspo) /o)
2 (lo?Go)fr =)/ @

where 11(spo) and o®(spg) represent the mean and the variance
of the starting sphere spg, w is a real positive constant to control
the smoothness of the obtained path, and A; and A, are two real
positive weights for the mean difference and variance difference
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Fig. 3. Surface extraction results on a 2-D synthetic image. Panels (a) and (g) show the binary images with initializations. Centers of the initial spheres are shown
with the red crosses. Panels (b) and (h) show the potential map with r = 8 and = 7, respectively. Panels (c) and (i) show the distance map with » = 8 and
7 = 12. White lines in panels (d) and (j) show the surface extraction results from our method. Red lines in panels (e) and (k) show the extracted central paths from
our method. Red lines in panels (f) and (I) show the path extraction results from the standard 2-D minimal path technique.

between the detected sphere and the starting sphere. These pa-
rameters should be selected based on the size and interior infor-
mation of detected vessels, image noise levels, etc. As with any
segmentation algorithm, the optimal set of parameters is very
application dependent. In Fig. 5, we will illustrate the results of
changing these parameters w, A1, and As.

This potential has two characteristics. First, it considers the
mean and variance differences between the detected sphere and
the starting sphere. If a sphere’s radius is larger than the width
of the tubular structure, the mean and variance differences be-
tween this sphere and the starting sphere will increase, and the
related potential P will increase as well. Second, it also weights
the mean and variance differences by r, which helps to ensure
that the desired largest sphere also has lower potential than those
smaller spheres inside the vessel. This sample potential satis-
fies the conditions discussed above, keeps the detected sphere
as large as possible, is a region-based potential, and is suitable
for extracting the vessel structures with constant interior inten-
sities. We will use this potential to test the 2-D vessels shown in
Sections III-A and III-B.

Three-dimensional vessels such as CTA coronary arteries are
normally very thin and long with blurred boundaries and com-
plex surrounding regions. In some cases, their intensities also
may not be constant. Here, we design another example poten-
tial only based on the sphere’s boundary information. First, we
define OB(p, r) as the boundary of sphere sp, and use it to re-
place B(p,r) in (6). Then, we calculate the mean and variance
only on the boundary of sphere sp. We also define the mean
difference 6,,(sp) and the variance difference 6,2 (sp) between
sphere sp = (p,r) and sphere sp’ = (p,7 — 1) as

8,2(sp) = |o®(sp) — o (sp')] .
8)

ou(sp) = lu(sp) — u(sp')l,

The second sample potential, which also satisfies the condi-
tion discuss above, is designed as

N A1 A2
P(p) = P(sp) = w + — + — 9
1+ 6#(81)) 1+ 502(81))

Strictly speaking, these two sample potentials are all based on
region information because every sphere in the original image
is a small region. In order to improve the detection accuracy, we
should decrease the potentials on the desired spheres as much
as possible. The lower the potential on the desired sphere is, the
higher the accuracy is. Because of the complexity and variety
of medical images, it is hard to just use one specific potential
to process all possible images, or find the suitable parameter
setting for every specific image. Appropriate potentials should
be chosen based on different image qualities, vessel structures,
noise levels, and so on.

After deciding the potential, we can use the fast marching
method [36] to solve (4) and obtain the minimal action map U.
The algorithm complexity of the 4-D fast marching scheme is
O(N log N), where N is the number of 4-D grid points. Fur-
thermore, we may keep /N small by limiting the range of the ra-
dius coordinate and discretizing it to just a few different values.
We may also stop the fast marching evolution after we find the
minimal action map at the end point instead of calculating it on
the whole 4-D image space.

Since we represent the entire vessel as a 4-D curve on which
each 4-D point represents a 3-D sphere, the 3-D vessel structure
is then obtained as the envelope of the family of spheres tra-
versed along this 4-D curve from noisy or low contrast 3-D data
without the sensitivity to local minima inherent in most active
surface techniques. Because all the spheres on the detected min-
imal “path” are tangential to the boundary of the tubular struc-
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Fig. 4. Surface extraction results on two real angiogram images. Centers of the initial spheres are shown with the red crosses. Panels (a) and (h) show the original
images with initializations. Panels (b) and (i) show the potential maps with » = 10 and » = 8, respectively. Panels (c) and (j) show the distance maps with » = 10
and r = 8, respectively. Red lines in panels (d) and (k) show the surface extraction results from our method. Red lines in panels (e) and (1) show the extracted
central paths from our method. Red lines in panels (f) and (m) show the surface extraction results from our method with a large maximum radius 7max = 40.Red
lines in panels (g) and (n) show the path extraction results from the standard 2-D minimal path technique.

ture, the union of their center points describes the central path of
the tubular structure. We, therefore, obtain the centered path by
tracing the center points of the family of 3-D spheres rather than
its envelope. Furthermore, the classical minimal path technique
can be treated as a special case of our method by setting the
sphere radius to 0. However, as demonstrated in the upcoming
experiments, it is much better to perform the minimal path pro-
cedure fully in 4-D in order to obtain the actual vessel surfaces
as well as their central paths.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we test our approach on various 2-D and 3-D
simulated and real images. For each test, users need to specify
the center points and radii at the starting and ending points, the
potential, and the largest allowed radius of the tubular object.
Four probabilities

NN N, Nr — NN N,
Tp=-2_"R pN=_E_ B R
Ngr Ngr
Ny — NgnNg Npn Ng
Fp—_B B IR g\ ZBIIIR g
NR NB+NR ( )

are defined for validation. N is the number of reference ground
truth voxels of vessel T'. N is the number of voxels detected by
our algorithm for vessel T. TP, F'IN, and F'P are the true pos-
itive, false negative, and false positive parameters. O M means
overlap metric which is a Dice similarity coefficient [46] and

approaches a value of 1.0 for results that are very similar and is
near 0.0 when they share no similarly classified voxels.

A. Experiments on 2-D Images

In Fig. 3, we first present the segmentation results on a 2-D bi-
nary image with two different pairs of initial spheres. The image
size is 350 x 200. The radii of the left and right spheres and
the largest allowed radius are set t0 Tiery = 12, Trighe = 7,
and Tmax = 15 in Fig. 3(a), while ey = 12, Tpigne = 8,
and 7max = 15 in Fig. 3(g). For these two segmentations, we
use the potential defined by (7) with w = 10, Ay = 10, and
A2 = 10. The computational times are about 1 s for both tests.
We also show the corresponding potential maps P which have
lower values on desired 3-D locations, and the minimal action
maps U which show the gradient descent along the desired 3-D
path.

In Fig. 4, we present the segmentation results on the real 2-D
noisy projections of two angiograms with two different initial-
izations (obviously, one should segment the 3-D data, but here
we can illustrate the accuracy of the result since the full 2-D
curve may be superimposed on the 2-D projection image data).
The image sizes are 350 x 200. In Fig. 4(a), we set 7ot = 10,
Tright = 2, and rmax = 15. In Fig. 4(h), we set 1ese = 8,
Tright = 8, and rpax = 15. For these two segmentations, we
use the potential defined by (7) with w = 10, A; = 10, and
Ao = 10. The computational times are around 3 s.

In our method, parameters P, Tleft, Tright, and Tmax may af-
fect the final results. In Section II-C, we briefly discussed how
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Fig. 5. Comparison of the segmentation results obtained by changing parame-
terS Tlefts Tright» Tmax> W, A1, and Ao, respectively.

to choose the potentials for different images. Here, we illustrate
the influence of the parameters 7ieft, Tright, Tmax> W, A1, and Az
onthe segmentation results. We use the image in Fig. 4(a) as a
sample for this test and compare the results in Fig. 5. In order
{0 €St T'left, Tright, AN 7'max (measured by pixels), we fix the lo-
cations of two initial points and the potential defined in (7), and
only change these three parameters independently. We choose
the result based on 7ief = 10, Tright = 2, Tmax = 19, w = 10,
A1 = 10, and Ay = 10 as the standard and compare it with other
results. Because it is impossible for us to test all of the combina-
tions of these three parameters, we choose a certain range [2—13]
for ieft, [2—8] for 7pignt, and [15,20,25,30,35,40] for 7max. One
of these three parameters varies independently and the other two
are fixed as the standard values for each test. We use the overlap
metric OM defined in (10) to measure the similarity between
each result and the standard. Similarly, when testing w, A1, and
A2, we fiX Tiegt = 10, Tright = 2, Tmax = 15, and choose the
result based on w = 10, A\; = 10, and A = 10 as the standard
and compare it with other results. w, A1, and Ay all vary in a
range [0,1,10,20,30,40,50,60] respectively.

As can be seen in Fig. 5(a), changing r.f; does change the
results dramatically because 7. relates to the starting point.
Changing 7yighe [shown in Fig. 5(b)] only changes the results
slightly, On the other hand, when changing r,x [shown in
Fig. 5(c)], the segmentation results do not change from the as-
sumed standard result because the value of r,,,x does not affect
the energy functionals of global minimal path methods. This ob-
servation shows that choosing appropriate radii of initial spheres
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Fig. 6. Surface and central line extraction results on two 2-D MRA images.
Panels (a) and (b) show the original images. Panels (c) and (d) show the extracted
vessel surfaces by our method. Panels (e) and (f) show the extracted central lines
by our method.

Tleft and Tyigh¢ 1S much more important than choosing 7, For
an image with blurred vessel boundaries, because it is hard to
decide the correct radii of the initial spheres, the final results
will change when the radii of the initial spheres change. Al-
though theoretically, changing the maximum radius does not
and should not induce a dramatic effect on results, we still sug-
gest choosing an appropriate 7,5 for each processed image,
because an unreasonably big maximum radius may increase the
possibility of errors and also increase the running time of the fast
marching evolution schemes. As can be seen in Fig. 5(d) and (e),
when changing w, A1, and Ao, the segmentation results do not
change significantly from the assumed standard. The reason is
that w controls the smoothness of obtained paths, and should not
change the vessel width and shape much. In this test, changing
A1 and A2 does not change results dramatically. However, for
detecting noisy vessel structures, we should decrease the weight
on the variance difference.

In Fig. 6, we present the segmentation results on two other
real 2-D noisy angiogram projection images. For this test, we
set several pairs of initial radii. For each pair of radii, we use
the mouse to choose the locations of two initial points and obtain
the vessel between them, then combine all the detected vessels
to get the final result. We still use the potential defined by (7)
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TABLE I
COMPARISONS OF THE 2-D RETINAL IMAGE SEGMENTATION RESULTS
OF OUR METHOD WITH THE GROUND TRUTH DATA

Rate 2D test images
I 2 3 4 5
TP (%) | 798 82.0 81.0 83.1 79.9
FN (%) | 202 18.0 19.0 16.9 20.1
FP (%) 19.6 16.5 20.4 154 19.5
OM 0.800 | 0.826 | 0.804 | 0.837 | 0.801

(@)

(b) (©)

Fig. 7. Surface extraction result on one of the five cropped 2-D retinal images
tested in Table I. Panels (a) show the original retinal image. Panels (b) show the
extraction result from our method. Panels (c) show the overlap pixels and differ-
ence pixels between our result and the manual segmentation. Pixels in red color
are the overlap pixels between our results and the manual segmentations. Pixels
in blue color are the pixels which are detected by the manual segmentations but
not by our method. Pixels in green color are the pixels which are detected by
our method but not by the manual segmentations.

with w = 10, \; = 10, and Ay = 10. Notice that in Fig. 6(c),
one branch of the vessel structure is self-intersecting. For ex-
tracting this structure, we choose three pairs of initializations
[shown in Fig. 6(c)]. Unlike some topology-preserving active
contour models, our method does not consider the topological
information of vessels, and it always finds the shortest path be-
tween two initial points. By choosing appropriate initial spheres,
our method can detect self-intersecting curves easily.

B. Quantitative Evaluation on 2-D Images

The quantitative evaluation results of our algorithm on 2-D
images are given in Table I and Fig. 7. We validate our approach
on five cropped retinal images provided by the DRIVE [47]
database. The DRIVE database consists of 40 color retinal im-
ages captured from a Canon CRS5 nonmydriatic 3CCD camera
with a 45° field-of-view (FOV). The images are all 768 x 584
pixels and 8 bits per color plane. The FOV of each image is ap-
proximately 540 pixels in diameter, and each image has been
cropped around the FOV. In this database, all 40 images have
been divided into a training set and a test set. Each set contains
20 images. One manual segmentation is provided for the images
in the training set. Two manual segmentations are available for
the test set: one is used as gold standard, and the other serves as
an independent human observer reference for comparisons with
computer generated segmentations.

The main purpose for our test on these five images is to quan-
titatively analyze the accuracy of the proposed algorithm. Con-
sidering the properties of our method, the complexity of retinal
images, and the purpose of this test, we cropped these five dif-
ferent parts from three retinal images, and tested our method
directly on them. We still use the potential defined by (7) with
w = 10, Ay = 10, and A2 = 10 to test these five images. As
in Fig. 6, we set several pairs of initial radii. For each pair of
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radii, we used the mouse to choose two initial point locations
and obtain the vessel between them, then combined all the de-
tected vessels to get the final result. As revealed in Table I, our
method obtains a truth positive ranging from 79.8% to 83.1%,
with overlap metrics over 0.8. There are three main reasons
which induce the errors. First, our method is a sphere-based
algorithm, when we convert the obtained minimal paths in a
higher dimension space to the vessel surfaces in the actual vessel
space, it is hard to set accurate spheres for very thin retinal ves-
sels which are only 2-3 pixels wide. Second, the ground truth
data sets are discretized and rely on the image resolution, which
are not strictly “tubes.” Furthermore, these spheres are mea-
sured by pixels in our tests, as such the diameters of the spheres
are always odd numbers, but in the ground truth data, the diam-
eters of some vessels are even numbers, this induces the differ-
ences between our results and the ground truth data. Third, the
quality of these testing images is not very good, and the original
images are very blurred, it is hard to set the most appropriate
initial radii for the initial spheres. As discussed in Fig. 5, the
radii of the initial spheres may affect the final results.

C. Experiments on 3-D Images

The proposed method is very easy to extend to three dimen-
sions. In this subsection, we test our method on several 3-D CTA
or MRA images for further evaluation under more realistic con-
ditions.

In Fig. 8, we test the method on a 3-D CT dataset of the
coronary artery. For this test, we set 1o = 4, r; = 1, and
Tmax = 1 for segmenting the left anterior descending artery
(also obtaining part of the left main coronary artery) and the left
obtuse marginal artery, ro = 3, 7y = 1, and rp,,x = 7 for seg-
menting the left circumflex artery with a subbranch, rg = 1,
r1 = 1, and rhax = 5 for segmenting the subbranch of the
left obtuse marginal artery. The potential is defined by (9) with
w = 10, Ay = 10, and Ay = 10.

In Fig. 9, we show the extraction of an ascending aorta from
the 3-D CT dataset of a coronary artery and the extraction of
brain vasculatures from a 3-D brain MRA image. Normally, as-
cending aortas and MRA brain vessels are wider than coronary
arteries. These tests illustrate that the bigger the actual vessel
sizes are, the smoother the extraction results. The image size
in Fig. 9(a) is 110 x 90 x 80. The potential is defined by (9)
with w = 1, Ay = 10, and Ay = 10. rg = 25, r1 = 25, and
Tmax = 30 are set for the initial spheres. For improving the com-
putation time, we set a new parameter r,;, = 20, and search r
in this narrow range 7min < 7 < Tmax instead of 0 < 7 < 7o
The computation time is less than 2 min. The image size in
Fig. 9(c) is 80 x 120 x 280. The potential is defined by (9) with
w = 1, )\1 = 10, and )\2 = 10.

D. Quantitative Evaluation on 3-D Images

Contrary to the experiments shown in Fig. 7 and Table 1, it is
very difficult to obtain the ground truth data for validating the
3-D segmentation results. In Fig. 10 and Table II, we show the
comparison between the results obtained from our method and
results acquired manually. We test our method directly on five
3-D clinical CTA coronary datasets without any preprocessing.
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(d) (e ®

Fig. 8. Segmentation result of the left main coronary artery on a 3-D CT image. Panels (a) and (b) show the segmentation results on two 2-D slices from our
method. Panel (c) shows the reconstructed 3-D model of the segmented left main coronary artery, the left anterior descending artery, the left obtuse marginal artery
with one subbranch, and the left circumflex artery with a subbranch from our method. Panel (d) shows the 3-D model of the corresponding central path from our
method. Panel (e) shows the projection of the segmented 3-D surface and the central path from our method. For comparison, panel (f) show the minimal path results
from the standard 3-D minimal path technique [10]. The potential is P(p) = 10 + |VI(p)|? for panel (f). |VI(p)] is the image gradient magnitude.

(d)

Fig. 9. Part of the aorta extraction results from a 3-D CT image, and the brain
vessel extraction results from a brain MRA image. Panels (a) and (c) show the
results on each slice of these two images, respectively. Panels (b) and (d) show
the reconstructed 3-D models.

The potential is defined by (9) with w = 1, A; = 10, and
A2 = 10.

One of these five manual drawings was contoured by a
physician at Emory University, Atlanta, GA, the other four
were contoured by a biomedical student who was trained by the
physician. These manual results were obtained by hand drawing
on every 2-D slice. This procedure is very time consuming
and subjective, and also has several other drawbacks. First,
the 3-D vessel structure information is not referenced during
the drawing process, so the manual results are not smooth.
In particular, some small and thin vessels may appear broken
or disconnected from larger branches. Second, the manual
drawing only based on mouse clicks always generates too many
errors. Thus, the manual segmentations with which we com-
pare our method cannot be considered as an ideal ground truth.
The thin structures that our method obtained go beyond those
obtained by the manual method [the most severe case is shown
in the first row of Fig. 10(c)]. These additional pieces constitute

(a) (b) (©)

Fig. 10. Segmentation results on two of the five real CTA images based on our
method. Panel (a) shows the manual segmentation results. Panel (b) shows the
segmentation results of our method. Panel (c) shows the overlap voxels between
our results and the manual segmentations.

the main factor that increases the false positive (FP). But this
comparison also shows that our method can correctly detect al-
most all branches and also reduce user-interaction while having
the ability to segment thin vessels. Since our method is a 4-D
minimal path technique, it is better able to extract continuous
and smooth 3-D arteries from the surrounding region.

Using the manual segmentation results of these five CTA im-
ages, we also validate our method on 15 noisy simulated CTA
images, which are produced from the manual segmentations by
adding different noise levels to them. After discussion with med-
ical physicists and by referring to [40], we created five noisy im-
ages by adding Gaussian noise with standard deviation o = 20,
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TABLE II
COMPARISONS OF THE 3-D CORONARY IMAGE SEGMENTATION RESULTS
OF OUR METHOD WITH THE MANUAL SEGMENTATIONS

Rate 3D test images
1 2 3 4 5
TP (%) | 627 75.2 68.3 74.4 42.5
FN (%) | 373 24.8 31.7 25.6 575
FP (%) | 414 71.3 42.0 91.9 30.7
OM 0.614 | 0.610 | 0.649 | 0.558 | 0.491
TABLE III

COMPARISONS OF THE 15 3-D NOISY SIMULATED IMAGE SEGMENTATION
RESULTS WITH THE MANUAL SEGMENTATIONS

Rate 3D test images
I 2 3 4 5
OM (0 =20) | 0689 | 0.692 | 0.702 | 0.678 | 0.715
OM (o0 =40) | 0557 | 0571 | 0.564 | 0.565 | 0.584
OM (0 =80) | 0489 | 0.487 | 0.472 | 0.449 | 0.537

a representative noise level in MR and CT data, to these five
manual segmentations. Furthermore, in order to observe the per-
formance of our method in worse situations, we also created 10
noisy images by adding Gaussian noise with higher standard de-
viations ¢ = 40 and o = 80, respectively. Then the same initial
point pairs and potentials in Table II are used to test these 15
noisy images, and the overlap metrics are shown in Table III.
This validation demonstrates that real images are more difficult
to be segmented accurately compared to the simulated images
with a reasonable noise level (¢ = 20). Simulated images do
provide the advantage that the ground-truth data is known and
thus the performance of the segmentation method can be ob-
jectively measured. However, it may not necessarily reflect all
physiological and imaging variability and effects of real images.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel 3-D tubular surface extrac-
tion method that not only keeps all of the benefits of standard
minimal path techniques, but also combines some of the ben-
efits of active surface techniques by representing the full 3-D
tubular surface rather than a just curve within its interior. We
are able to fully exploit minimal path techniques to obtain the
global minimizing trajectory between two user supplied end-
points in order to reconstruct a vessel from noisy or low contrast
3-D data, and also yield the central path of the tubular struc-
ture simultaneously. We chose coronary artery segmentation as
one of the many possible illustrative 3-D experiments, showing
that this new technique can extract 3-D tubular structures and
their corresponding center lines more accurately than the clas-
sical minimal path techniques. In order to emphasize these prop-
erties, we tested the proposed method directly on the original
(unpreprocessed) 2-D and 3-D images with extremely simple
initializations (just spheres). We also compared our results with
the ground truth data (2-D retinal images) and the manual seg-
mentation results (3-D CTA coronary images). After the 3-D
tubular surface is found, it can provide direct visualization of
coronary arteries over a long stretch of vessel. Furthermore, it
can be used as a preprocessing step in the quantitative analysis of
vessel morphology and can provide more useful information for
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clinical applications such as vessel disease detection, aneurysm
detection and analysis.

In the future, we hope to expand the proposed method to ex-
tract objects with different shapes such as an abnormal vessel
(for example, an aneurysm) by using different underlying struc-
tural elements (such as ellipses) rather than spheres. Beyond the
application to medical vessel images, the proposed method can
also be applied to extract other tubular structures such as roads
and plant roots, and thus has great potential for tubular surface
analysis in other fields as well.
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