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Abstract 
Geometric active contours (GACs) and surfaces (GASs) 

implemented via level set techniques enjoy many advan- 
tages over parametric active contours (PACs) and sulfaces 
(PASs), such as computational stability and the ability to 
change topology during deformation. While many capabili- 
ties of earlier PACs and PASS have been reproduced by vari- 
ous GACs and GASs, and while relationships have been dis- 
cussed for a variety of speciJic cases, a comprehensive ac- 
counting of the connections between these two worlds (par- 
ticularly regarding rigid forces) has not been consolidated 
thus fa. In this paper we present the precise mathematical 
relationships between the two for an extensive family of both 
active contour and surface models, encompassing spatially- 
varying coeficients, both tension and rigidity, and both con- 
servative and non-conservative external forces. The result 
is a very general geometric formulation for which the in- 
tuitive design principles of PACs and PASs can be applied. 
We also point out which type of PAC and PAS methodologies 
cannot be adapted to the geometric level set framework. We 
conclude by demonstrating several geometric adaptations 
of spec$c PACs and PASs in several simulations. 

1. Introduction 

Active contours are curves that deform within digital im- 
ages to recover object shapes [14]. They are classified as 
either parametric active contours (PACs) (cf. [12, 141) or 
geometric active contours (GACs) (cf. [5 ,  6, 17,411) ac- 
cording to their representation and implementation. In par- 
ticular, PACs are represented explicitly as parameterized 
curves [ 12,141 in a Lagrangian formulation. GACs are rep- 
resented implicitly as level sets of two-dimensional distance 
functions [3,16,30] which evolve according to an Eulerian 
formulation. They are based on the theory of curve evolu- 
tion implemented via level set techniques [23]. 

PACs are the older of the two formulations and have 
been used extensively in many applications over the last 
decade (see [19], for example). A rich variety of modifi- 
cations based on physical and non-physical concepts have 
been implemented to solve different shape estimation prob- 
lems [ 12,34,39]. GACs were introduced more recently and 
were hailed as the solution to the problem of required topo- 
logical changes during curve evolution [5,17]. Modifica- 
tions and enhancements have been added to change their 
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behavior or improve their performance in a variety of ap- 
plications [6, 15, 33, 411, including a number of region- 
based models which have appeared recently in the litera- 
ture [9,24,25,29,42,43]. 

While similarities between the two formulations have al- 
ways been apparent, only recently have the precise relation- 
ships begun to emerge in the literature. Caselles et al. [6] 
showed that their GACs are equivalent to a special class 
of classical PACs. Aubert and Blanc-FCraud [4] revisited 
this equivalence and extended it to the 3-D (active surface) 
case. The equivalence derived in these two cases is limited 
in two respects, however. First, i t  applies only to those ac- 
tive contours derived from energy minimization principles. 
Thus, the question of whether a geometric formulation can 
be found for more general active contours is not addressed. 
Second, the equivalence only applies to active contours 
with elastic forces; rigid forces are neglected. Whitaker et 
al. [36] included rigid forces in their formulation, but only 
with constant weights and conservative forces. 

Overall, the equivalences currently established in the lit- 
erature do not relate a full family of parametric models to 
their geometric equivalent. As a result, i t  is difficult to de- 
sign GACs that take advantage of the wealth of parametric 
models that have been previously established. For example, 
it is not clear how one would incorporate non-conservative 
external forces, such as the forces defined in [38,39]. Also, 
it is not clear how to incorporate regional pressure forces, 
such as those used in [27,28], although specialized region- 
based GACs [9 ,24 ,29 ,43]  have been proposed recently. 
Meanwhile, it has been well known that the use of elas- 
tic internal forces may cause undesirable shrinking effect, 
whereas the use of rigid internal forces can smooth the con- 
tour without this adverse effect. However, the use of rigid 
internal forces have been largely lacking in GAC formu- 
lations so far. Since these are commonly used features in 
PACs, there is a clear need to establish an equivalent model 
in GACs so that the computational and topological advan- 
tages of GACs can be simultaneously exploited. 

In this paper, we derive an explicit mathematical re- 
lationship between the general formulations of PACs and 
GACs. The formulation considered here allows both con- 
servative and non-conservative external force as well as 
both elastic and rigid internal forces with spatially-varying 
weights. This equivalence relationship allows straightfor- 
ward translation from almost any PAC to a GAC and vice 
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versa. An extension of this equivalence to active surfaces 
for volumetric image segmentation is presented as well. 
The proposed equivalence does not directly apply, how- 
ever, to forces that are intrinsically Lagrangian, such as the 
usual external spring forces or variable tension and rigid- 
ity defined on a curve parameterization. We show examples 
demonstrating how the more general formulation of GACs 
and GASs can be used to good advantage by exploiting 
tricks from the PAC and PAS literature. Note that a pre- 
liminary version of this paper, which covers the 2D case, 
can be found in [40]. 

2. Background 

2.1. Parametric active contours 

The classical PACs, proposed by Kass et al. [14], are 
formulated by minimizing an energy functional that takes 
a minimum when contours are smooth and reside on object 
boundaries. Solving the energy minimization problem leads 
to a dynamic equation that has both internal and external 
forces. The external forces resulting from this formulation 
are conservative forces in that they can be written as gra- 
dients of scalar potential functions. Active contours using 
non-conservative forces, however, have been shown to have 
improved performance over traditional energy-minimizing 
active contours [38, 391. Therefore, we now formulate 
PACs directly from Newton’s law, which permits use of the 
most general external forces. 

Mathematically, a PAC is a time-varying curve 
X ( s ,  t )  = JX(sI t ) ,  Y ( s ,  t ) ]  where s E [0,1] is arclength 
and t E R is time. The dynamics of the curve are gov- 
erned by the equation 

~ x t  = F i n t  + F e x t  9 (1) 

where Xt is the partial derivative of X with respect to t ,  
-yXt is the damping force with y being an arbitrary non- 
negative constant, and Fint and Fext are internal and exter- 
nal forces, respectively. The contour comes to a rest when 
the net effect of the damping, internal, and external forces 
reaches zero. The external force is designed to pull an ac- 
tive contour towards object boundaries or other features of 
interest. Many types of external forces have been developed 
in the past (see [37] for a comprehensive list of external 
forces), including the well-known pressure force [ 121 and 
the Gaussian potential force [ 141. The internal force is the 
sum of elastic and rigid forces defined as follows 

Felastic = [a(s, t ) X s ( s ,  t ) ] s  (2) 
Fr ig id  = - [ P ( S ,  t ) X s s ( S ,  t ) ] s s  1 (3) 

where the coefficients a ( s ,  t )  and P ( s ,  t )  can be used to con- 
trol the strength of the contour’s elasticity and rigidity, re- 
spectively. In this general formulation, these coefficients 
are allowed to vary both along the length of the curve and 
over time. In practice, cr is usually a positive constant and 

is usually zero. It is important to maintain the most general 
formulation, however, in order to understand the precise re- 
lationship between PACs and GACs. 

2.2. Geometric active contours 

GACs [5, 171 are based on the theory of curve evolu- 
tion [3,16,30] and the level set method [23]. In this frame- 
work, curves evolve using only geometric measures, re- 
sulting in a contour evolution that is independent of the 
curve’s parameterization. This avoids the need to repeatedly 
reparameterize the curve or to explicitly handle topological 
changes (cf. [ 181). The parametric representations of the 
curves themselves are computed only after the evolution of 
the level set function is complete. 

Let #(z, t )  be a 2-D scalar function whose zero level set 
defines the GAC. Osher and Sethian [23] have shown that if 
a curve evolution is given by 

X t  = F ( K ) N  (4) 

where N is the inward unit normal and F ( K )  is a function 
of curvature K ,  then its evolution can be exactly simulated 
by evolving 4(z, t )  according to the dynamic equation 

4t = F(K)lO4l (5 1 
assuming the initial curve and the initial zero level set coin- 
cide. We refer this result as the fundamental relationship of 
level set evolution, which provides the basis for all the level 
set evolution work thereafter. 

The original GAC formulation [5,17] is given by 

4t = 4. + VO)lV4I 1 (6) 

where K = V .  (Vq5/lVq5l) is the curvature, Vi is a constant, 
and c c(z) = (1 + JV(G,(z) * I(z))l)-’ is an edge 
potential derived from the image. In (6), the product C ( K  + 
VO) determines the overall evolution speed of level sets of 
+(z, t )  along their normal direction. 

This scheme works well for objects that have good con- 
trast. When the object boundary is indistinct or has gaps, 
however, the contour tends to leak through the boundary. 
To address this problem, [6,15,41] propose the following 

(7) 

The extra stopping term Vc.V# is used to pull back the con- 
tour if it passes the boundary. To further reduce the sensitiv- 
ity to boundary leaking problem, [33] enhanced the above 
formulation with 

4t = C ( K  + VO)(V$l + vc . v4. 

by adding an extra term Voiz  . VclVqbI to provide more 
stopping power at boundaries. 

It has been observed that even (8) does not provide a 
satisfactory solution to the boundary leaking problem; con- 
tours can still leak through boundary gaps and weak edges. 
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Meanwhile, several good solutions to this problem have ap- 
peared in recent PAC literature [27,28,39].  But it is not 
clear, however, how these solutions can be adapted to the 
GAC framework. In this paper, we make this connection 
explicit by deriving a mathematical relationship between 
PACs and GACs and their extensions to active surfaces. We 
then show how two new GACs can be obtained through this 
relationship, and we demonstrate how the boundary leaking 
problem is solved using these new active contour models. 

3. Relationship between parametric and geo- 
metric active contours 

In this section, we introduce a general formulation for 
GACs by reformulating (1) using a level set representation. 
We start by modifying the parametric problem according to 
the following two considerations. First, we separate pres- 
sure forces Fpres (X) from other external forces F e x t  ( X )  
because they require a special numerical schemes [23]. Sec- 
ond, we consider only the normal component of force since 
the tangential component affects an active contour’s param- 
eterization but not its geometry. Therefore, the class of 
parametric models we consider is given by 

y x t  = [ ( F i n ,  + F p r e s  + F e x t )  . N ]  N7 (9) 

where N is the inward unit normal. The pressure force is 
given by Fpres = wpres(s7 t ) N ,  which generalizes Cohen’s 
pressure [ 121 by allowing the weight to be spatially and tem- 
porally varying. 

3.1. Equivalence 

Using the fundamental relationship of level set evolution 
given by (4) and (S), as well as differential geometry proper- 
ties of planar curves, it can be shown that a general formula 
for a GAC mimicking the PAC given by (9) can be writ- 
ten as follows (details of the derivation can be found in our 
previous paper [40]): 

where 

kxx4; + kyy& - 2 k x y 4 x 4 y  k x 4 x  + k y 4 y  

4: + 6; (4: + ’ 
--IE P ( Z )  = 

(1 1) 
and k ( z )  = P(z)~(z). Note that Q ( ~ ) K ( z )  and 
P ( z ) K ~ ( z )  - p ( z )  are derived from elastic and rigid in- 
ternal forces, respectively. 

Equation (10) gives a general GAC formula rigorously 
tied to the standard PAC formulation, and provides a com- 
mon basis for comparing various GAC formulations and de- 
signing new ones. For example, table l compares the three 
GAC formulations described in section 2.2. 

(7) c ( 5 )  0 c(z)Vo -Vc(z) 
( 8 )  c(z) 0 Vo[c(z)+ -Vc(z) 

$E. Vc(z)] 

Table 1. Comparison of existing GACs using (1 0). 

It is apparent from this comparison that previous cre- 
ativity in the development of new GACs has been some- 
what limited. For example, pressure forces have typically 
been tied through c(z), the edge potential, to internal ten- 
sion forces. External forces have been limited to irrotational 
forces, and these also tied to c(z). Finally, the use of rigid 
forces has been largely missing in existing GACs. There is 
room for much creativity in the selection of parameters for 
a GAC, and the derived equivalence should help to identify 
the opportunities and their relation to PACs. We explore 
some possibilities in the Applications section. 

4. Active Surface Extensions 

In this section, we study the general relationship be- 
tween parametric and geometric active surfaces (PASs and 
GASs). Like active contours, the class of PASs we consider 
obeys similar dynamic equation as (9). Given a paramet- 
ric surface, ~ ( u ,  v)  = [z(u, v), y ( u ,  v), z(u ,  v)IT, ( U ,  v) E 
[0,1] x [0,1], the classes of internal forces we concern min- 
imizes the following deformation energies 

Eelastic = J ~ ( 1 x u l 2  + l ~ v 1 ~ ) d ~ d v  

Erigid = J ~ ( l x u u 1 2  f ~ ~ X U I J ~ ~  f I X ~ u 1 ~ ) d U d v ,  

where Xu, X u ,  Xu,, Xu,, and X , ,  denote the sur- 
face’s first and second partial derivatives, and Eelastic and 
&gid are the well-known membrane and thin-plate func- 
tionals [35]. Taking the variational derivatives of defor- 
mation energies yields the corresponding elastic and rigid 
forces 

Felastic = . [a(u, 7-’)VX] (12) 

Fr ig id  = -A[p(u,v)Ax]7 (13) 

where d = (A, &)T and A = & + & denote the gra- 
dient and the LaDlacian oDerators defined in the parametric 
space. Note tha; in this paper, the typical Euclidean gradi- 
ent and Laplacian operators in R3 are denoted as V and A, 
respectively. Note also that if a(u, v) and P(u, v) are set 
to constants, the elastic force and the rigid force reduces to 
the Laplacian and the biharmonic (evaluated in parametric 
space) of the surface (cf. [20]). 

A GAS evolves according to geometric properties in- 
dependent of the surface parameterization. We can there- 
fore assume the surface is parameterized using arc-length 
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along principal directions'. Some differential geometry no- 
tations (for details, see [ 131) used in this section are: 

the coefficients of the first fundamental form: 

E = Xu . X u ,  F = Xu .Xu, G = X, . X u .  

the coefficients of the second fundamental form: 

e = Xu,. N, f = Xu,. N, g = X,, . N, 

where N = Xu x X,/lX, x X,I is the unit normal. 

mean curvature: H = ' ~ & ~ ~ ~ $ ~ ,  and 

Gaussian curvature: K = &. 
For a surface parameterized by arc-length along the princi- 
pal directions, we have E = 1, F = 0, G = 1, and f = 0. 
Thus, mean curvature and Gaussian curvature take the fol- 
lowing simple form 

K = eg ,  H = ( e  + 9)/2.  (14) 

As in the 2D case, let us first examine the normal com- 
ponent of the elastic force 

Felastic(X(u,v)) . N = 9 .  [a(u,v)VX] . N 
= (a,(u, .)Xu + a,,(u, u ) X ,  + a(u, u ) & X )  . N .  

Since Xu . N = 0 and X, . N = 0, we have 

Felastic(X(u, U ) )  . N = Q:(u,u)AX N .  (15) 

Note that equation (15) appears the same as if one starts 
with a constant Q: and then just replaces it with a spatially- 
varying a(u, U). However, the real reason for a(u,  v) com- 
ing out of the divergence operator is because the terms con- 
sisting of derivatives of ~ ( u ,  U )  are in the tangent space and 
thus eliminated by the inner product with the normal. 

Using (14), we can further simplify the normal compo- 
nent of the elastic force to 

Felastic(X(ui U)) . N = 2 ~ : ( u ;  v ) H .  

Hence, the equivalent level set representation of elastic 
force can be expressed as 

Felastic(z) = 2 ~ : ( z ) H ,  (16) 

where H is given by V . (04/lV4/).  
For the normal component of the rigid force, we have 

Frigid(X(u,U)) . N  = - d [ p ( ~ , v ) A ~ ] .  N 
= -AIH'N]. N = -&Hp - H 4 ( N u u  + N,,,) . N ,  

'For isolated umbilic points, a proper pair of principal directions can be 
determined by the shape of its local neighborhood; for spherical umbilic 
points, any orthonormal basis in the tangent space may be used [ 131. 

where H o  = 2P(u ,u )H.  Using the Weingarten equa- 
tions [ 131, it  can be shown that 

(17) Nu,  . N = - < N u ,  N u  >= -e2E = -e2 

and N,, . N = -g2.  After some math, we have 

Frigid(X(u, U ) )  . N = - A H 4  + H 4 ( 4 H 2  - 2K). 
To derive its level set expression, we first define p = 

A H o .  Unlike a curve, for surface it is not easy to com- 
pute p directly. Instead, we will use the fact that the Lapla- 
cian operator is invariant under unitary transformations - 
in particular, a change of orthonormal basis. We first extend 
the function p(u, U )  from the zero level set onto the 3-D grid 
so that it is now a function of x = (2, y, z ) ~ .  Now note that 
the mean curvature of the level sets of 4 is also a function of 
x. We now have H o  as a function of x. The standard 3-D 
Laplacian of this function can be easily computed. The di- 
rectional second derivative of this function along the normal 
direction of the level set can be computed using 

BHo - V 4 T H ( H f l ) V 4  

where H ( H 0 )  is the Hessian matrix of H o ( z ) .  Thus the 
Laplacian of HD in the zero level parameter space (tangent 
space) is given by 

7 (18) -- 

d N  P4I2 

The level set expression of Gaussian curvature K is given 
bv 1321 

where H ( 4 )  is the Hessian matrix of 4(x), and Adj(W) is 
the adjoint matrix of H. 

Thus, the level set expression of the normal component 
of the rigid force is given by 

F r i g i d  . N = - p  + H 4 ( 4 H 2  - 2K). (21) 
The external forces in active surfaces can be directly gen- 

eralized from active contours. Therefore, analogous to ac- 
tive contours, we obtain the following GAS formulation 

r4t(z) = [2Q: ( z )H  + W 4 H 2  - 2K)  - P(x)llV4(z)l 
+wpres(x)lV4(x)l - Fext(x) . V4(z) .  (22) 

5. Implementation Issues and Remarks 

5.1. Implementation Issues 

We implemented both the GAC of ( 1  0) and the GAS 
of (22) using the narrow band approach described in [l]. 
Rebuilding the narrow band when the contour or surface 
hits the narrow band boundary is calculated using the fast 
marching algorithm described in [2,31]. To assure the sta- 
bility of the algorithm, the rigid force is computed based on 
the algorithm proposed by Chopp and Sethian [lo]. 
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5.2. Remarks on the Mean Curvature Flow 
We should note that while the geometric heat flow of 

curves will shrink an arbitrary simple closed curve to a 
round point without developing singularities, i t  is well 
known that the mean curvature flow (active surface evo- 
lution with only elastic force and constant a )  may not 
shrink an arbitrary simple surface to a spherical point with- 
out causing singularities, e.g., a dumbbell surface. Several 
researchers [7, 1 1,21 ,22]  have proposed geometric flows 
with improved smoothing abilities by incorporating Gaus- 
sian curvature K .  For example, based on Alvarez's ax- 
ioms [3], Caselles and Sbert [7] considered the flow, X t  = 
~ i g n ( H ) ( K + ) l / ~ N ,  K+ = max(K, 0), and proved that 
this flow smoothly shrinks rotationally symmetric dumb- 
bells to ellipsoidal shaped points without developing sin- 
gularities. Neskovic and Kimia [21] enlarged the class of 
surface that can be shrinked to spherical points by consid- 
ering the flow, Xt = s i g n ( H ) J m N .  Special ge- 
ometric active surface models using these flows with im- 
proved smoothing ability can be easily obtained from (22) 
by choosing elastic force's spatially-varying weight a(.) as 
either v (K+)' /4 or Jm. 
5.3. Remarks on the Fourth-order Flow 

So far, the geometric 4th-order flow (rigid force) is much 
less understood than the 2nd-order flow, and is still an ac- 
tive research topic. The following observations on geomet- 
ric 4th-order flows of curves and surfaces are taken largely 
from the thesis of Polden [26]. A natural 4th-order analogue 
of the 2nd-order geometric heat flow X t  = K N  is given by 
X t  = -tcSsN, where K,, denotes the second derivative of 
curvature with respect to the arclength parameter s. Note 
that the inward unit normal N is used here. If the outward 
normal is used, then - K  and K , ,  should be used instead. 
While it is well known that the 2nd-order geometric heat 
flow arises as the gradient flow for length, this 4th-order 
analogue does not arise directly from a variational problem. 
This flow, however, does decrease curve length. Further- 
more, it keeps the area of the curve fixed and hence im- 
proves the isoperimetric ratio. A closely related 4th-order 
flow comes from minimizing the total squared curvature s K2ds. Such functionals arise in the theory of elasticae.  
The problem with minimizing this for a simple closed curve 
is that the elastic energy can be made arbitrarily small by 
magnifying the curve (rescaling), making the problem ill- 
posed. However, by adding a penalty on arclength along 
with the elastic penalty, the problem becomes well-posed. 
In this case, the cost functional has the form S ( K ~  + a)ds,  
where a > 0 denote,s the weight on the length penalty, 
and the long-term regularity of the resulting flow is proven 
in [26] not only for smoothly embedded curves, but for im- 
mersed curves (i.e. curves which may self-intersect, such 
as a figure eight) as well. The corresponding 3-D surface 
flow would come from minimizing the total squared mean 
curvature (the Willmore energy) along with a penalty on 
surface area. It was conjectured by DiGiorgi that this flow 

/ / / 

Figure 1 .  A jagged hand contour (top left) and a zoom 
up around the thumb (bottom left). Active contour de- 
formed under elastic force with a = 0.1 (top right) and 
under rigid force with p = 0.1 (bottom right) at 100, 
500, and 1000 iterations, respectively. 

would convexify any smoothly embedded compact surface 
in a regular manner, but this is still an open problem as no 
proof or counter example has yet appeared. 

5.4. Remarks on the Limitations of the Relationship 
The relationship we have derived does not provide a 

complete equivalence. From the outset we eliminated all 
terms that depend on an explicit parameterization of the ac- 
tive contour or surface. But a parameterization may be re- 
quired for certain PACs or PASS. For example, spring forces 
use springs that are tied to particular points on the contour 
or surface (cf. [ 141). They are Lagrangian in character, and 
it would require contour or surface point tracking to imple- 
ment them within an Eulerian framework. Active contours 
or surfaces that mimic physical objects whose tension and 
rigidity coefficients varying along the curve likewise cannot 
be implemented without contour or surface point tracking. 
So, to complete the equivalence, some way to keep track 
of the initial parametric coordinate of a contour or surface 
point, given its corresponding spatial location is required. 
This is a subject for future research. 

6. Applications 
This section shows the application of the mathematical 

relationship derived in Section 3 and 4 for designing new 
GACs based on two recent PACs. The GAS formulations 
for these applications can be similarly derived using (22), 
but are omitted here due to lack of space. 

Shape fairing. It has sometimes been argued that the ac- 
tive contour rigidity term is not necessary, that the elasticity 
term is adequate [6]. But the elasticity term shrinks con- 
tours, which may be undesirable in some applications. Use 
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of the rigidity term (non-zero p)  with small or no elasticity 
can help provide contour smoothness - fairing the contour 
- while minimizing contour shrinkage. Equation ( I O )  pro- 
vides a way to do this within the GAC framework. Fig. 1 
contrasts the contour smoothing difference between elastic 
forces and rigid forces. 

Region-based forces. Region information, when it could 
be reliably estimated, e.g., from image segmentation, can 
be used to improve the robustness of an active contour, both 
to noise and to weak edges. Those PACs formulations that 
have incorporated region information - e.g., [8,27,28,44] 
- can all be written in the following way 

YXt = [4.)Xsl, - [ P ( s ) x s s l s s  

+wRR(X)N + F e x t ( X )  1 (23) 

where R ( x )  is a region indicator function and W R  is a pos- 
itive weighting parameter. R ( z )  is derived from the image 
and (for the sake of concreteness) has values in the range 
[-1,1] that are smaller within the region(s)-of-interest. It 
modulates the sign of the pressure forces using region in- 
formation so that the contour shrinks when it is outside the 
object of interest and expands when it is inside the object. 
For this reason, these external forces are sometimes called 
signed pressure forces .  

Signed pressure forces help to solve the so-called bound- 
ary leaking problem, which results from weak edges. This 
idea has only recently been incorporated into GACs [9,24, 
25 ,29 ,42 ,43] ,  and our equivalence relationship permits 
a direct and more general result. In particular, using (9) 
and (lo), we can easily write 

Y4t (Z)  = [.(.).(a:) + P W 3 W  - P(a:)llV4(a:)l 
+w~R(a:)lO4(a:)l - F e x t ( z )  . v4(z) , (24) 

which comprises a more general class of region-based, 
GACs than has previously been reported. 

Gradient vector flow forces. Active contours using gra- 
dient vector flow (GVF) external forces have been shown 
to have a larger capture range and the ability to converge 
into boundary concavities [38,39]. They have been used 
only in PAC formulations, however, because they comprise 
non-conservative forces that do not fit within the standard 
geometric (or geodesic) active contour framework. Using 
our derived equivalence, it is straightforward to develop a 
GVF GAC. 

A GVF field is defined as the equilibrium solution of a 
generalized vector diffusion equation 

(25) 

where v ( z 7 0 )  = O f ,  ut denotes the partial derivative 
of v(z,t) with respect to t ,  V2 is the Laplacian opera- 
tor (applied to each spatial component of v separately), 
and f is an edge map that has a higher value at the de- 
sired object boundary. The functions g(r )  and h(r)  con- 
trol the amount of diffusion in GVF; in this paper, we use 

vt = d l V f  I)V2v - WlVf l)(v - O f )  7 

Figure 2. Result from the previous GAC (8) (top row) 
and the proposed region-based GAC (bottom row). 

g(r )  = e x p { - ( r / K ) 2 }  and h ( r )  = 1 - g ( r ) ,  where K 
is a scalar controlling the tradeoff between field smooth- 
ness and gradient conformity. We define 2, = v ( z ,  co), the 
equilibrium state of (25). A general GVF GAC follows by 
substituting @(a:) for F,,t(a:) in (24), yielding 

Y4t(a:)  = [.(.).(a:) + P(.).3(.) - P(z)llv4(.)l 
+wRR(X)lO#(Z)l - *(a:) . V4(z)  . (26) 

If desired or necessary, region forces can be turned off by 
setting W R  = 0. 

Volcano forces. Volcano forces are local repulsive forces 
that are determined by a volcano location specified by the 
user [ 1.41. They are a tool for interactive snake 
manipulation common1 parametric snakes. They 
are readily implemented c external forces and either 
add to or replace Fext (a: 

6.1. Examples 

Figure 2 shows an example patterned after one in [33], 
in which there is a weak boundary at the top right of the 
circle. The top row of this figure shows a conventional GAC 
leaking through this boundary, while the bottom row shows 
a region-based GAC implemented using (24). To construct 
the region indicator function in this example, we applied 
fuzzy C-means to automatically classify the figure into two 
classes, each with a fuzzy membership value at each pixel. 
The region indicator function was then given by 

R(z )  = 1 - 2#Uf(a:) . (27) 

where p ~ f ( a : )  is the membership function corresponding to 
the darker intensity class. To better localize the boundaries, 
these experiments also used an additional external force 
given by 

(28) 

Fig. 3 shows the results of applying our region-based 
GAC to segment the brain ventricles and the white matter 
from an MR image. The only difference between the results 
shown in the top row and the second row is in the definition 
of the region indicator function, which was based on the 

F e x t  (a:) = V P U ~  (a:) . 
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Figure 5. A GVF GAC is initialized across the object 
boundary in a simulated image (a) and deforms to the 
desired shape by simultaneously detecting boundary 
concavities and bridging boundary gaps (b)-(d). 

Figure 3. A region-based GAC can extract either the 
ventricle (top row) or the white matter (bottom row). 

(4 (b) (c) 

Figure 6. Segmentation of the LV on a cardiac ultra- 
sound image from a single GVF GAC. 

ized across the object boundary. Figs. 5(b) and 5(c) plot 
the contour deforming towards the desired obiect boundary. 

Figure 4. An example of a region-based GAS. (a)-(b) 
Surface initialized as a sphere across the white matter 
boundary. (c)-(f) Intermediate deformations and the 
final extracted white matter surface. 

ventricle membership (top row) and the white matter mem- 
bership (bottom row), respectively. Fig. 4 shows a result 
of applying our region-based GAS for volumetric brain MR 
image segmentation. An initial sphere is initialized across 
the brain white matter boundary (see Fig. 4(a) for its initial 
position in a cross-sectional image), and allowed to evolve 
using the GAS. The sphere shrinks at places where it is out- 
side white-matter, expands where it is in white-matter, and 
eventually recovers a complete 3-D surface representation 
of the white matter boundary. 

In applications where reliable region information is diffi- 
cult to estimate and there exist boundary gaps, GVF GACs 
could provide an useful alternative, since they preserve the 
perceptual edge property of active contours [ 14,391. Fig. 5 
shows an example in which a GVF GAC was applied to a 
simulated image containing an object that has both bound- 
ary gaps and concavities. In Fig. 5(a), a contour is initial- 

7. Summary and Conclusion 
We have derived an explicit mathematical relationship 

between the general formulations of parametric and geo- 
metric active contours and surfaces. This relationship high- 
lights the Lagrangian nature of parametric active contours 
and surfaces and the Eulerian nature of geometric active 
contours and surfaces. Of particular note is the inclusion of 
rigidity in this equivalence. Described applications of the 
relationship include curve and surface fairing, region-based 
and gradient vector flow active contours and surfaces, and 
interactive volcano forces. Examples on simulated and real 
images were presented, demonstrating in particular its ef- 
fectiveness on the boundary leaking problem. We expect 
that the equivalence derived here will facilitate the future 
development of active contours and surfaces. 
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