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Abstract. All previous geometric active contour models that have been
formulated as gradient flows of various energies use the same L2-type
inner product to define the notion of gradient. Recent work has shown
that this inner product induces a pathological Riemannian metric on
the space of smooth curves. However, there are also undesirable features
associated with the gradient flows that this inner product induces. In
this paper, we reformulate the generic geometric active contour model by
redefining the notion of gradient in accordance with Sobolev-type inner
products. We call the resulting flows Sobolev active contours. Sobolev
metrics induce favorable regularity properties in their gradient flows.
In addition, Sobolev active contours favor global translations, but are
not restricted to such motions. This is particularly useful in tracking
applications. We demonstrate the general methodology by reformulating
some standard edge-based and region-based active contour models as
Sobolev active contours and show the substantial improvements gained
in segmentation and tracking applications.

1 Introduction

Active contours, introduced by Kass et al. [1], have been widely used for the
segmentation problem. One undesirable feature of Kass’s model is that the en-
ergy used to derive a flow is dependent on parametrization. Formulations for
geometric energies, which do not depend on the particular parametrization of
the curve, were later introduced for edge-based active contours [2,3] and region-
based active contours [4,5,6]. In order to define the notion of gradient of such
energies, an inner product on the set of perturbations of a curve is needed. All
of these previous works on geometric active contours use the same geometric
L2-type inner product, which we refer to as H0, to define a gradient. However,
recent work in [7,8] has shown that the Riemannian metric on the space of curves
induced by the H0 inner product is pathological.

In addition to the pathologies of the Riemannian structure induced by H0,
there are also undesirable features of H0 gradient flows, some of which are listed
below.

- First, there are no regularity terms in the definition of the H0 inner product.
That is, there is nothing in the definition of H0 that discourages flows that are
not smooth in the space of curves. By smooth in the spaces of curves, we mean
that the surface formed by plotting the evolving curve as a function of time
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is smooth. Thus, when energies are designed to depend on the image that is
to be segmented, the H0 gradient is very sensitive to noise in the image. As a
result, the curve becomes unsmooth instantly. Therefore, in geometric active
contours models, a penalty on the curve’s length is added to keep the curve
smooth in addition to keeping the variational problem well-posed. However,
this changes the energy that is being optimized.

- Second, H0 gradients, evaluated at a particular point on the curve, depend
locally on derivatives of the curve. Therefore, as the curve becomes unsmooth,
as mentioned above, the derivative estimates become inaccurate, and thus,
the curve evolution becomes inaccurate. Moreover, for region-based and edge-
based active contours, the H0 gradient at a particular point on the curve de-
pends locally on image data at the particular point. Although region-based
energies may depend on global statistics, such as means, the H0 gradient
still depends on local image data. The H0 gradient of image dependent en-
ergies “encourages” points on the evolving curve to move “independently”
to decrease energy rather than encouraging the points to move collectively.
This restricts the gradient at a particular point from “seeing” information
located at other points of the curve, which implies sensitivity to noise and
local features.

- Third, all geometric active contours require that the unit normal to the evolv-
ing curve be defined. As such, the evolution does not make sense for polygons.
Moreover, since in general, a H0 active contour does not remain smooth, one
needs viscosity theory to define the flow.

- Fourth, if the energy depends on n derivatives of the curve, then the H0 gra-
dient has 2n derivatives of the curve. Since the corresponding level set flows
with higher than two derivatives are not known to have a maximum principle,
level set methods [9] cannot be used. This forces one to use particle methods
to implement the flow. However, flows with higher than two derivatives are
generally difficult to implement because of numerical artifacts.

- Lastly, as a specific example, the gradient ascent for arclength, i.e., backward
heat flow, is not stable. This is quite odd in an intuitive manner because
there is nothing in the definition of length itself that indicates that a flow to
increase length is unstable.
In this paper, we consider using inner products arising from Sobolev spaces

to define gradients. Note that a first order Sobolev-like inner product defined
on an equivalence class with respect to a group has been used in the context of
shape analysis [10], but not for defining gradient flows.

2 General Theory

2.1 Structure on the Space of Curves

Let C denote the set of smooth embedded curves in R
2, which is a differentiable

manifold [11]. For C ∈ C, we denote by TCC the tangent space of C at C, which
is isomorphic to the set of smooth perturbations of the form h : S1 → R

2 where
S1 denotes the circle. We now define inner products on TCC.
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Definition 1. Let C ∈ C, L be the length of C, and h, k ∈ TCC. Let λ > 0. We
assume h and k are parametrized by the arclength parameter of C.

1. 〈h, k〉H0 := 1
L

∫ L

0 h(s) · k(s)ds

2. 〈h, k〉H1 := 〈h, k〉H0 + λL2 〈h′, k′〉H0

3. 〈h, k〉H̃1 := h · k + λL2 〈h′, k′〉H0

where h := 1
L

∫ L

0 h(s)ds, and the derivatives are with respect to arclength.

Note that we have introduced length dependent scale factors for convenience
of later computations. It is easy to verify that the above definitions are inner
products. One can easily generalize the previous definitions to H̃n by simply
replacing the first derivative with the nth derivative, and to Hn by adding in
components of the form

〈
h(m), k(m)

〉
H0 where m ≤ n. Also, other versions of

H1 and H̃1are possible [8]. We now define the notion of gradient of a functional
E : C → R.

Definition 2. Let E : C → R.

1. If C ∈ C and h ∈ TCC, then the variation of E is dE(C)·h= d
dtE(C + th)

∣
∣
t=0,

where (C + th)(θ) := C(θ) + th(θ) and θ ∈ S1.
2. Assume 〈, 〉C is an inner product on TCC. The gradient of E is a vector field

∇E(C) ∈ TCC that satisfies dE(C) · h = 〈h, ∇E(C)〉C for all h ∈ TCC.

For each C ∈ C, note that dE(C) is a linear operator on TCC. If dE(C) is
bounded, then the notion of operator norm can be defined. The operator norm
of dE(C) with respect to an inner product 〈, 〉C , which induces a norm ‖ · ‖C , is

‖dE(C)‖ = sup
h∈TCC\{0}

|dE(C) · h|
‖h‖C

. (1)

If the gradient of E exists, then by the Cauchy-Schwartz inequality, we have
that h = ∇E(C) attains the supremum on the right hand side of (1). Note for
λ → +∞, translations have norm approaching zero with respect to the norm
induced by H1 and H̃1. In light of the interpretation of the gradient as the
perturbation that attains the supremum in (1), it follows that translations are
favored for gradients in H1 and H̃1 as λ → +∞ if they reduce energy.

2.2 Relation Between H1 and H̃1

We show that the norms associated with the inner products H1 and H̃1, i.e.,

‖h‖H1 =

√∫ L

0

1
L

|h(s)|2 + λL|h′(s)|2ds, ‖h‖H̃1 =

√

|h|2 + λL

∫ L

0
|h′(s)|2ds

are equivalent.
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We first derive a simple Poincaré inequality: from h(u) − h(v) =
∫ u

v
h′(s)ds

we derive that supu |h(u) − h| ≤
∫ L

0 |h′(s)|ds, and then

√∫ L

0
|h(s) − h|2ds ≤

√
L sup

u
|h(u)−h| ≤

√
L

∫ L

0
|h′(s)|ds ≤ L

√∫ L

0
|h′(s)|2ds,

which is the Poincaré inequality.
We now prove the equivalence of the two norms. By Hölder’s inequality, we

have that |h|2 ≤ 1
L

∫ L

0 |h(s)|2ds so that ‖h‖H̃1 ≤ ‖h‖H1 . On the other hand,
note that, 1

L

∫ L

0 |h(s) − h|2ds = 1
L

∫ L

0 |h(s)|2ds − |h|2, so that

‖h‖2
H1 =

∫ L

0

1
L

|h(s)|2 + λL|h′(s)|2ds

=
1
L

∫ L

0
|h(s) − h|2ds +

∫ L

0
λL|h′(s)|2ds + |h|2

≤ |h|2 + L(1 + λ)
∫ L

0
|h′(s)|2ds ≤ (1 ∨ (L2(1 + λ)))‖h‖2

H̃1

where ∨ denotes maximum. Note that we have not established any relation
between the geometry of the inner products H1 and H̃1; however, in the next
sections, we show that the gradients from H1 and H̃1 have similar properties.

2.3 Comment on Hn for n ≥ 2

As alluded to in Section 2.1, translations are favored for H1 and H̃1 gradients
when λ → +∞. This can be quite important for tracking applications where the
object to be tracked is usually translating. One may wonder whether using higher
order Sobolev inner products, Hn and H̃n for n ≥ 2, will favor higher order
polynomial motions of degree n. Note however, that any polynomial perturbation
defined on S1, the circle, must be constant to conform to periodic boundary
conditions. Thus, higher than order n = 1 Sobolev gradients also favor just
translations. In this sense, there is not an advantage of using higher order Sobolev
gradients. However, one gains added regularity of the gradient flow in using
higher order Sobolev gradients.

3 H1 and H̃1 Gradients

In this section, we describe how to compute first order Sobolev gradients from
the H0 gradient. Denote by f = ∇H0 E(C) the gradient of E with respect to the
H0 inner product at C. We would like to compute first the H1 gradient at C.
Assuming g = ∇H1 E(C) exists, we have for all h ∈ TCC,

dE(C) · h = 〈h, g〉H0 + λL2 〈h′, g′〉H0 =
〈
h, g − λL2g′′

〉
H0
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where we have integrated by parts and noted that we have periodic boundary
conditions. Since gradients are unique (if they exist), in particular, the H0 is
unique, we must have that

f(s) = g(s) − λL2g′′(s) where s ∈ [0, L]. (2)

Note that this is an ODE defined on [0, L] with periodic boundary conditions,
that is, all derivatives match on the boundary of [0, L].

Now we take a similar approach to compute the H̃1 gradient. Assuming
g = ∇H̃1E(C) exists, we have

dE(C) · h = h · g + λL2 〈h′, g′〉H0 =
〈
h, g − λL2g′′

〉
H0 .

Again by uniqueness, we have that f = g − λL2g′′. Noting periodic boundary
conditions, we have that g = f , and so

f(s) = f − λL2g′′(s) where s ∈ [0, L] (3)

and we have periodic boundary conditions.

3.1 Solving the ODEs

We want to solve first the ODE (2) for g. It suffices to solve (2) with the
boundary conditions g(0) = g(L) and g′(0) = g′(L). One can show that g(s) =
∫ L

0 kλ(s, ŝ)f(ŝ)dŝ, where kλ : [0, L]× [0, L] → R satisfies the following conditions
for all s, ŝ ∈ (0, L)

kλ(s, ŝ) − λL2 ∂2kλ

∂s2 (s, ŝ) = δ(s − ŝ) (4a)

kλ(0, ŝ) = kλ(L, ŝ); ∂skλ(0, ŝ) = ∂skλ(L, ŝ); kλ(ŝ+, ŝ) = kλ(ŝ−, ŝ), (4b)

and δ denotes the Dirac distribution. It can be shown that the solution to the
previous system is kλ(s, ŝ) = Kλ(|s − ŝ|), where Kλ : R → R is given by

Kλ(s) =
cosh

(
s− L

2√
λL

)

2L
√

λ sinh
(

1
2
√

λ

) , for s ∈ [0, L], (5)

and Kλ is periodically extended to all of R. We may write

∇H1E(s) =
∫

C

Kλ(ŝ − s)∇H0E(ŝ)dŝ = (Kλ ∗ ∇H0E)(s) (6)

where the integral over C denotes any range of ŝ that corresponds to one full
period around the curve C (e.g. [0,L], [–L,0], [–L/2,L/2], etc.).

We now solve the second ODE (3). It suffices to solve (3) with the boundary
conditions g(0) = g(L), g′(0) = g′(L), and the relation f = g. Integrating (3)
twice yields

g(s) = g(0) + sg′(0) − 1
λL2

∫ s

0
(s − ŝ)(f(ŝ) − f)dŝ. (7)
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Using (7), applying the boundary conditions, and noting that g = f , after some
manipulation, yields

g′(0) = − 1
λL3

∫ L

0
s(f(s) − f)ds and g(0) =

∫ L

0
f(s)K̃λ(s)ds (8)

where the kernel function K̃λ is given by

K̃λ(s) =
1
L

(

1 +
(s/L)2 − (s/L) + 1/6

2λ

)

, s ∈ [0, L]. (9)

Note that K̃λ(0) = K̃λ(L) and thus we may periodically extend K̃λ as before.
In this case, we may rewrite, g(0) =

∫
C f(ŝ)K̃λ(ŝ)dŝ, where, again, the integral

over C denotes any range of ŝ that corresponds to one full period over C. Now
if we shift the arclength parameterization of the curve, we obtain a convolution
formula for g at any point s. Therefore,

∇H̃1E(s) =
∫

C

K̃λ(ŝ − s)∇H0E(ŝ)dŝ = (K̃λ ∗ ∇H0E)(s). (10)

3.2 Properties of the Kernels

Note the following formal properties of Kλ and K̃λ:

K ′′
λ(s) =

1
λL2 (Kλ − δ(s)) and K̃ ′′

λ(s) =
1

λL2

(
1
L

− δ(s)
)

, s ∈ [0, L). (11)

The first property is just the relation in (4a), and the second is obtained through
differentiation of K̃λ. Using these relations, it is easy to see that Kλ∗f and K̃λ∗f
formally solve (2) and (3), respectively. Next, note that

∫

C

Kλ(ŝ)dŝ = 1 and
∫

C

K̃λ(ŝ)dŝ = 1 (12)

for all λ > 0. Also observe that Kλ ≥ 0 for all λ > 0, and that K̃λ ≥ 0 only
when λ ≥ 1/24. Finally, it is easy to verify that as λ → +∞, Kλ → 1/L and
K̃λ → 1/L. See Fig. 1 for plots of Kλ and K̃λ.

3.3 Properties of Sobolev Gradients

First note, from formulas (6) and (10), that the H1 and H̃1 gradients are geomet-
ric, i.e., they do not depend on a particular parametrization chosen for the curve.
This is also evident from the definition of these inner products. The formulas (6)
and (10) show that there may be a tangential component of the gradients; but
these tangential components may be ignored when considering gradient flows.
This is different from H0 where if the energy is geometric, then the gradient will
have only a normal component.
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Fig. 1. Plots of Kλ (left) and K̃λ (right) for various λ with L = 1. The plots show the
kernels over two periods.

Because H1 and H̃1 gradients are given by integrals of H0, given in formu-
las (6) and (10), integration by parts and the relations in (11) imply that two
derivatives of the curve can be moved to derivatives on the kernels. This means
that H1 and H̃1 gradients involve two fewer derivatives of the curve than H0

gradients involve. Note that H0 gradients have twice the number of derivatives
of the curve as is defined in the energy E to be optimized. Thus, fourth order
evolution equations of curves in H0 may reduce to second order equations in H1

and H̃1. A similar remark can be made for Hn and H̃n gradients; these gradients
require 2n less derivatives of the curve than the H0 gradient requires.

The property that the integral of both the kernels is unity (12) implies that
the H1 gradient can be interpreted as a weighted average of the H0 gradient;
the same interpretation holds for H̃1 when λ > 1/24. In light of this weighted
average interpretation, we see that Sobolev gradients are less sensitive to noise
and local features than H0 gradients are. Moreover, the property that the kernels
approach 1/L as λ → +∞ shows that, in this case, the H1 and H̃1 gradients
approach pure translations equal to the average value of the H0 gradient, as
expected from the interpretation of gradient noted in Section 2.1.

3.4 Advantages of H̃1 over H1

There is a computational advantage of using the H̃1 gradient as opposed to
the H1 gradient since the formulas (7), (8) give the H̃1 gradient as a single
integral without convolution, as opposed to the necessary convolution for H1.
Another advantage of H̃1 over H1 is that we can eliminate the dependence on
the parameter λ when implementing H̃1 gradient flows. Observe from the kernel
definition (9) that K̃λ is a sum of two terms: one that depends on λ and another
that does not. Thus, the H̃1 gradient is a sum of two components: one that
depends on λ by a simple scale factor, and another that is independent of λ. The
component that does not depend on λ is ∇H0E, which is a just a translation.
The other component is a complex deformation. An algorithm to implement
the H̃1 gradient flow is to first evolve the curve by the translation component
until this component becomes zero, then to evolve the curve by the deformation
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component, and the process is repeated until convergence. Note that λ does
not need to be chosen for evolving the deformation component because λ only
changes the speed of the curve, not the geometry. Therefore, this algorithm also
gives a way of separating the (rigid) motion of the curve from the deformation.
Separating the motion from deformation has particular importance in tracking
applications [12].

4 Some Sobolev Gradient Flows

In this section, we simplify the formulas (6) and (10) for some common geometric
energies, note some interesting properties, and compare these with the usual H0

gradients. In what follows, we use K to denote either the kernel (5) or (9), and
∇1 will denote either the H1 or H̃1 gradient; when the distinction is needed, we
will use the subscript λ on the kernels, and write H1 or H̃1.

4.1 Length and Weighted Length

We consider the geodesic active contour model [2,3]. The energy is E(C) =∫
C

φ(C(s))ds where φ : R
2 → R

+. Then the gradient with respect to H0 is
∇H0E = L(∇φ · N )N − LφκN where N is the unit inward normal, and κ is the
curvature. Let us first note that ∇H0E = L∇φ − L(φC′)′. Integrating by parts
we find that

1
L

∇1E = ∇φ ∗ K − (φC′)′ ∗ K = ∇φ ∗ K − (φsC) ∗ K ′ − (φC) ∗ K ′′,

where φs(ŝ) := d/dŝφ(C(ŝ)). Using the relations in (11), we find that

∇H̃1E =
φC − φC

λL
− L(φsC) ∗ K̃ ′

λ + L∇φ ∗ K̃λ. (13)

Of particular interest is when φ = 1, that is E = L, the length of the
curve. We see that ∇H̃1L = C−C

λL . It is interesting to notice that the H1 and
H̃1 gradient flows are stable for both ascent and descent while the H0 gradient
flow is only stable for descent. Note that the H̃1 gradient flow constitutes a
simple rescaling of the curve about its centroid. While the H0 gradient descent
smooths the curve, the H̃1 gradient descent (or ascent) has neither a beneficial
nor a detrimental effect on the regularity of the curve.

4.2 Area and Weighted Area

We consider region-based active contour models [5,6]. The energy is E(C) =∫
Cin

φdA where Cin denotes the region enclosed by the closed curve C, φ : R
2 →

R and dA is the area form. The gradient with respect to H0 is ∇H0E = −LφN =
−LφJC′ and J is a rotation by 90o matrix. Integrating by parts we find that

1
L

∇1E = −(φJC′) ∗ K = (φsJC) ∗ K + (φJC) ∗ K ′. (14)
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For the H̃1 gradient, this simplifies to

∇H̃1E =
J

λL2

∫ L

0

(
φC(· + ŝ) − φC

)
ŝ dŝ + (φsJC) ∗ K̃λ. (15)

Of particular interest is when φ = 1, that is E = A, the area enclosed
by the curve. We see that ∇1A = (JC) ∗ K ′. This simplifies to the gradient
ascent/descent

Ct(s) = ± J

λL2

∫ L

0

(
C(s + ŝ) − C

)
ŝdŝ (16)

in the H̃1 gradient case.

4.3 Elastic Energy

Consider the geometric version of elastic energy defined by E(C) =
∫

C κ2ds =∫
C

‖C′′‖2ds. It can be shown that the H0 gradient is ∇H0 E = L(2C(3) + 3(C′′ ·
C′′)C′)′. Thus, we find that

1
L

∇1E =
(
2C(3) + 3(C′′ · C′′)C′

)′
∗ K = 2C′′ ∗ K ′′ − 3(C′′ · C′′)C′ ∗ K ′.

For the kernel K̃λ, this simplifies to

1
L

∇H̃1E = −2C′′

λL2 − 3(C′′ · C′′)C′ ∗ K̃ ′
λ, (17)

and thus, the gradient descent, up to a scale factor depending on λ and L, is

Ct = Css +
3
2

∫ s+L

s

(Css · Css)Cs

(
ŝ − s

L
− 1

2

)

dŝ. (18)

4.4 Comparison of H0 and H1, H̃1

We notice several advantages of the gradients flows for H1 and H̃1 gradients
as compared with H0 gradients. First note that both the expressions for edge-
based and region-based active contour gradients with respect to H1 and H̃1 (13),
(14) do not involve any derivatives of the curve. This is in contrast to H0, which
requires two derivatives for geodesic active contours and one derivative for region-
based active contours. Hence, the Sobolev flows are defined for polygons, without
the use of viscosity theory. Note that the expression in (13) does not require any
more derivatives of φ than the expression for H0 does. This is not the case for
(14), which requires a derivative of φ. However, since φs is contained within
a convolution, the possible noise generated by φs is mitigated. Alternatively,
the original expressions (6) and (10) may be used if a derivative of φ is not
desired to be computed. Notice the expressions of Sobolev gradients for the
elastic energy (17) only require two derivatives of the curve; this is in contrast to
the H0 gradient, which requires four derivatives of the curve. Since there is no
maximum principle for fourth order equations, the H0 gradient of elastic energy
cannot be implemented using level set methods. Thus, a particle method must
be used; however, this is prone to numerical problems.
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5 Simulations

In this section, we show some simulations of Sobolev active contours used for
segmentation and tracking. In all the simulations done below, the results for
the Sobolev active contours are done with the H1 inner product with λ = 10,
although higher λ produces similar results with higher regularity. Using H̃1 gives
the same results as to what are shown.

Figure 2 shows snapshots of evolutions that use the edge-based energy [2,3]
for both the H0 (top) and the H1 (bottom) active contours to segment a noisy
image. The initial contour is a shifted version of the true object with a slightly
different radius. Notice that the H0 active contour learns local features instantly,
and therefore becomes stuck at an undesirable local minimum. On the other
hand, the Sobolev H1 active contour moves according to a global motion first,
then when it cannot reduce energy by moving in a global manner, it begins to
learn local features. As a result, the Sobolev active contour overcomes any unde-
sirable local minima created by the noise. Figure 3 shows a similar experiment

Fig. 2. Segmentation of a noisy image using edge-based H0 active contour (top), and
edge-based Sobolev active contour (bottom)

using the region-based energy [6]. The top row of the figure shows the result us-
ing the H0 active contour. Note that a curvature term is added to keep the curve
smooth. A curvature-data term ratio of 2000 to 1 is used for the H0 active con-
tour. Notice that although global statistics are used to define the energy, points
on the H0 active contour move independently without knowledge of other points
on the curve. Thus, the curve becomes unsmooth instantly, being susceptible to
local features, even though a high curvature weighting is used. The flow con-
verges to an undesirable local minimum. On the contrary, the H1 flow preserves
the shape of the initial contour as it translates until translations are no longer
favorable to reduce energy. Then the contour deforms from a square shape to
a circular shape as fine scale features of the image are learned. Note that there
was no curvature term added to the Sobolev active contour; the regularity is
achieved solely through the inner product definition.

Figures 4 and 5 show examples of tracking a square that translates using
both H0 active contours (in red) and Sobolev active contours (in blue). The
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Fig. 3. Segmentation of a noisy image using region-based H0 active contour with a
length penalty (top), and region-based Sobolev active contour (bottom)

segmentation result from the previous frame is used as the initial contour for
the next frame. The segmentation evolutions are run until convergence of both
contours. The first example in Fig. 4 shows the result using the edge-based
energy. The second example in Fig. 5 shows the result using the region-based
Chan-Vese energy. A curvature regularizer for the H0 region-based active contour
at a ratio of 1000 to 1 was used to compensate for noise. Notice the H0 active
contours becomes stuck in a undesirable local minima after the initial movement
of the object, and soon lose track of the object. The Sobolev active contours do
not have this problem and successfully track the object.

Fig. 4. Tracking a moving square in a noisy environment using edge-based H0 active
contour (red) and Sobolev active contour (blue)

6 Conclusion

We have introduced using Sobolev inner products on the set of perturbations
of a curve rather than the traditional H0 inner product used in all previous
works on geometric active contours. We have demonstrated the general method-
ology for computing Sobolev gradients, and derived various flows with respect
to Sobolev inner products. We have shown that Sobolev flows are smooth in
the space of curves, are not as dependent on local image information as H0
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Fig. 5. Tracking a moving square in a noisy environment using region-based H0 active
contour (red) and Sobolev active contour (blue)

flows, are global motions which deform locally after moving globally, and do not
require derivatives of the curve to be defined for region-based and edge-based
energies.
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