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ABSTRACT 
In this note, we formulate a general modified 

mean curvature based equation for image smoothing 
and enhancement. The key idea is to  consider the im- 
age as a graph in some R”, and apply a mean curva- 
ture type motion to  the graph. We will consider some 
special cases relevant to  greyscale and color images. 

I. INTRODUCTION 

Recently, there have been a number of researchers 
who have considered the use of nonlinear curvature 
based equations for various problems in computer vi- 
sion and image processing. An excellent reference is 
the volume edited by Bart Romeny [7] to  which we re- 
fer the interested reader for a large list of references. 

In this paper, we consider a twist on the idea of 
mean curvature smoothing of an image in that we 
treat the image as the manifold defined by the graph 
of a function embedded in some Euclidean space. For 
example, a greyscale 2D image I : R2 + R may be re- 
garded as the surface ( z , y , l ( z , y ) )  c R3. A 2D color 
image similarly may be regarded as a surface in R5. 
We consider therefore mean curvature motion of these 
graphs as our underlying model for image smoothing 
and enhancement. A very attractive feature is that  
this gives a natural geometric way to  treat vector- 
valued imagery. See [9] and the references therein for 
other approaches. We should also add that in [8], the 
authors also consider a similar approach. See [lo] for 
complete details of the results in this paper. 

The utility of our methods will be demonstrated 
on medical and military imagery. The author would 
like to  thank Professor Allen Tannenbaum for a num- 
ber of very helpful conversations about the material 
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11. 2D GREYSCALE IMAGE SMOOTHING 

Before considering the general case below, we be- 
lieve i t  is instructive to  consider the key case of a two 
dimensional greyscale image. Throughout this paper, 
we will freely use the basic facts of differential geom- 
etry from [2]. Accordingly, we will consider such an 
image as the graph of a surface in R3. 

From an inital image I ( z , y ) ,  construct an initial 
parameterized surface S(z, y)  = (z, y, I ( z ,  y)). The 
unit normal of this surface is given by 

and the mean curvature by 

Since S is a graph, it will, under mean curvature 
motion St = H N ,  evolve into a plane without de- 
veloping singularities [3]. As S evolves in this man- 
ner, small scale features of high curvature induced by 
noise in the image are very quickly removed. How- 
ever, an undesirable phenonmenon occurs from the 
point of view of image processing, namely, edges be- 
come blurred. These effects will be illustrated in the 
following example. 

Consider a 2D greyscale image which is constant 
along the y direction but which is black on the left 
half and white on the right half so that any horizon- 
tal cross section along the z direction yields a common 
step function. Now add small oscillations to  simulate 
noise in the image and “round off” the corners of the 
step edge so that our function becomes differentiable. 
Finally, for the sake of illustration, assume that this 
modeled noise is constant along the y direction so that 
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mean curvature motion of the surface (St = H N )  
causes the cross sectional curve, C,  to  evolve accord- 
ing to its curvature (Ct = n N ) .  This type of motion 
will have the desirable effect of flattening out the os- 
cillations but will also have the undesireable effect of 
widening the step edge. 

However, suppose we now constrain the evolution 
of each point of S to  be purely vertical by projecting 
the mean curvature vectors onto the vertical direction 
(z-axis) so that no sideways motion can occur. There- 
fore, instead of St = HN we consider St = ( H N . Z ) Z  
which causes C to  evolve according to  Ct = (nN.Z)Z 
where Z represents the unit vector in the vertical di- 
rection. Clearly, this completely vertical motion will 
still eliminate the unwanted oscillations but will no 
longer pull the corners of the step edge further apart. 
Thus, by vertically projecting regular mean curvature 
motion of S we obtain an edge preserving, noise re- 
moving evolution given by 

St = ( ( H N )  .Z)Z. 

Notice that the evolving surface under this mod- 
ified form of mean curvature motion takes the form 
of S ( x ,  y, t )  = ( 2 ,  y, f(x, y,t)) and so I ( x ,  y,t) is eas- 
ily extracted from S(x,y, t )  by setting I ( z , y , t )  = 
f ( z ,  y, t ) .  This allows us to  dispense with S altogether 
and simply write down the following edge perserving 
anisotropic filter for I :  

I x m ( l  + I ; )  - 21xIyIxy + I y y ( l  + 1:) 
2 ( 1  + I ;  + I;)z 

It = 

111. SCALING PARAMETER 

The filter we have presented can be extended into 
an entire family of filters by scaling the height of the 
image. More precisely, if we make the substitution 
I -+ k I  into the above equation for some positive 
constant k we obtain the more general filter 

A I  + k2(IzIyy - 2IxIyIzy + IiIxc) 
( 1  + k211VI112)2 

It = 

Scaling I by a large value of k amplifies edges in 
the image and will yield a filter with very strong edge 
preserving properties. However, choosing a smaller 
value of k will yield a faster diffusion. This trade- 
off between speed and edge preservation will be il- 
lustrated on real images in Sec. 7 but can been seen 
mathematically by observing the limiting cases shown 
below. 

k 4 O :  I t + A I ,  

As k becomes very small the aniosotropic diffusion 
approaches the isotropic heat equation which imple- 
ments a rather fast diffusion but does a poor job of 
preserving edges. As k becomes very large we ap- 
proach a damped geometric heat equation which does 
a far superior job of preserving edges. Futhermore, 
the damping term applied to the limiting geomet- 
ric heat equation helps to  prevent the distortion of 
shapes caused by the pure geometric heat equation. 
However, this damping term also makes the diffusion 
much slower. 

IV. PRELIMINARY LEMMAS 

In this section, we will derive two results which 
will be useful in analyzing the general formula for pro- 
jected mean curvature motion. 
Lemma I: If al, . . . , am E R" then 

N = aiaT 
M = [ai ' a 3 , ]  2 3  

T N ( S )  = s ~ - , T M ( s )  where 

where X N ,  T M  denote the characteristic polynomials 
of M ,  N .  

Lemma 2: If al,. . . ,a, E Rn and k E R then 

where Im,In denote the m x m and n x n identity 
matrices. 

V. THE GENERAL CASE 

We will now derive the general formula for the ver- 
tically projected mean curvature motion of a graph of 
arbitrary dimension and codimension. In what follows 
below we will use the symbol Z, for the p x p identity 
matrix. 

In general, the mean curvature vector H of an m- 
dimensional surface S in Rm+" (co-dimension n) with 
coordinates 21,. . . , x, is given by 

where P is the orthogonal projection map which an- 
nihilates the component of S,$,J in the tangent space 
of S (span of S,,, . . . ,Sxm). Actually, the H defined 
here is m times the true mean curvature vector, but 
by abuse of notation we will continue to  refer to H 
as the mean curvature vector. Since P is linear and 
Tk[G-1Proj(V2S)] yields a linear combination of the 
elements of Proj(V2S) we can pull P outside and 
write 

H = P T ~ ( G - ~ v ~ s )  
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Note that the matrices P, G, and V2S are all func- 
tions of z = (21,. . . , zm) .  Consider the case where S 
is a graph of the form S(z) = ( z , I ( z ) ) ,  I : R" ---f 

R". The elements gi j  of G, which are just the co- 
efficients of the first fundamental form s, are then 
Sxi . Sxj = 6 i j  + Ixi . Ixj, and SO G = Zm + J ( I ) ' J ( I )  
where J ( I )  denotes the n x m Jacobian matrix of I .  
Also, note that the elements Sij of V2S  are given by 
Sij = (O,Ixixj) where 0 denotes the m-dimensional 
zero vector and I x i x j  are the n-dimensional elements 
of V21. Now represent P in block form as 

A B  
. = [ e  P ]  

where A is m x m, B is m x n,  C is n x m and P is 
n x n. Since P annihilates any tangent vector Sxi we 

where e l , .  . . , e ,  denote the standard orthonormal ba- 
sis for R". From this expression we see that Cei  = 
-PIxi = 0 for each i = 1,. . . , m  and so 

c = [ -PIx1 . . . -PIxm ] = -PJ(I), 
Next, since P preserves any normal vector N = ( U ,  v)' 
of S where U E R" and U E R" then, 

A B  Au+ Bw 
cu + P u  

and so w = Cu + Pu. However, note that N .  Sx, = 
(u,w) . ( e i , I x i )  = U . ei + w . Ixi = 0 for each i = 
1,. . . , m since N is orthogonal to  each Sx,. Therefore 
U = ( -w.Ixl , . . . , - U - I ~ , ) ~  - - JT( I )w .  Substituting 
for U and C yields U = [-PJ(I)][-JT(I)w] + P v  = 
P[J(<)J'(I) + Zn]v. From this expression, it is clear 
that PIJ(I)JT(I)+Zn] must be the identity map, and 

Now consider using projected mean curvature mo- 
tion of S as a way to  smooth the m-dimensional n- 
vector valued image I : R" + R". As before, we 
project the mean curvature vector H of S onto the 
n-dimensional subspace of Rm+" orthogonal to  the 
m-dimensional domain of I under the inclusion map 
via the matrix 

so P = [ J ( I ) J T ( I )  +Zn]-'. 

V = [ O  L ]  
where 0 represents the m x m zero matrix, and Z,, the 
n x n identity matrix. Since the resulting evolution 

leaves the first m components of S unchanged and 
since the last n components of S evolve according 
to pTr(G-'V2I) (this is because the first m com- 
ponents of the elements of V2S  are zero and the last 
n components form an element of V'I ) ,  we may dis- 
pense with S and evolve the image directly via It = 
PTs(G- 'V~I ) .  Substituting the values of G and P 
just computed yields 

It [Zn + J(I)JT(I)]-lTr{[Zm + JT(I)J(I)]- 'V21}. 

If we make the substitution I k I  to  account 
for arbitrary scalings of I we obtain the more general 
equation 

It = [Zn + k 2  J (  I )  .IT (I)] -' Tr { [Im +k2 J T  ( I )  J (  I)] -' V21}  . 

Note, as seen already in the 2D grey-scale case, that 
as k goes to  zero, the diffusion approaches the linear 
heat equation (It ---f TrV21). 

If m > n, then it may be easier to  compute the de- 
terminant of the n x n first fundamental form matrix 
than it is the m x m projection matrix in the above 
equation. We can then use the result of Lemma 2 to  
avoid the computation of the more difficult determi- 
nant. Call A the following expression: 

Adj [ k -22n + J ( I )  J' (I)] Tr { Adj [ k -22m + J' ( I )  J (I)] V2 I} 

Pulling out a factor of k W 4  and applying Lemma 2 
yields 

or in case n > m it may be easer to  use 

VI. 2D COLOR AND 3D GREY SCALE 
IMAGERY 

In this section, we compute from the general equa- 
tion, the projected mean curvature diffusions for the 
important special cases of 2D color and 3D grey scale 
images. 

A 2D color image amounts to a surface in R5, 
given by S(a,y) = ( z ,y , I ( s ,y ) ) .  Solving the general 
equation for m = 2 and n = 3 with the scaling factor 
k yields 

It = k-'Adj(k-'& + I x I z  + IyI:)O 

where s1 is given by the expression 

st = V H  = (VP)Tr(G-lV2S) = [ ] Tr(GV1V2S) w2 + Iy .Iy)Ix, - 2(Ix * Iy)Ixy + ( k - 2  + I ,  . Ix)Iyy 
[ ( k - 2  +Ix * I,)(k-2 + Iy . Iy) - (Ix . Iy)2]2 
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In fact, by merely replacing 1 3  in the above equation 
with I,, we obtain the projected mean curvature dif- 
fusion equation for an  n-vector valued 2D image. 

A 3D grey scale image amounts to  a 3 dimensional 
hypersurface in R4 given by S(z, y, z )  = ( 5 ,  y, z ,  I ( z ,  y, z ) ) .  
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Figure 1: Projected mean curvature smoothing on a grey scale MRI image 

Original Image 

50 iterations (k=.2) 250 iterations (k= l )  

100 iterations (k=.2) 500 iterations ( k = l )  
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Figure 2: Projected mean curvature smoothing on a color aircraft image 

Original Image 

4 iterations (k=.01) 

8 iterations (k=.01) 

10 iterations (k=.05) 

20 iterations (k=.05) 
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